
A Ray Density Estimation Approach to Take into Account
Environment Illumination in Plant Growth Simulation

William Van Haevre Fabian Di Fiore Philippe Bekaert Frank Van Reeth

Limburgs Universitair Centrum
Expertise Centre for Digital Media

Universitaire Campus
B-3590 Diepenbeek, Belgium

{william.vanhaevre, fabian.difiore, philippe.bekaert, frank.vanreeth}@luc.ac.be

Figure 1: These figures depict some results of our algorithm to simulate plant growth. In this case the plants were subject
to the direct and indirect illumination of the ceiling lamps.

Abstract

Light interaction is one of the most important factors
in developing realistic plant models. Plants react to re-
ceived illumination by bending branches, adapting their
growth rate, orienting leaves and flowers, producing
larger or smaller leaves, etc.

In this paper, we present a novel approach to simulate
plant growth as a response to environment illumination.
The basic idea of our algorithm is to simulate light trans-
port in the environment in which plants grow by tracing
light particles originating from light sources. Both inten-
sity and mean direction of incident illumination are deter-
mined easily. This is based on a ray density estimation of
the environment illumination by means of a predominant
illumination direction.

An adaptive spatial data structure is used to store the rays
along which light particles travel in space. This data
structure allows efficient calculation of ray density at lo-
cations where the algorithm needs to query incident illu-
mination.

Our approach takes into account both direct and indirect
illumination and is an algorithm that is both flexible and
accurate. It is easy to implement and more general illu-
mination models can be incorporated in a straightforward
manner. Furthermore, using a non-uniform, adaptive data
structure for storing the rays, calculation time and storage
requirements are kept within reasonable limits.

CR Categories: I.6.3 [Simulation and Modelling]:
Applications—Simulation of Natural Phenomena

Keywords: plant modelling, natural phenomena, light
interaction, ray density, L-systems, phototropism

1 Introduction

Plant modelling has always been a challenging task. Due
to the complex geometry involved, not only the mod-
elling process itself is labour-intensive, also the interac-
tion of the model with its environment yields several im-

portant problems (e.g. spatial constraints) that need to be
solved.

Many different techniques have been developed to model
realistic plants and their growth behaviour. These vary
from the use of particles which sense the environment to
search for the best growth direction [Benes and Millan
2002], to casting rays from a specific point in space to
find out how this location is occluded from the available
light in the scene [Greene 1989; Měch and Prusinkiewicz
1996]. Most of these techniques are based on a heuris-
tic approach. In contrast, we introduce a novel algorithm
that for each point of interest calculates the amount of
light present in a certain neighbourhood. Our solution
is based on the estimation of the ray density and the re-
trieval of the mean direction of the incident illumination
(figure 1).

We use L-systems [Prusinkiewicz and Lindenmayer
1990] to model the plants and their growth movements.
However, other methods can be used, as long as they sup-
port the interaction of the model with the presented data
structure (e.g. marking of growth positions).

This paper is organised as follows. In Section 2 we
present a short review on related work and indicate the
differences with our method. Section 3 elaborates on
the data structure used to represent light in the scene.
We demonstrate the use of this structure to locate the
required information about the illumination in Section
4. Section 5 explains in detail the representation of the
plants themselves and gives a short review on the use
of L-systems. Section 6 illustrates a few interactions in
which plants might participate by using the obtained in-
formation. We end this paper with an evaluation of the
results (Section 7) and our conclusions and topics for fu-
ture research (Section 8).

2 Related Work

For many years, people have been exploring the area of
plant modelling, which is situated on the cross-section of
the fields of biology and computer graphics.

Early efforts include the work of Aono and Kunii [Aono
and Kunii 1984], in which the creation of complex
branching patterns is described. Moreover, for the first
time, interaction with the environment was simulated.
Concurrently, because of the self similarity they provide,
fractals have been used to create plant shapes [Bloomen-
thal 1985; Oppenheimer August 1986].

Particle systems provide yet another approach to visu-
alise certain natural phenomena [Reeves 1983; Reeves
and Blau 1985]. Recently, this method and the work of
Greene [Greene 1989] were extended, allowing environ-

ment sensitive modelling of the competition for space of
climbing plants [Benes and Millan 2002].

De Reffye et al. [de Reffye et al. 1988], and, Lintermann
and Deussen [Lintermann and Deussen 1999], use a com-
ponent based approach. The former developed a proce-
dural model while Lintermann and Deussen created an
interactive plant modelling programxfrog [Deussen and
Lintermann 1998] in which components are used to en-
capsulate data while algorithms are responsible for gen-
erating the different plant elements. However, each of
these components has its own specific set of parameters
to control its behaviour.

There has been a consensus among researchers to turn to
L-systems, introduced by Lindenmayer [Prusinkiewicz
and Lindenmayer 1990] to describe the shape and be-
haviour of plants. L-systems provide an intuitive and el-
egant way to describe plant growth properties. This is
elucidated in Section 5.

During the last decade, the behaviour of communi-
ties of plants [Lane and Prusinkiewicz 2002] and even
of complete ecosystems [Deussen et al. 1998] have
been examined. Several papers addressed the questions
concerning plant interaction with each other and ob-
jects within their environment [Benes and Millan 2002;
Van Haevre and Bekaert 2003; Měch and Prusinkiewicz
1996; Prusinkiewicz et al. 1994].

Earlier presented methods estimated the illumination in-
fluencing plant growth in a heuristic way. These propos-
als varied from simple ray-casting techniques towards the
sky through the plant model, over the use of a voxel rep-
resentation [Greene 1989], to techniques that take into
account the opacity of the voxels encountered by a light
ray to represent the translucency of the plant foliage
[Měch and Prusinkiewicz 1996].

Global illumination techniques have been used to take
care of the light distribution in and outside the plant
models. Radiosity as well as Monte Carlo techniques
can be used to achieve this. Our research is highly re-
lated with work done by Soler et al. [Soler et al. 2003].
In their work an extension of hierarchical radiosity with
clustering is presented and it is used for simulating plant
growth taking into account illumination. A more detailed
overview of earlier work on plant light interaction can be
found in their paper.

In this paper, we introduce a novel approach inspired by
photon mapping [Jensen 2001]. Like photon mapping,
the algorithm will deal easily with non-diffuse light re-
flection and translucency as well as complex and dy-
namic geometry. Unlike photon mapping, we perform
density estimation of light rays in an environment rather
than estimating the density of photon hits on object sur-
faces. Moreover, contrary to other simple solutions that

incorporate environment light in plant growth [Benes and
Millan 2002; Měch and Prusinkiewicz 1996] and our pre-
vious work [Van Haevre and Bekaert 2003], the new al-
gorithm can provide accurate estimation of the illumina-
tion, including indirect illumination, with ease.

Plant models are regarded as static objects during light
computation. Every growth step allows the plants to
change their shape according to the lighting in their
neighbourhood. The changes in the plants’ shapes in-
fluence the lighting in the scene which again influences
the plants’ shapes etc. In order to speed up this itera-
tive process, we create a data structure that facilitates the
following two actions: (i) avoiding full recomputation
of the lighting after applying the changes to the plants’
shape (Section 3.1); (ii) fast querying of the lighting in
the neighbourhood of a plant, needed in order to deter-
mine how the shape of the plant is going to evolve (Sec-
tion 4).

3 The Representation of Environ-
ment Illumination

In this section we describe the data structure and calcula-
tions required to represent the ray density and the mean
incident illumination direction.

Light transport is simulated by tracing light particles (i.e.
photons) originating from light sources. As these pho-
tons strike a surface they can either be absorbed or re-
flected back into the scene, according to the material
properties of the surface. In the next section, we pro-
pose density estimation of the rays (along which parti-
cles travel) in order to calculate the intensity and mean
direction of illumination in space (i.e. the radiance field).

For a start, a data structure allowing efficient density
querying needs to be set up. This data structure should al-
low the rapid retrieval of rays passing nearest to a query
location. Spatial subdivision data structures such as a
uniform grid, an octree or a BSP tree, in which spa-
tial cells are tagged with references to the rays passing
through them, are well suited for this task.

The use of a uniform grid is prohibitively expensive in
terms of memory requirements and inefficient as well,
since many light rays are likely to pass through areas
with no active plant growth, in which no querying for
illumination will be performed. Each ray would intersect
a lot of grid cells and, hence, each of the grid cells would
have to keep a reference to the ray. Therefore, the use
of an octree is recommended, since it is a non-uniform
data structure that can be updated dynamically (Section
3.1) and can be constructed with higher detail where re-
quired.

Figure 2: An octree as a spatial subdivision data struc-
ture, allowing local storage of references to nearby light
rays.

The octree is constructed in a demand-driven way.
Whenever the radiance field needs to be queried at a
given location, a “point of interest” or “refinement point”
p is recorded. Every time such a new point is added to
the scene, the octree is refined (if necessary) by splitting
cells into uniform octants, until a specific cell widthc is
reached (see figures 2 and 3).

As light is emitted from the light sources, light rays in-
tersect the existing nodes of the octree. After adding a
refinement point and updating the references to the rays,
the cell containing the point will hold a reference to all
rays passing through this cell. Whenever a refinement
point is no longer required, the references to the intersect-
ing rays can be discarded, while keeping the references
in the higher layer of the octree for further refinements.

Consequently, octree cells might be created as refinement
points are added. After their addition, the cells are up-
dated using the references to rays stored in higher levels
of the octree. When light rays are added to the scene,
the topology of the structure remains unchanged and only
one update of the existing cells is required. Empty cells
(which contain no detail points) are deleted recursively.
This way, the amount of memory needed is kept to a min-
imum.

3.1 A Dynamic Update

While the plant’s shape is enlarging, several branches,
leaves and flowers are added to the scene. As a result,
a small number of rays suddenly gets occluded, leaving
some invalid paths in the environment. To resolve this

instability, a dynamic update of the rays is required.

Refinement points are added to positions where the plant
is growing. Consequently, the topology of the grid is fo-
cussed around these growth positions, and the rays that
might be blocked by new plant parts are found in the cor-
responding grid cells of these points. As a path consists
of a linked list of rays, it can be broken off as soon as an
interruption occurs. Hence, the pruned part of the path
is discarded, references to these parts are removed from
the octree, and the path is extended by recasting the in-
tersected ray into the scene, taking into account the new
plant parts.

Listing 1 illustrates the steps required to update a plant
model to the next stadium of its growth, after being ini-
tialised:

1. Update the sequence that represents the shape of the
plant, using the production rules of a plant’s specific
L-system that describes the behaviour of the plant.

2. Create a new plant model from this sequence and
add refinement points at query positions. As new
cells are created, the shape of the octree and the ref-
erences it contains alter.

3. Remove empty cells from the octree whereas some
of them might exist from previous iterations but
have become useless for the current plant shape.

4. Remove all ray references in the finest layer of the
octree because these are the locations where new
plant parts may have been created. Afterwards, a
full update of the octree is required to remove the
obsolete references to rays within all of its layers.

5. Due to the removal of rays and rays that were cre-
ated in the path behind it, paths need to be extended
again, incorporating the geometry of the newly gen-
erated plant parts.

6. Using the constructed octree, illumination intensity
and mean incident light direction can be calculated
(Section 4) and returned to the L-system by means
of “open” parameters.

7. Remove all refinement points as they are no longer
required.

4 Illumination Querying

In this section, we explain how to retrieve the light inten-
sity and mean incident light direction while estimating
ray density.

Each ray cast in the scene transports a fraction∆Φi of the
light present in the scene. Based on a single ray, we can-
not trace the dominant direction and intensity of the light

Grow(Plant)
LSystem.LoadFromfile();
LSystemSequence = LSystem.getAxiom();
for each growth iterationdo

LSystemSequence.update(LSystem);
//using a plant’s specific L-system

Plant.CreateModel(LSystemSequence);
//while adding refinement points at query locations

Octree.RemoveEmptyCells(); (recursively)
//to free memory

Octree.RemoveRayReferencesInQueriedCells();
//top-down to remove all references to obsolete rays

Rays.update();
//recast paths where broken

LSystemSequence.RetrieveOpenParameters()
//updates the sequence while calculating ray density
//and incident light direction

Octree.RemoveRefinementPoints();
//allowing obsolete cells to be removed in the next iteration

end for

Listing 1: Overview of the growth process.

flow at a specific point. To calculate this direction and
to find an estimation of the light intensity, the ray den-
sity is used. This method is inspired by the estimation of
the irradiance on a surface, described by Jensen [Jensen
2001].

The ray density at a position can be expressed as the
amount of rays intersecting a predefined volume (a
sphere in our case) around that point. To estimate the
density of rays around a point, several possibilities exist
[Silverman 1986], for instance:

1. Nearest neighbours method:search for a specific
number of the closest rays around the point and cal-
culate the corresponding volume. The radius equals
the highest distance found between the point and
one of these rays.

2. Histogram method: search all rays around the
point inside a fixed volume. This means that a fixed
search distance is used.

In both cases, the illumination intensity at the query lo-
cation can be obtained by summing the photon powers
∆Φi of the rays, per unit of projected query volume sur-
face area. When using a sphere as a query volume, the
projected surface area is just the area of a disc with the
same radius. When the Russian Roulette reflection algo-
rithm [Jensen 2001] is used while tracing the light paths
through the environment, the power∆Φi of all the rays
can be kept equal and the ray density can be expressed
as the amount of rays per unit of projected query vol-
ume surface area. This estimation can be used relative
to a reference density (which stands for full illumina-
tion). In this way one can decide how much illumination
is present at a certain point. The reference density can be
acquired at a user defined position and should represent
the amount of rays per unit of projected query volume
surface area for a fully illuminated point.

The dominant illumination direction is found by sum-

Figure 3: An adaptive octree depth based on a user-
specified search distanced used for illumination query-
ing. (Left) 2d is smaller thanc1. The octree needs to be
divided. (Right) New situation: 2d is larger thanc2. No
further subdivision is required.

ming vectors with magnitude∆Φi (possibly equal for all
rays, when Russian Roulette is used) into the ray direc-
tion. The result should be normalised .

In order to facilitate the search for rays in the octree we
advise employing the histogram method, since the fixed
search distance allows a much easier search for rays in
the octree. Using a fixed search distanced to estimate
the ray density, we can calculate a depth for the octree to
obtain a cell width of maximum 2d for the lowest layer
(the layer containing the refinement points). This way,
we can restrict our search for rays to the current cell and
its 26 adjacent cells (see figure 3, which for clarity visu-
alises the 2D case).

Some of the required adjacent octree cells might not yet
exist. To force their existence, (as we need the references
to their intersecting rays), we add the necessary refine-
ment points to the octree. The positions can be calculated
from the query position. In this way we locally create a
uniform grid which allows us to find the requested light
rays by simple look-up. Of course, there is some cost in-
volved in refining the octree at newly inserted refinement
points, but often subsequent queries are done in the same
neighbourhood, usually spreading the cost over several
queries.

¿From the rays intersecting the 26 octree cells, only those
intersecting the search volume (a sphere) are retained.
This requires checking the distance between the rays and
the query position, and comparing this distance with the
search sphere radius. Figure 4 shows how an octree in
combination with a local uniform grid allows a fast, po-
sition oriented search in space for light rays.

In Section 6 we show that many interesting illumination
related plant growth effects can be modelled considering
little more than the intensity and mean direction of illu-
mination near active locations of growth. More complex
interactions can be simulated as well, but they require
knowledge about plant specific growth behaviour.

5 The Representation of Plants

The ray density estimation approach proposed in previ-
ous section is not connected to a particular plant growth
model. Any model can be used, as long as it con-
tains a mechanism to incorporate external data such as
illumination. We decided to make use of L-systems
[Prusinkiewicz and Lindenmayer 1990; Prusinkiewicz
et al. 2001] to model plants. In the following section a
small overview is given about L-systems.

An L-system is a parallel string rewriting system that
constructs a generally more complex string of characters
from a less complex string by using production rules. A
production rule is defined as follows:

label : lc < pred> rc : cond→ succ: prob

label: a label to mark the production rule.

lc: (optional) a left context after which the predecessor
must follow to make the rule applicable.

pred: the predecessor, the character from the original
string that is to be replaced by a more complex sequence
of characters.

rc: (optional) a right context in front of which the prede-
cessor must be positioned to make the rule applicable.

cond: (optional) a condition which must evaluate to true,
based on parameters fromlc, predor rc, to make the rule
applicable.

succ: the successor, a string of characters to replace the
predecessor.

prob: a stochastic value, indicating the probability for
this rule to be selected when several rules are applicable.

Starting with an axiom (a begin sequence) the L-system
replaces each of the characters (in parallel) when using
these production rules. Each of these symbols needs
to get a proper visual interpretation, to obtain a visual
model. A well known technique to do this is called
“Turtle Interpretation” [Prusinkiewicz and Lindenmayer
1990]. In this case the string of characters acts as a se-
quence of changes, applicable to the state of a drawing
tool (a pen, the “turtle”, . . .). Each symbol represents a
specific change to the state. At any time, the state is char-
acterised by a positionp and three mutually perpendicu-
lar orientation vectorsH, U andL, indicating the head-
ing, the up direction and the direction to the left. Symbols
like +, −, &, ∧, \ and/ rotate the state. Other symbols
can move the state to a different position, for instance
when drawing a branch. More information on how to cre-
ate and use L-systems can be found in [Prusinkiewicz and
Hammel 1994; Prusinkiewicz et al. 1996; Prusinkiewicz
and Kari 1996; Prusinkiewicz and Lindenmayer 1990].

Figure 4: Three incremental refinements of the nearest rays around a query point. (Left) all rays within the scene,
(Middle) all rays intersecting the 27 surrounding grid cells, (Right) all nearest rays within search distanced.

Měch and Prusinkiewicz [M̌ech and Prusinkiewicz 1996]
introduced a variant of L-systems, called “open” L-
systems, which contain a mechanism for incorporating
“external” data in production rules. Special symbols are
introduced in the production rules. After rewriting a se-
quence, the symbols are interpreted and replaced by as-
sociated parameter values such as lengths and rotation
angles. This way, specific alterations can be made to the
model to take into account the requirements of the envi-
ronment. This is the place where ray density is queried
(see Section 4).

6 Plant-Light Interaction

This section demonstrates the ease by which our algo-
rithm can be used. The following examples are not based
on specific properties of certain species, but illustrate
common aspects of plant growth concerning light inter-
action. The combination of the existing literature on L-
systems together with research for the biological proper-
ties of plants allows the creation of growing plants in a
natural way within their environment.

In [Kendrik and Kronenberg 1986], Kendrik and Kro-
nenberg cover several aspects of the interaction between
plants and the present illumination in an environment. In
our research we focused on phototropism, which is the
subject of the next section.

6.1 Phototropism

The phenomenon manifested as a sequence of growth
movements of plants or a change in their shape in rela-
tion (positive or negative) to the incoming light direction
is called phototropism.

Several movements are made by a plant while reach-
ing to or moving away from the available illumination.

Branches elongate or remain short due to the amount of
light present in their environment. Many existing plant
species bend towards light sources, to reach for as much
of the available light as possible. Others don’t or do
the opposite. Leaves might position themselves perpen-
dicular to the incoming light direction while gathering
energy for the growth of the plant — by means of the
chemical process called photosynthesis. Other species,
however, orient their leaves away from that direction to
prevent overheating, and allow light beams to penetrate
more deeply into the canopy. Also, the size of the leaves
may correspond to the availability of light at a specific
position.

6.2 The Bending of Branches

The bending of branches due to the incoming light direc-
tion is a well known phenomenon. Several plants try to
shape themselves to increase the number of plant parts
that can be reached by light rays. In order to enlarge the
total surface of leaves and branches that is illuminated,
the branches will bend to occupy free space providing
sufficient illumination.

When using L-systems to model the plants, a symbol
can be used to interact with the environment [Měch and
Prusinkiewicz 1996]. For instance, ifF represents a
branch, an “open” symbolR(?,?) could be placed behind
it. R(?,?) will be interpreted by the application as a re-
quest for a new growth direction. The parameters will get
a proper value which leads toR(r, p). Later on (as shown
in listing 1) the symbol will be replaced by a combination
of rotations\(r)&(p)/(r), due to production rulep2 (see
L-system 1). This way, the state at the end of the branch
will have been turned to the calculated direction.

L-system 1

ω : A
p1 : A → FR(?,?)A
p2 : R(r, p) → \(r)&(p)/(r)

The parametersr (roll) andp (pitch) are calculated as fol-
lows: whenever the symbolR(?,?) is encountered while
interpreting the sequence, a refinement point is added to
the octree at the current state’s position. To find the open
parameters for the new sequence, the nearest rays to this
position are located. From these rays the mean incident
light direction is derived as explained in Section 4. This
direction is compared to the current state vectorsHc, Uc

andLc. A roll angle (rotation aroundHc) and pitch an-
gle (rotation aroundLc) are calculated which transform
the current state to a new state that incorporates bend-
ing. To suppress the effect of bending too exaggerated,
a maximum pitch angle can be defined and given to the
application instead of one of the ?’s, to which the calcu-
lated pitch angle can be constrained. The combination of
the\(r), &(p) and/(r) commands makes it possible to
rotatep degrees away from the heading vector, in any di-
rection, without a distortion of the overall plant topology.

The following set of sequences is an example of what
might be produced during a few derivation steps (we have
limited the pitch angle to 8 degrees):

0 : A
0′ : A
1 : FR(?,8)A
1′ : FR(20,6)A
2 : F\(20)&(6)/(20)FR(?,8)A
2′ : F\(20)&(6)/(20)FR(9,5)A
3 : F\(20)&(6)/(20)F\(9)&(5)/(9)FR(?,8)A
3′ : F\(20)&(6)/(20)F\(9)&(5)/(9)FR(3,8)A

When visualising such a sequence using turtle graphics, a
growing branch is displayed bending locally towards the
direction calculated by the application (figure 5).

6.3 Leaf and Flower Orientation

As mentioned before, the leaves provide one of the most
important sources of energy for the plant. When they ab-
sorb light, the process of photosynthesis produces energy
which makes it possible for the plant to grow, to remain
strong, to produce new plant parts, etc. In order to sustain
this task, an optimal orientation of the leaves in relation
to the positions of the light sources becomes very impor-
tant.

Figure 5: A branch bending towards a calculated direc-
tion, using a roll and a pitch angle to change the growth
state.

When a leaf is added to the end of a branch or a twig,
a refinement point is created and placed at that position
into the octree. Then, the nearest rays are located and the
mean incident light direction is estimated. Next, a new
state is created for this position, based on the current state
of the L-system and the estimated incoming light direc-
tion. Finally, the changes needed to convert the original
state to the desired state are returned to the L-system so
they will be applied in the next iteration.

The same idea is valid when positioning flowers or other
plant parts.

6.4 Branch, Leaf and Flower Size

Another phototropism we want to illustrate by using our
algorithm, concerns the length of the branches and the
size of the leaves, in relation to the available light. Sev-
eral types of plants tend to grow faster (enlarging the
branches) in dark spaces while preventing leaves from
growing, in order to reach the illuminated areas faster.
Once they get out of the dark, they reduce their growth
speed and focus on the production of leaves and flowers,
to obtain their required energy.

Again, we used a special symbol in our L-system which
allows the required interaction with the environment. An
L-system containing the main production rules for this
behaviour is illustrated below (see L-system 2). (withfi ,
gi andhi functions ini.)

L-system 2

ω : AI(?)F(0)I(?)W(0)
p1 : A → I(?)F(0)[+(8)I(?)L(0)]A
p2 : I(i) < W(0) → W(fi)
p3 : I(i) < L(0) → L(gi)
p4 : I(i) < F(0) → F(hi)

In the axiom, the open symbolI(?) appears twice. First
before anF (a piece of branch) and next before aW sym-
bol, which marks the position of a flower in the plant. In
the first production rule it also appears before anL which
in our case is the symbol marking a new leaf.

WheneverI(?) is encountered, a refinement point is
added at the position indicated by the current state of the
L-system. The nearest rays are located and the ray den-
sity is estimated. Depending on this density a number is
returned for the open parameter. Subordinate to this pa-
rameter, specific changes can be made to the plant model.
Rulesp2, p3, andp4 demonstrate how the parameters of
the module representing a flower, a leaf or a branch can
be altered according to the valuei that is returned by the
application through moduleI . A plant specific function
f ,g or h can map this parameter on a suitable value, al-
lowing the adaptation of the plant to darkness and the
behaviour to reach for more (or less) illuminated envi-
ronments by increasing or decreasing the size of its com-
ponents.

6.5 More Complex Behaviour

All of the previously mentioned changes to the plant
model can easily be combined into a more complex be-
haviour. It simply requires providing an L-system that
contains the production rules which describe the needed
behaviour. For instance, by combining two techniques
described earlier in this paper (Sections 6.2 and 6.4) into
one L-system, branches can bend or remain straight de-
pending on the amount of illumination reaching them.
The combination of production rules illustrated in L-
system 3 ensures the maximum bending angle for module
R to be limited to a functionf of parameteri, which was
returned by the query for ray density proceeding it.

L-system 3

ω : A
p1 : A → I(?)WF(1)A
p2 : I(i) < W → R(?, fi)

It is obvious that other phenomena can be simulated eas-
ily using this kind of combinations (e.g. linking the max-
imum bend angle to the age of the branch, increasing or

decreasing the amount of leaves or flowers in relation to
the available light at a certain position, . . .).

7 Results and Discussion

Figure 6 shows two test scenes. All plant models in each
scene are created using the same L-system, indicating its
specific topology and growth behaviour. Due to light in-
teraction, the shape of each plant is altered, according
to its position in the scene and the location of the light
sources.

The corresponding charts indicate the amount of time re-
quired for each iteration in the plant growth simulation.
They display the calculation speed of a full update of the
plant model (including the update of the octree, the re-
finement points and the rays). We must stress that these
results can be improved using a more optimised imple-
mentation.

The shape of the curves clearly imply that the first itera-
tion of the growth process relatively demands more cal-
culation time than the subsequent iterations. This is due
to the first refinement of the octree, which demands the
creation of several octants at different layers and a recur-
sive update of the references to the intersecting rays. The
other iterations have a calculation time increasing expo-
nentially in relation to the complexity of the model. The
small fluctuations in the illustrated timings are caused by
larger changes to the octree which are necessary when
the model enters previously non existent parts of the oc-
tree. Again, the corresponding refinement requires the
creation of several octants at different layers and an up-
date of the corresponding references to the intersecting
rays. All timings were acquired on a 1000 MHz PC with
256 MB’s of memory.

The first scene in figure 6 contains four plants with flow-
ers, subject to the following rules as they grow: (i)
branches bend towards the mean incident light direction;
(ii) the maximum bending angle depends on the amount
of illumination at each position (as more light reaches
the branch, less bending occurs); (iii) flowers are cre-
ated when a sufficient amount of light is available. Three
small bushes were added to the second scene, growing
according to the following behaviour: (i) branches bend
towards the mean incident light direction; (ii) the size of
branches and leaves depends on the amount of incident
illumination.

Figure 7 shows a closer view of the resulting plant mod-
els. The first row illustrates the plant growing from under
the table, the plant on the table bending slightly towards
the light sources, and a close view of the plant in the mid-
dle of the room growing straight up towards the ceiling.
The second row shows three views of the bushes whose

Figure 6: Two examples of a scene in which several plants, created from the same L-system, are growing in various
ways due to different environmental properties (under a table, on a table more close to the light sources, next to the wall,
etc). For each plant the calculation time required to update the model is depicted in the corresponding chart.

canopy is much denser at more illuminated parts. The
last three illustrations are top views of the plants, indi-
cating how the overall shape of the plant is influenced by
possible local changes to the model, without the require-
ment to change the topology of the plant.

Figure 8 displays a few snapshots of an animation depict-
ing the growth of the plant located under the table in fig-
ure 6. As the amount of incident illumination increases,
the bending of the branches is no longer required and the
plant develops itself by creating more flowers.

Our ray density estimation exhibits noise, due to random-
ness in the light emission. This produces fluctuations in
the growth parameters which are hardly visible and hence
even provide a small increase to the realism of the grown
plants. We believe that this noise can be reduced by using
a different estimator (e.g. nearest neighbour).

8 Conclusions

We have presented a novel approach, based on a ray den-
sity calculation to get an estimation of the environment
illumination by means of a predominant illumination di-
rection. This information can be used in a simulation of
plant growth, allowing several movements of the plants
to obtain an optimal growth direction. The flexibility and
accuracy of the algorithm, together with its low calcula-
tion time and limited memory usage ensure an innovative
technique, attractive for plant modelling applications.

In the future, we would like to focus on other estima-
tors. The nearest neighbours method, for instance, al-
ways guarantees a sufficient number of rays to do statis-
tics. Secondly, we are looking forward to exploit data
available from real plant species, and to experiment with
new plant representations.

Figure 7: A closer view of the plants depicted in figure 6. (First row) Growing from under a table; bending slightly
towards the light sources; in the middle of a room, growing straight up towards the ceiling. (Second row) Bushes
whose canopy is much denser at parts were more illumination is present. (Third row) Top views from plants indicating
the overall shape of the plant being influenced by local changes to the model without the requirement to change the
topology of the plant.

Figure 8: Several snapshots of an animation depicting the growth of the plant located under the table in figure 6. Both
the maximum angle — used to bend the branches — and the creation of new flowers depend on the amount of incident
illumination at each specific position (see Section 6.5).

Acknowledgements

We gratefully express our gratitude to the European Fund
for Regional Development and the Flemish Government,
which are kindly funding part of the research reported in
this paper. Furthermore, we would like to thank Bjorn
Geuns for his appreciated artistic input.

References

AONO, M., AND KUNII , T. 1984. Botanical image tree
generation. IEEE Computer Graphics and Applica-
tions 4, 5, 10–34.

BENES, B., AND M ILLAN , E. U. 2002. Virtual climbing
plants competing for space. InComputer Animation
Proceedings 2002, ACM Press, 33–42.

BLOOMENTHAL , J. 1985. Modeling the mighty maple.
Computer Graphics (SIGGRAPH ’85 Proceedings)
19, 3 (July), 305–311.

DE REFFYE, P., EDELIN , C., FRANÇON, J., JAEGER,
M., AND PUECH, C. 1988. Plant models faithful
to botanical structure and development.Computer
Graphics (SIGGRAPH ’88 proceedings) 22, 4 (Aug.),
151–158.

DEUSSEN, O., AND L INTERMANN , B., 1998. software:
xfrog 2.0, www.greenworks.de.

DEUSSEN, O., HANRAHAN , P., LINTERMANN , B.,
MECH, R., PHARR, M., AND PRUSINKIEWICZ, P.
1998. Realistic modeling and rendering of plant
ecosystems. InSIGGRAPH ’98 Conference Proceed-
ings, ACM Press, ACM SIGGRAPH, 275–286.

GREENE, N. 1989. Voxel space automata: modeling
with stochastic growth processes in voxel space.SIG-
GRAPH ’89 23, 3 (July), 175–184.

JENSEN, H. W. 2001. Realistic Image Synthesis Using
Photon Mapping (1st edition). AK Peters.

KENDRIK, R., AND KRONENBERG, G. 1986. Photo-
morphogenesis in Plants. Kluwer Academic Publish-
ers.

LANE, B., AND PRUSINKIEWICZ, P. 2002. Generat-
ing spatial distributions for multilevel models of plant
communities. InProceedings of Graphics Interface
2002, 69–80.

L INTERMANN , B., AND DEUSSEN, O. 1999. Interac-
tive modeling of plants.IEEE Computer Graphics and
Applications 19, 1 (Jan./Feb.), 56–65.

M ĚCH, R.,AND PRUSINKIEWICZ, P. 1996. Visual mod-
els of plants interacting with their environment. In

SIGGRAPH ’96 Conference Proceedings, ACM Press,
ACM SIGGRAPH, 397–410.

OPPENHEIMER, P. August 1986. Real time design
and animation of fractal plants and trees.Computer
Graphics (SIGGRAPH ’86 proceedings) 20, 4.

PRUSINKIEWICZ, P., AND HAMMEL , M. 1994. Lan-
guage restricted iterated functions, koch constructions
and l-systems.SIGGRAPH ’94 Course Notes.

PRUSINKIEWICZ, P., AND KARI , L. 1996. Subapical
bracketed l-systems. InLecture Notes in Computer
Science, Volume 1073, Springer Verlag, 550–564.

PRUSINKIEWICZ, P., AND L INDENMAYER , A. 1990.
The Algoritmic Beauty of Plants. Springer Verlag.

PRUSINKIEWICZ, P., JAMES, M., AND M ĚCH, R. 1994.
Synthetic topiary. Computer Graphics 28, Annual
Conference Series (July), 351–358.

PRUSINKIEWICZ, P., HAMMEL , M., HANAN , J., AND

M ĚCH, R. 1996. L-systems: From the theory to visual
models of plants. InProc. 2nd CSIRO Symp. Computa-
tional Challenges in Life Sciences, CSIRO Publishing,
P.O. Box 1139, Collingwood 3066, Australia, M. T.
Michalewicz, Ed.

PRUSINKIEWICZ, P., MUNDERMANN, L., LANE, B.,
AND KARWOWSKI, R. 2001. The use of positional
information in the modelling of plants. InSIGGRAPH
’01 Conference Proceedings, ACM Press, ACM SIG-
GRAPH.

REEVES, W., AND BLAU , R. 1985. Approximate
and probabilistic algorithms for shading and render-
ing structured particle systems.Computer Graphics
(SIGGRAPH ’85 proceedings) 19, 3 (July), 313–322.

REEVES, W. 1983. Particle systems - a technique for
modelling a class of fuzzy objects. InACM Transac-
tions on Graphics, Vol 2, Nr 2.

SILVERMAN , B. W. 1986.Density Estimation for Statis-
tics and Data Analysis. Chapman and Hall.

SOLER, C., SILLION , F., BLAISE, F., AND REFFYE,
P. D. 2003. An efficient instantiation algorithm
for simulating radiant energy transfer in plant mod-
els.ACM Transactions on Graphics 2003 22, 2 (Apr.),
204–233.

VAN HAEVRE, W., AND BEKAERT, P. 2003. A simple
but effective algorithm to model the competition of vir-
tual plants for light and space. InJournal of WSCG,
464–471.

