
HTTP/3’s Extensible Prioritization Scheme in the Wild
Joris Herbots
Robin Marx

{name.lastname}@uhasselt.be
Hasselt University, EDM
Diepenbeek, Belgium

Maarten Wijnants
Peter Quax

{name.lastname}@uhasselt.be
Hasselt University, Flanders Make

Diepenbeek, Belgium

Wim Lamotte
wim.lamotte@uhasselt.be
Hasselt University, EDM
Diepenbeek, Belgium

Fas
tly

QU
IC.
clo
ud

Ak
am
ai

Clo
udfl

are

Go
ogl
e C

lou
d C

DN

Go
ogl
e G

sta
tic

jsD
eliv

r (F
ast
ly)

jsD
eliv

r (C
lou
dfla

re)

Sho
pif
y
Am

azo
n C

lou
dFr

ont

NG
INX

Ca
ddy

Default scheduler SEQ SEQ SEQ SEQ INC INC SEQ SEQ SEQ INC INC INC

Priority request header field ● ● ▲ ● ▲ ▲ ● ▲ ▲ ▲ ▲ ▲

PRIORITY_UPDATE frame ● ● ● ❍† ● ● ● ▲ ▲ ▲ ▲ ▲

Reprioritization ● ● ● ▲ ● ● ● ▲ ▲ ▲ ▲ ▲

urgency parameter ● ● ● ● ● ● ● ▲ ▲ ▲ ▲ ▲

incremental parameter ● ● ▲ ● ▲ ▲ ● ▲ ▲ ▲ ▲ ▲

Incremental chunk size (packets) 1 >1 / 1 >1 >1 1 / / 1 >1 1

Table 1: Comparison of prioritization subfeature support across 12 HTTP/3 endpoints. Green circles indicate
support; red triangles, no support. SEQ = sequential, INC = incremental. † Cloudflare ignores PRIORITY_UPDATE

frames sent after the request, precluding reprioritization.

ABSTRACT
For HTTP/2 and HTTP/3, multiple (Web page) resources are
loaded by multiplexing them onto a single TCP or QUIC con-
nection. A “prioritization system” is used to properly sched-
ule the order in which the resources are sent. As HTTP/2’s
“prioritization tree” underperformed, a more straightforward
setup called the Extensible Prioritization Scheme (EPS) was
proposed for HTTP/3. This paper represents the first real-
world measurement study into how this new scheme is sup-
ported and employed in practice by the three main browser

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW 24, July 23, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0723-0/24/07
https://doi.org/10.1145/3673422.3674887

engines and 12 different popular servers and cloud/CDN de-
ployments. We find considerable heterogeneity in overall
EPS (sub)feature support and even fundamental differences
in approach/philosophy between the stacks. As incorrect
prioritization can have a negative effect on (Web) perfor-
mance metrics, our work not only provides essential insights
for browser vendors and server deployments but also offers
recommendations for future improvements.

CCS CONCEPTS
•Networks→Application layer protocols;Packet sched-
uling; • Information systems → Browsers.

KEYWORDS
QUIC, HTTP, Prioritization, Browsers, Servers, CDN, Re-
source Loading, Web Performance Optimization
ACM Reference Format:
Joris Herbots, Robin Marx, MaartenWijnants, Peter Quax, andWim
Lamotte. 2024. HTTP/3’s Extensible Prioritization Scheme in the
Wild. In Applied Networking Research Workshop (ANRW 24), July 23,
2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3673422.3674887

1

https://orcid.org/0000-0002-8987-0824
https://orcid.org/0009-0009-8345-393X
https://orcid.org/0000-0002-6351-2148
https://orcid.org/0000-0003-4811-0578
https://orcid.org/0000-0003-1888-6383
https://doi.org/10.1145/3673422.3674887
https://doi.org/10.1145/3673422.3674887
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673422.3674887&domain=pdf&date_stamp=2024-07-20


ANRW 24, July 23, 2024, Vancouver, BC, Canada Herbots and Marx, et al.

1 INTRODUCTION & RELATEDWORK
When loading a Web page’s constituent resources, both
HTTP/2 (H2) and HTTP/3 (H3) use a single TCP or QUIC
connection respectively; each resource is transferred on a sin-
gle “stream” and many in-flight streams can be multiplexed
on the single connection. At any given time, each connection
has limited bandwidth available, which is determined by the
congestion controller. Therefore, a scheduling algorithm is
needed to determine how to distribute bandwidth across
active streams. Since not all resources are equally important
for Web page performance (e.g., “render blocking” JavaScript
(JS) and CSS in the <head> should be loaded before images
in the <body>), the scheduler should make sure more im-
portant resources are loaded first. Purely fair, round-robin
scheduling between the streams is rarely optimal in this con-
text [16, 37]. Since the server often does not have enough
context to deduce the resources’ importance (e.g., image im-
mediately visible in viewport versus loaded “lazily” at the
bottom of the page), the client traditionally determines the
resource importance and loading order deemed appropriate
and signals this to the server using a “prioritization system”.

For example, H2 had a complex “prioritization tree” [1, 37]
where each stream was represented by a node in said tree.
Bandwidth was distributed across the nodes depending on
their position and relationship to their siblings. Nodes could
be inserted and moved around at will by clients, leading to
a flexible yet difficult to (efficiently) implement server-side
system [16, 31]. Consequently, even today there continue
to be many inconsistencies and bugs in browser and server
implementations of this system [18, 37]. It was subsequently
removed in an updated version of the H2 specification [35].

Given the issues with H2’s approach, a simpler systemwas
designed for H3 [2]. This Extensible Prioritization Scheme
(EPS) [28] does away with the complexities of maintaining
a tree and simply assigns two parameters to each resource
stream. The first is Urgency (u), an integer ∈ [0,7] where 0
is highest conceptual “priority” and 7 lowest, with a default
of 3. Resources with a low urgency value should all be sent
before those with higher values, while those with the same
urgency should be sent in FIFO order. The second parameter
is Incremental (i), a boolean flag (0 or 1), which indicates if
a resource can/should share bandwidth with other in-flight
resources with the same urgency, leading to a sequential
(0, default) or incremental (1) send order. As a simplified
example, imagine two resources A and B consisting of three
“chunks” each. If requested concurrently, Table 2 shows the
expected resulting server send order per the EPS RFC [28].
These two parameters can be signaled from client to server in
two ways. First, via the “priority” HTTP request header field,
mainly intended to set the resource’s initial priority. Second,
via the “PRIORITY_UPDATE” frame, primarily to allow for

A B Send order Comments
u=1 u=5 AAABBB Sequential lowest u value first
u=2 u=2 AAABBB Sequential FIFO
u=3, i u=2, i BBBAAA Sequential lowest u value first
u=4, i u=4, i ABABAB Incremental fair bandwidth sharing
u=4, i u=4 undefined Not specified in RFC.

Table 2: Illustrative example of the Extensible Prioriti-
zation Scheme with different combinations of u and i

reprioritization after the initial request (e.g., a low priority
image halfway down the page becomes higher priority as
the user scrolls down).
At the time of writing, it has been two years since the

publication of both the H3 and EPS IETF RFCs [2, 28] and H3
now represents a significant share of global traffic (e.g., over
27% of Cloudflare traffic in the first week of April 2024 [3]). As
such, we feel it is important to conduct a measurement study
across prevalent H3 stacks to gauge their support and use
of the EPS system, and to see if it has led to more consistent
support than H2’s setup (we did not yet aim to assess the
impact of EPS on Web performance metrics; this is future
work). This text presents our results for both browsers (§2)
and servers (§3). We find substantial differences between the
implementations, with several still lacking full or lacking
partial support, indicating that the new approach might not
be as successful in its goals as originally hoped. Our complete
test setup and results are publicly available [6, 7, 14].

2 BROWSER OBSERVATIONS
A browser uses heuristics to determine a likely optimal load-
ing order for a Web page’s subresources. These heuristics
are driven by many inputs, including the resources’ types,
order of resource tags in the HTML and the use of “load-
ing method” modifiers that developers can employ to ex-
plicitly provide hints to the browser (e.g., preload, lazy,
async/defer JS [20, 21, 23, 24]). The browser then employs
the prioritization system to signal its preferred transmission
order to the server.
However, neither H2 nor EPS mandate how the load or-

der should map to the priority signals (e.g., no guidance is
given on how to construct a well-performing prioritization
tree in H2); this is left as an implementation choice. In prac-
tice, this has contributed to browsers choosing divergent
ways of using prioritization (for both H2 [37] and H3 (this
paper)). This is further complicated by the recent introduc-
tion of the fetchpriority API [22]. This allows developers
to influence the underlying priority signals indirectly by
nudging the browser’s heuristical value either slightly up
(fetchpriority="high") or conversely down
(fetchpriority="low"). This API however does not pro-
vide fine-grained control (under EPS, it only influences u but
not i) and is inconsistently implemented.

2



HTTP/3’s Extensible Prioritization Scheme in the Wild ANRW 24, July 23, 2024, Vancouver, BC, Canada

2.1 Experimental Setup
To assess how browsers utilize the EPS, we created multiple
HTML pages [14] that load a wide variety of resource types
usingmost available loadingmethods, including fetchpriority
modifiers; Table 3 lists the most common combinations.

We evaluated the EPS usage of three popular browser en-
gines (Chromium, WebKit and Gecko) by loading our test
pages in their main implementing browsers (Chrome Canary,
Safari Technology Preview, Firefox Nightly). The pages were
hosted on a London-based Linode VM via the existing aioquic
server [6], which wemodify slightly to add EPS support to its
qlog logging format output [17]. We loaded all pages three
times from a Belgian domestic network using a 100Mbps
wired link. We repeated the experiments over a period of 1.5
years in three main periods with recent browser versions
(YYYY-MM): 2022-12, 2023-08, and 2024-03. Each test pro-
duced 9-18 qlogs which we manually analyzed. Since most
results remained stable, in §2.2 we report the results from
2024, indicating longitudinal changes where appropriate.

2.2 Browser Results
Our main results are summarized in Table 3. To aid in inter-
pretation, we map each browser’s raw urgency values to a
5-tuple of [highest, high, medium, low, lowest] (except for
Firefox, which only utilizes 4 values, so we omit “lowest”).

EPS parameter usage. Despite EPS only defining two parame-
ters (u and i) the three browsers still use them in very differ-
ent ways. Firefox never sets the incremental flag (defaulting
to 0), while Safari always sets it to 1. Chrome originally never
set the flag, but changed this in August 2023 to setting the
flag for all resources types except JS, CSS and Fonts [30].
Firefox and Chrome also do not send an explicit signal for
resources that would be assigned the EPS default (u=3, i=0),
while Safari does. Chrome clearly has a more fine-grained ap-
proach, setting distinct urgencies for most resource type and
loading method combinations. This is in contrast to Firefox’s
coarse urgency groupings; Safari is in the middle. Safari’s
approach is likely suboptimal for Web performance, while
Chrome is plausibly the best of the three [13, 37].

EPS signaling method. Despite EPS also only defining two
signaling methods (request header and PRIORITY_UPDATE
frame), the three browsers still use these differently. Firstly,
while Firefox and Safari both signal initial priorities with the
header, Chrome instead originally used the frame for this.
Interestingly it sent the frame before the actual request, re-
quiring servers to buffer the frame until the request arrived.
Since February 2024 [27] Chrome also sends the priority
request header, in addition to the frame, which is still sent
first. Chrome likely keeps sending the frame to retain inter-
operability with its own servers that ignore the header (see

Resource (load method)
Main resource (HTML) highest, i highest, i highest
Font (preload) high medium, i medium
Font (preload fp@high) high high, i medium
Font (preload fp@low) low low, i medium
Font (font-face) highest medium, i low
JS (preload) high high, i medium
JS (preload fp@high) high highest, i medium
JS (preload fp@low) low medium, i medium
JS (prefetch) lowest, i undefined low
JS (head) high high, i high
JS (head fp@high) high highest, i high
JS (head fp@low) high medium, i high
JS (async) low medium, i medium
JS (async fp@high) high high, i medium
JS (async fp@low) low low, i medium
JS (async blocking) high medium, i medium
JS (defer) low high, i medium
JS (defer fp@high) high highest, i medium
JS (defer fp@low) low medium, i medium
JS (defer blocking) high high, i medium
JS (module) high [12] high, i medium
JS (head inserted) low high, i medium
JS (bottom of body) medium high, i medium
JS (bottom fp@high) high highest, i medium
JS (bottom fp@low) low medium, i medium
CSS (preload) highest high, i high
CSS (preload fp@high) highest highest, i high
CSS (preload fp@low) high medium, i high
CSS (head) highest high, i high
CSS (head fp@high) highest highest, i high
CSS (head fp@low) high medium, i high
CSS (media=print) lowest lowest, i low
CSS (bottom of body) medium high, i high
CSS (bottom fp@high) high highest, i high
CSS (bottom fp@low) low medium, i high
Image (preload) low, i low, i low
Image (preload fp@high) high, i medium, i low
Image (preload fp@low) low, i lowest, i low
Image low, i medium, i low
Image (first 5) medium, i medium, i low
Image (first 5 fp@high) high, i high, i low
Image (first 5 fp@low) low, i low, i low
Image (lazy) low, i medium, i low
Image (lazy fp@high) high, i high, i low
Image (lazy fp@low) low, i low, i low
Fetch high, i medium, i low
Fetch (fp@high) high, i high, i medium
Fetch (fp@low) low, i low, i low
Fetch (manual header) accepted accepted ignored

Table 3: Browser EPS signals for the most common
resource types and loading methods. i indicates the
incremental flag was true. fp@high|low indicates the
fetchpriority attribute was explicitly set.

3



ANRW 24, July 23, 2024, Vancouver, BC, Canada Herbots and Marx, et al.

§3.2). Secondly, only Chrome and Safari use the frame for
actual stream reprioritization, and only very sparingly. On
Chrome, this was only observed to give an image a “high”
priority (up from the default “medium”) once it was discov-
ered to be in the viewport. On Safari, we only saw frames
to reflect the priority bump from fetchpriority="high",
and this again only for visible images (other fetchpriority
modifiers seem to be reflected in the initial header instead).

Heuristics differences. The browsers are also inconsistent in
their use of heuristics to determine priority signals. For ex-
ample, Font files loaded via @font-face are highest u in
Chrome, medium in Safari, but only low in Firefox (while
loading fonts with preload lowers their u in Chrome, but
increases it in Firefox). Other discrepancies can be seen for
JS files, where Chrome and Firefox treat async/defer JS as
lower priority than “normal” <head> JS, while Safari only
lowers the priority for async. Similarly, Chrome is more fine-
grained in how it handles various JS types in the <body>.
Finally, while all images are simply assigned a low u by Fire-
fox, Safari and Chrome employ more complex logic. Chrome
even changed from assigning all images an initial low u, to
marking the first 5 images on a page as medium instead [26]
to help improve the Largest Contentful Paint metric.

Fetchpriority impact. While Firefox does not have support
for the fetchpriority API yet [5], Safari applies the API in
a very predictable way: where possible, “high” increases the
priority one level, while “low” decreases it by one. Chrome
however is much more restrictive, often ignoring either high
or low and keeping the resource at its “default” urgency
instead (e.g., Fetch (fp@high) has no impact), thus arguably
diminishing the (already limited) usefulness of the API.

Direct control with fetch(). We tested if it is possible to manu-
ally override the EPS “priority” header using the JS fetch()
API. Originally, Firefox sent two priority headers, one with
its own heuristics, and one with the manual signals [11]; it
now simply ignores the manual override. Safari and Chrome
both apply the manual version directly, even if it contains
invalid values (e.g., u=42). Notably though, Chrome only
changes the header signal; the PRIORITY_UPDATE frame
it sends before the request still contains its original values,
giving somewhat contradicting info to the server.

Comparison to HTTP/2. Interestingly, both Chrome and Fire-
fox’s EPS logic is nearly the opposite of their H2 approach [37].
Firefox has the most complex tree of the three browsers in
H2 with complex bandwidth sharing between resources, but
employs the simplest EPS signals without the incremental
flag. In contrast, Chrome has a purely sequential scheduler
in H2, but chooses to set the incremental flag for various
resource types in H3. Only Safari uses conceptually similar
approaches for the two protocol versions.

3 SERVER OBSERVATIONS
3.1 Experimental Setup
Given the heterogeneity in the browsers’ use of EPS, it is
evident that servers should implement all or most EPS subfea-
tures. To assess if servers can indeed support the divergent
clients, we ran custom experiments where we request ten
resources of the same size (either all at the same time, or
slightly staggered), using a variety of u and i values, commu-
nicated via the HTTP “priority” header field and/or PRIOR-
ITY_UPDATE frame, to assess specific subfeature support.
Table 4 details our experimental categories (A-G). For each
category, we permutate header vs frame ordering, delays
between requests, and when signals are sent, to properly
verify the underlying logic in a large variety of conditions.

The design of the experiments had to account for QUIC’s
non-deterministic ordering between individual streams, as
QUIC tries to prevent inter-stream head-of-line-blocking [8,
16] (i.e., by design,messages X and Y sent on different streams
in order X/Y, may well arrive at and be applied by the re-
ceiver in reversed Y/X order). This is an issue since the
EPS header is sent on a resource’s “request stream”, while
the PRIORITY_UPDATE frame is sent on a separate “control
stream”. As such, these signals can conceptually become
inverted, leading to inconsistent results. To combat and de-
tect this problem, we employed various delays (e.g., 200ms,
100ms, 20ms, 0ms) between sending the frame and the re-
quest headers.

Aswe need full control and determinism in both the timing
and contents of the prioritization signals, we were unable to
utilize existing Web browsers directly. Instead, we employ
the full-featured [33] and extensible aioquic client, which we
modify [6] to add support for EPS client-side signaling and to
extend the verbosity of its qlog logging format output [17].

Wemanually selected 12 server stacks to test, based on per-
ceived popularity and prevalence on the Web [38], as well as
expected maturity [33]. This includes the major CDNs (Aka-
mai, Cloudflare and Fastly), distributed clouds (QUIC.cloud,
Google, Amazon), popular (resource) hosting services (jsDe-
livr, Shopify), and off-the-shelf open source packages (NG-
INX, Caddy). For all but the final two, we manually identified
multiple publicly accessible H3-capable [19] URLs (e.g., from
company homepages or from other test setups [4]), all be-
tween 102KB - 3.1MB in size, and of various types (JS, CSS,
images). We disregarded some deployments (e.g., Microsoft
Azure) as we could not find public H3-capable URLs for them.
For NGINX and Caddy, we hosted their latest docker images
on a London-based Linode VM, copying over one of the other
deployments’ resources to use as the experimental object.
We conducted all experiments from a Belgian Univer-

sity network using a symmetrical 1Gbps wired link. We re-
peated experiments six times over a period of seven weeks

4



HTTP/3’s Extensible Prioritization Scheme in the Wild ANRW 24, July 23, 2024, Vancouver, BC, Canada

ID Experiment Logic and goals
A nothing No EPS signals are sent. Test default scheduling behavior.
B incremental All resources have the same urgency and incremental set to 1. Test bandwidth sharing.
C late high prio Resource 5 and 6 are requested after the others with a lower urgency. Test urgency precedence.
D late high prio inc. Same as late high prio with incremental resources. Test sequential to incremental changeover.
E mixed bucket Both incremental and non-incremental in the same urgency. Test the unspecified edge case in Table 2.
F mixed method Send both request header and PRIORITY_UPDATE frame with conflicting info. Test signaling method support.
G reprioritization Send PRIORITY_UPDATE frame after 50ms with lower urgency value (higher priority). Test reprioritization.
Table 4: Different server experiments request ten resources on the same connection with varying EPS signals.

in 2024 (MM-DD): 02-14, 02-21, 02-29, 03-28 (only NGINX
and Caddy), 04-03, and 04-05. Each test run produced 1276
to 1680 qlog traces (experiments F and G were added later,
as were NGINX v1.25.4 and Caddy v2.7.6, and only tested
during the final three runs). We manually analyzed the qlogs
using the qvis tool suite [15], longitudinally comparing re-
sults both across experiments for the same server, as well as
across servers for the same experiment. As we incrementally
added experiment categories and new server deployments
over time, we derive a server’s core behavior for a specific
experiment primarily from the first obtained result thereof.
We then validated our assessments with the final full runs
of all experiments over all servers in April 2024 [7].

3.2 Server Results
Table 1 summarizes the results for the main EPS subfea-
tures that showed clear discrepancies across implementa-
tions. While we reached out to multiple stack engineers for
comments, most declined. We have included other replies
where appropriate.

Full support. Among all the global server deployments tested,
only Fastly and QUIC.cloud demonstrated full support for
EPS1. However, they exhibit minor differences in how streams
with the incremental flag set to true are scheduled. Fastly
adopts a fine-grained round-robin (RR) approach, alternating
streams with each QUIC packet, while QUIC.cloud transmits
chunks of 1 to 90 packets before switching streams. It is un-
clear if these chunk sizes are consciously chosen or if they
are a consequence of, for example, the buffering logic.

Partial support. Akamai, Cloudflare and Google each sup-
port a different subset of EPS features. Firstly, in terms of
signaling methods, Akamai and Google both lack support
for the HTTP “priority” header field and only adhere to sig-
nals received in a PRIORITY_UPDATE frame, while Cloudflare
(largely) adheres to both. This is likely because Google’s
Chrome browser originally only sent the frame and not the
header (see §2.2). Consequently, as Akamai utilizes a mod-
ified version of Google’s stack to implement QUIC and H3
on its CDN [38], it is probably constrained by their feature
1In two Fastly experiments, priority signals were ignored and random stream
sequencing occurred, but only in one URL and not reproduced in later data
points from April 2024.

set. This is an important limitation, as only Chromium-based
browsers utilize the frame to signal (initial) priorities. As
such, both Akamai and Google will not (fully) adhere to Fire-
fox’s and Safari’s EPS signaling, instead falling back to their
default schedulers.

Secondly, in terms of this default scheduling behavior, we
see that in the absence of EPS signals, Akamai and Cloud-
flare correctly opt for a sequential FIFO send order (u=3 and
i=0, the EPS defaults), but that Google instead employs an
incremental scheduler. The latter being suboptimal [16, 37]
is why the default recommended behavior switched from
incremental in H2’s “prioritization tree” [1] to sequential in
EPS (i should be false (0) by default [28]). It is interesting
that Akamai does deviate from its underlying Google-based
stack for this aspect, indicating this discrepancy was noted.
Thirdly, we find that the incremental parameter is sim-

ply ignored by both Akamai and Google. This means that a
browser like Safari cannot override Akamai’s default sequen-
tial behavior. Similarly, Google’s servers cannot be made to
send resources sequentially, contrastingwithGoogle Chrome’s
many requests for sequential loads (see Table 3). While this
is less of a problem for Akamai as it applies proper defaults,
it can have noticeable (Web) performance implications for
Google-hosted properties. Note that the problem is some-
what mitigated because Google does adhere to the urgency
parameter and so higher priority resources will still be sent
before lower priority ones; they are just round-robined with
other, equally high priority resources.

Fourthly, considering reprioritization, only Cloudflare lacks
support for this functionality. Specifically, it disregards all
PRIORITY_UPDATE frames received after the HTTP request
headers, regardless of whether a priority has been specified
before (either by the “priority” request header or an earlier
PRIORITY_UPDATE frame). In contrast, all other surveyed
EPS-capable deployments appropriately update the stream’s
priority in response to subsequent frames as expected. While
reprioritization is not (yet) extensively used by browsers for
Web page loading (see §2.2) and cannot be manually trig-
gered by developers yet, it can be an important aspect of
other use cases (e.g., HTTP-based video streaming [10, 29]).
When discussing this deficiency with Cloudflare engineers,
they highlighted “the well-documented race conditions with
reprioritization that can affect its usefulness for real-world

5



ANRW 24, July 23, 2024, Vancouver, BC, Canada Herbots and Marx, et al.

workloads [31]” as a reason for not supporting the subfea-
ture. They expressed interest in “seeing data demonstrating
strong potential benefits to offset the additional complexity
that supporting reprioritization would add”.

Indirect support. We investigated two deployments that offer
services on top of/via another deployment. Concretely, jsDe-
livr (a service to load popular JS libraries) is backed by among
others Fastly and Cloudflare [9], while the Shopify platform
is built on top of Cloudflare [34]. As such, we expected them
to exhibit the same EPS behavior as their underlying de-
ployments, but this only seems to hold for jsDelivr’s Fastly
backend. Strangely, the Cloudflare backend for both jsDelivr
and Shopify behaves in a radically different fashion than
when tested directly, seemingly offering no support for EPS
at all, only inheriting the default sequential scheduling be-
havior from the parent stack. This is especially concerning
for jsDelivr, as it somewhat undermines the goal of optimized
delivery through inconsistent and unpredictable resource
loading behavior. When discussing this with Cloudflare engi-
neers, they stated that “H3 prioritization is still in the process
of being rolled out to all customers”, and confirmed the intent
to use sequential scheduling by default.

No support. As far as we can determine, neither Amazon
CloudFront, nor NGINX or Caddy implement any support
for EPS. Furthermore, like Google, they implement the op-
posite of the recommended default sequential behavior and
send all resources incrementally. Amazon CloudFront and
Caddy furthermore utilize per-packet Round-Robin logic,
while NGINX chunks data by 64 KB. Asked for comments,
NGINX and Caddy developers indicated that EPS support is
on the roadmap, but not currently prioritized [7, 36].

Other common behaviors. As per the specification, all im-
plementations supporting PRIORITY_UPDATE frames buffer
them before stream opening. This is important for Chrome,
which sends the frame before the headers (§2.2). Our obser-
vations also indicate that all servers correctly maintain FIFO
send order within the same urgency “bucket” (if i=0).
For experiment E, which explored the unspecified edge

case (see Table 2), unexpectedly consistent behavior was
observed across all EPS-capable stacks. All non-incremental
resources are first dispatched sequentially in FIFO order, be-
fore the fair multiplexing of incremental resources. However,
this systematic approach can lead to resource starvation if
new non-incremental streams keep arriving during incre-
mental resource transmission (though we did not verify this
during our experiments).

4 DISCUSSION & RECOMMENDATIONS
Despite EPS’ more straightforward approach compared to
H2’s prioritization tree, our results still show considerable

heterogeneity in how different servers and browsers sup-
port and use its (sub)features in practice. These discrepan-
cies can likely be attributed to several factors, of which we
list a few. Firstly, the EPS specification leaves a lot of (in-
tentional) flexibility to implementers (most guidelines are a
SHOULD rather than a MUST), which is clearly exercised to
its full extent. Secondly, the decision to make EPS its own
specification decoupled from the main H3 RFC, might lead
some implementers to consider it a recommended, yet fun-
damentally optional feature. Thirdly, despite the simplicity
of the signals, implementing the underlying priority-driven
scheduler remains a complex task (as suggested by Cloudflare
engineers). Finally, there is the lack of clear guidance (for
both H2 and EPS) on how to employ client-side load order
heuristics and how these should drive the prioritization sig-
nals. That the browsers have decided to fill this void in such
divergent ways (even between their H2 and H3 stacks, with
Firefox and Chrome evolving in nearly opposite directions),
to us is a strong indicator that (some) browser vendors have
not tested the performance impact of their approaches in the
wild and also do not know the optimal approach.

While actually measuring the impact of these differences
on Web performance metrics was a non-goal of this study,
extrapolating previous results for both H2 and H3 indicates
that end-users might face suboptimal and highly volatile
experiences [16, 25, 32, 37]. As such, we feel that further
research into loading heuristics and prioritization strategies
is essential to improving long-term end-user experiences.
Additionally, the community should explore allowing more
manual control over priority signaling through developer APIs
(e.g., by extending fetchpriority to allow changing incre-
mentality or to manually trigger reprioritization). This will
allow developers to not only work around browser heuristic
deficiencies, but also enables more complexWeb applications
(e.g., fine-grained media streaming for AR/VR use cases). For
this to work however, it is essential that servers implement
the EPS and all its subfeatures in their entirety. This is true
now, but also in the future, if we plan to actually put the
“Extensible” aspects of EPS into practice by adding additional
parameters and features.
As such, to make EPS and its evolution easier to test and

evaluate going forward, we suggest that major deployments
offer a range of publicly available realistic test resources of
standard size and behavior. This would ensure consistent
overall testing conditions for both researchers and develop-
ers, allowing for a more accurate simulation of real-world
scenarios. This will enable further thorough validation of all
HTTP/3 features and implementations, leading to improved
standards and better alignment with the needs of modern
Web applications and users. As a first step, we open source
all artifacts for this work as well [6, 7, 14].

6



HTTP/3’s Extensible Prioritization Scheme in the Wild ANRW 24, July 23, 2024, Vancouver, BC, Canada

ACKNOWLEDGMENTS
The research for this paper was funded by the European
Union’s Horizon Europe Programme under grant agreement
101070072, MAX-R (Mixed Augmented and eXtended Reality
media pipeline).

REFERENCES
[1] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext

Transfer Protocol Version 2 (HTTP/2). RFC 7540. https://doi.org/10.
17487/RFC7540

[2] Mike Bishop. 2022. HTTP/3. RFC 9114. https://doi.org/10.17487/
RFC9114

[3] Cloudflare. 2024. Cloudflare Radar: Adoption and Usage. https:
//radar.cloudflare.com/adoption-and-usage.

[4] Cloudflare. 2024. Cloudflare radar performance testing endpoint script.
https://performance.radar.cloudflare.com/beacon.js.

[5] Valentin Gosu. 2024. Bugzilla: [meta] Fetch Priority (was Priority
Hints). https://bugzilla.mozilla.org/show_bug.cgi?id=1797715.

[6] Joris Herbots and Robin Marx. 2024. Aioquic fork for testing HTTP/3
prioritization. https://github.com/http3-prioritization/aioquic.

[7] Joris Herbots and Robin Marx. 2024. HTTP/3’s Extensible Prioritization
Scheme in the Wild - Experiment Results. https://doi.org/10.5281/
zenodo.12544401

[8] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Mul-
tiplexed and Secure Transport. RFC 9000. https://doi.org/10.17487/
RFC9000

[9] jsDelivr. 2024. jsDelivr Documentation. https://www.jsdelivr.com/
documentation#Multi-CDN.

[10] Daniele Lorenzi, Minh Nguyen, Farzad Tashtarian, Simone Milani,
Hermann Hellwagner, and Christian Timmerer. 2021. Days of fu-
ture past: an optimization-based adaptive bitrate algorithm over
HTTP/3. In Proceedings of the 2021 Workshop on Evolution, Perfor-
mance and Interoperability of QUIC (Virtual Event, Germany) (EPIQ
’21). Association for Computing Machinery, New York, NY, USA, 8–14.
https://doi.org/10.1145/3488660.3493802

[11] Robin Marx. 2023. Bugzilla: Double RFC9218 HTTP Priority header
field when set via fetch()). https://bugzilla.mozilla.org/show_bug.cgi?
id=1809403.

[12] Robin Marx. 2023. Chromium: JavaScript modules are loaded with
higher HTTP priority than defer scripts. https://issues.chromium.org/
issues/40279703.

[13] Robin Marx. 2023. Resource Loading at the Cutting Edge. https:
//perfnow.nl/speakers#robin.

[14] Robin Marx. 2024. Prioritization Test Pages. https://github.com/http3-
prioritization/prioritization-test-page.

[15] Robin Marx. 2024. qvis: tools and visualizations for QUIC and HTTP/3.
https://qvis.quictools.info/.

[16] Robin Marx, Tom De Decker, Peter Quax, and Wim Lamotte. 2019. Of
the Utmost Importance: Resource Prioritization in HTTP/3 over QUIC.
In Proceedings of the 15th International Conference on Web Information
Systems and Technologies (WEBIST 2019). INSTICC, SciTePress, 130–143.
https://doi.org/10.5220/0008191701300143

[17] Robin Marx, Luca Niccolini, Marten Seemann, and Lucas Pardue. 2024.
Main logging schema for qlog. Internet-Draft draft-ietf-quic-qlog-main-
schema-08. Internet Engineering Task Force. https://datatracker.ietf.
org/doc/draft-ietf-quic-qlog-main-schema/08/ Work in Progress.

[18] Robin Marx, Maxime Piraux, Peter Quax, and Wim Lamotte. 2020.
Debugging Modern Web Protocols with qlog. In Proceedings of the
Applied Networking Research Workshop (ANRW 2020). https://qlog.
edm.uhasselt.be/anrw/

[19] MDN. 2024. MDN Web Docs - Alt-svc. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Alt-Svc.

[20] MDN. 2024. MDNWeb Docs - async. https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/script#async.

[21] MDN. 2024. MDN Web Docs - defer. https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/script#defer.

[22] MDN. 2024. MDNWeb Docs - fetchPriority. https://developer.mozilla.
org/en-US/docs/Web/API/HTMLImageElement/fetchPriority.

[23] MDN. 2024. MDNWeb Docs - Lazy loading. https://developer.mozilla.
org/en-US/docs/Web/HTML/Element/img#loading.

[24] MDN. 2024. MDN Web Docs - rel=preload. https://developer.mozilla.
org/en-US/docs/Web/HTML/Attributes/rel/preload.

[25] Patrick Meenan. 2019. Better HTTP/2 Prioritization for a Faster
Web. https://blog.cloudflare.com/better-http-2-prioritization-for-
a-faster-web.

[26] Patrick Meenan. 2023. Chromium: Schedule load of first N images
sooner. https://issues.chromium.org/issues/40263406.

[27] Patrick Meenan. 2024. Chromium: Add priority: request header. https:
//issues.chromium.org/issues/40252001.

[28] Kazuho Oku and Lucas Pardue. 2022. Extensible Prioritization Scheme
for HTTP. RFC 9218. https://doi.org/10.17487/RFC9218

[29] Roger Pantos. 2023. [Hls-interest] iOS 17 and Low-Latency
HLS. https://mailarchive.ietf.org/arch/msg/hls-interest/RcZ2SG8Sz_
zZEcjWnDKzcM_-TJk/.

[30] Lucas Pardue. 2023. Chromium: HTTP/3 download priority value
causes serialized downloads. https://issues.chromium.org/issues/
40864006.

[31] Netflix Research. 2019. CVE-2019-9513: HTTP/2 resource loop attack.
https://nvd.nist.gov/vuln/detail/CVE-2019-9513.

[32] Constantin Sander, Ike Kunze, and Klaus Wehrle. 2022. Analyzing the
Influence of Resource Prioritization on HTTP/3 HOL Blocking and
Performance.. In Proceedings of the 6th Network Traffic Measurement
and Analysis Conference (TMA Conference 2022). IFIP.

[33] Marten Seemann. 2024. QUIC Interop Runner. https://interop.seemann.
io/.

[34] Shopify. 2024. Shopify Documentation. https://shopify.dev/docs/
themes/best-practices/performance/platform#shopify-cdn.

[35] Martin Thomson and Cory Benfield. 2022. HTTP/2. RFC 9113. https:
//doi.org/10.17487/RFC9113

[36] Chanh Tran. 2023. quic-go support for http3: RFC 9218 - Extensible
Priority Scheme. https://github.com/quic-go/quic-go/issues/3470.

[37] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018.
HTTP/2 Prioritization and Its Impact on Web Performance. In Proceed-
ings of the 2018 World Wide Web Conference (Lyon, France) (WWW
’18). ACM, 1755–1764. https://doi.org/10.1145/3178876.3186181

[38] Johannes Zirngibl, Florian Gebauer, Patrick Sattler, Markus Sosnowski,
and Georg Carle. 2024. QUIC Hunter: Finding QUIC Deployments
and Identifying Server Libraries Across the Internet. In Passive and
Active Measurement, Philipp Richter, Vaibhav Bajpai, and Esteban
Carisimo (Eds.). Springer Nature Switzerland, Cham, 273–290.

Received 20 February 2007; revised 12 March 2009; accepted 5 June
2009

7

https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9114
https://radar.cloudflare.com/adoption-and-usage
https://radar.cloudflare.com/adoption-and-usage
https://performance.radar.cloudflare.com/beacon.js
https://bugzilla.mozilla.org/show_bug.cgi?id=1797715
https://github.com/http3-prioritization/aioquic
https://doi.org/10.5281/zenodo.12544401
https://doi.org/10.5281/zenodo.12544401
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://www.jsdelivr.com/documentation#Multi-CDN
https://www.jsdelivr.com/documentation#Multi-CDN
https://doi.org/10.1145/3488660.3493802
https://bugzilla.mozilla.org/show_bug.cgi?id=1809403
https://bugzilla.mozilla.org/show_bug.cgi?id=1809403
https://issues.chromium.org/issues/40279703
https://issues.chromium.org/issues/40279703
https://perfnow.nl/speakers#robin
https://perfnow.nl/speakers#robin
https://github.com/http3-prioritization/prioritization-test-page
https://github.com/http3-prioritization/prioritization-test-page
https://qvis.quictools.info/
https://doi.org/10.5220/0008191701300143
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/08/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/08/
https://qlog.edm.uhasselt.be/anrw/
https://qlog.edm.uhasselt.be/anrw/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Alt-Svc
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Alt-Svc
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#async
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#async
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#defer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#defer
https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/fetchPriority
https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement/fetchPriority
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img#loading
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img#loading
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/rel/preload
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/rel/preload
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web
https://issues.chromium.org/issues/40263406
https://issues.chromium.org/issues/40252001
https://issues.chromium.org/issues/40252001
https://doi.org/10.17487/RFC9218
https://mailarchive.ietf.org/arch/msg/hls-interest/RcZ2SG8Sz_zZEcjWnDKzcM_-TJk/
https://mailarchive.ietf.org/arch/msg/hls-interest/RcZ2SG8Sz_zZEcjWnDKzcM_-TJk/
https://issues.chromium.org/issues/40864006
https://issues.chromium.org/issues/40864006
https://nvd.nist.gov/vuln/detail/CVE-2019-9513
https://interop.seemann.io/
https://interop.seemann.io/
https://shopify.dev/docs/themes/best-practices/performance/platform#shopify-cdn
https://shopify.dev/docs/themes/best-practices/performance/platform#shopify-cdn
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://github.com/quic-go/quic-go/issues/3470
https://doi.org/10.1145/3178876.3186181

	Abstract
	1 Introduction & Related Work
	2 Browser Observations
	2.1 Experimental Setup
	2.2 Browser Results

	3 Server Observations
	3.1 Experimental Setup
	3.2 Server Results

	4 Discussion & Recommendations
	Acknowledgments
	References

