
Interactive Data Units:
A Framework to Support Rich Graphical Data Presentations on Heterogeneous

Devices

Geert Houben Fabian Di Fiore Kris Luyten Frank Van Reeth Karin Coninx

Hasselt University
Expertise Centre for Digital Media

and
transnationale Universiteit Limburg
School of Information Technology

Wetenschapspark, 2
BE-3590 Diepenbeek (Belgium)

{geert.houben,fabian.difiore,kris.luyten,frank.vanreeth,karin.coninx}@uhasselt.be

Abstract

The use of mobile computing systems continues to in-
crease among a wider diversity of end-users. On desktop
computers, a lot of research in the area of interactive visu-
alization of graphical information has been done, but there
is a growing opportunity to have the possibility of creat-
ing scalable and animated graphical data presentations on
heterogeneous mobile devices. Latest trends in the mobile
phone and PDA community (e.g. games and MMS) empha-
size the demand for a better support of such rich graphi-
cal data that is scalable over multiple platforms. In this
paper we present mobile services for the automotive after
sales market that support the user in coping with the in-
creasing functionality and complexity of cars and their re-
pair procedures. We introduce a generic framework to sup-
port the retrieval and visualization of operating instructions
and car repair information according to the device, end-
user (or consumer of the data) and car repair guidelines.
As its core the framework provides the concept of Interac-
tive Data Units (IDUs): graphical data blocks with a clean
separation of structure, style and animation.

1 Introduction

At present, a vast amount of mobile devices with notice-
able diversity in screen dimensions, resolutions and plat-
forms are available as end-consumer devices on the market.
The creation of a consistent presentation and visualization

of a particular service on these heterogeneous systems is
not a straightforward process. Scalability and platform in-
dependency are two major concerns when presenting such
information.

Figure 1. Use of Interactive Data Units on PDA
and Nokia N-Gage

In this paper we present a technique to create scalable
interactive visualizations on portable devices for the auto-
motive after sales market. As part of the European MY-
CAREVENT (MCE) project, a service is created to sup-
port the user in a car repair process. Depending the role
of the user, it can be the driver of the car, the road-side
technician or even a worker in a service station, the ser-
vice should present the information in an appropriate way.
The service generates manufacturer specific operating in-
structions or car repair information according to the prob-
lems described by the user. Depending on the type of the

Figure 2. Overview of the scenario with different roles, devices and tasks

problem, the service can provide support for car drivers to
help them to operate car functions or support for a road side
technician to provide detailed repair information in case of
a breakdown problem.

Based on the user profile the repair information is visu-
alized with an interactive visualization engine that allows
to use different animations and styles for the same con-
tent. The basic information is provided by a remote ser-
vice and loaded dynamically into the application. An ap-
propriate visualization of this data is of great importance
to complete succesfully the support process. To meet the
requirements we created a framework that supports Inter-
active Data Units (IDUs): interactive rich graphical objects
that can be animated and used on different platforms and
devices. The user can manipulate an IDU just like a widget
of a traditional widget set can be manipulated. A clear sepa-
ration between structure and presentation is applied. Figure
1 shows the use of IDUs on a PDA as well as on a smart-
phone. The framework that will be presented in this paper
can be used in all application domains where rich graphical
presentations of data are needed. The MYCAREVENT sce-
nario in this paper is just fictive and is not connected with
any necessary implementation during the project.

The remainder of this paper is organized as follows: sec-

tion 2 discusses related work in this field of research and
describes differences with other approaches. Section 3 de-
scribes the problem and the scenario where are working in.
In section 4 we elaborate on the properties and usage of
IDUs to create a scalable interface for a remote service.
Next, section 5 describes the runtime animation and ren-
dering of the framework. Finally, we elaborate on a case
implementation in section 6 and end with conclusions.

2 Related Work

Content can have a surplus value when using a rich
graphical representation, it could be made more clear and
attractive to work with. An example of animated interfaces
on mobile devices is the implementation of Zoomable GUIs
[2]. Zoomable GUIs offer some kind of animation to sup-
port a better information visualization. Animated user in-
terfaces are easier to understand and more pleasant to use,
e.g. cartoon-style interfaces have proven to be as compre-
hensible as traditional interfaces while being even more en-
joyable in usage [3].

One widely used toolkit for the creation of animated user
interfaces is Macromedia Flash [5]. Although it is a com-
monly adopted ‘standard’ for web-based applications, some

Figure 3. Example of an animation of an IDU triggered by a mouse event

main issues can be identified: there is no clear separation
between content and interface, and it is not suited to write
large programs due to its scripting language. However, in
the recent releases of Flash this separation is one of the ma-
jor points Macromedia has intended to overcome by loading
external resources as XML-files, movie clips etc. Macrome-
dia Flash is also available on mobile devices, but mentioned
issues remain.

Another way to build graphical user interfaces is SVG
(Scalable Vector Graphics [8]). SVG also allows the de-
signer to animate objects, however, as its purpose is rather
to represent graphical content, it is not satisfactory to build
user interfaces pur sang. Furthermore, SVG uses, similar to
Flash, scripting for defining animations (ECMA Script [1])
and has to cope with the same issues. Also transformation
with tags is possible in SVG (e.g. ¡animateTransform¿), in
our approach also such declarative animation is used.

Rendering and animation of the same data on diverse
platforms is a very important contribution of our work. Sev-
eral techniques for animation, scalable to other platforms,
can be used, but in our work we focus on vector graphics
because of low memory requirements, viewport indepen-
dency and the support of basic drawing primitives. Further-
more, vector graphics can be described in XML and so can
be interpreted on any platform.

3 Overview of the scenario

The core idea of the MCE project is the failure assis-
tance of a user’s vehicle. By setting up a car manufacturer
database and a Service Portal to communicate with the user,
failure related information, based on the given input, is sup-
plied to the driver when an operating problem occurs. This
information is also called an information bundle. Also road-
side technicians or workshops can use this remote “repair
information” system to get more information about car fail-
ures or breakdowns.

In the described scenario three types of variances exist:
there are different roles (driver, technician etc.), they work
with different devices (PDA, GSM etc.) and have to perform
different tasks (operations). An overview of this situation is

given in Figure 2. As stated in the first paragraph of this
section, different types of users are defined in this scenario.
We will focus on two profiles: the driver of the car and the
road-side technician. Both of them can receive a different
information bundle selected by the MYCAREVENT portal,
because they have a different level of knowledge. Legal
issues will be taken into account. A driver is able to fill the
oil reservoir or change a tire, but repair the spark plug of
the engine is probably too complicated. Adaptivity of the
provided information is needed.

Few years ago, most mobile phones and smartphones
had a low resolution screen and were only able to provide
textual information. Due to the increasing resources of mo-
bile systems, rich graphical presentations on these small de-
vices are possible. Also the increasing interaction possi-
bilities make these devices suitable for showing interactive
content and interfaces. Because in a lot of cases repair infor-
mation is in fact just convenient if it is combined with visual
information, these graphical capabilities are necessary [4].

When using raster data (bitmaps) to visualize such repair
information, two major shortcomings are identified. First of
all they are not scalable without losing quality. When de-
ploying the application on different devices, scalability to
other screen resolutions is very important. A second prob-
lem with bitmaps is the fact they are not interactive and an-
imatable. In addition to the data representing the real draw-
ing, some sort of metadata is necessary, which will give us a
lot of advantages. We can define different parts in the draw-
ing, make them interactive, animate them separately or give
parts other visualizations.

To anticipate on the issues cited in this section, Interac-
tive Data Units are introduced. We will elaborate on them
in the next section.

4 Properties of Interactive Data Units

An Interactive Data Unit (IDU) is a platform-
independent graphical object consisting of a separated style,
structure and animation description (see Figure 4). Further-
more, they are scalable, animatable and easily adaptable.
The structure description of the IDU can be considered as

a high-level specification (hierarchy), the style as low-level
(appearance). In this section we will focus on its proper-
ties and internals. Each part is described in a distinct XML
file, so there is a clear separation between them. These files
make up the format hXMLa, which is an abstract XML-
compliant format describing the graphical objects, making
them independent of any platform. The different properties
will be discussed more in detail in the following subsec-
tions. Figure 3 shows an example of an IDU, acting here as
an interface element.

In the MYCAREVENT project, there is currently no
process to transform standard repair information into IDUs.
For this purpose more research is required and the feasibil-
ity of this approach can currently not be proved. This is one
of the main problems when implementing such a system
and it does not fall within the scope of the MYCAREVENT
project.

Listing 1. Structure file of dialog example (fig.
3)

<s t r u c t u r e i d =” s t 0 ” name=” example”>
<o b j e c t i d =” o0 ” name=” box”>
<u i t y p e t y p e =” d i a l o g b o x”>
<l a b e l >Tes t </ l a b e l >
< t r a n s f o r m a t i o n s >
< t r a n s l a t i o n x =”20” y=”50”/>
<s k i n n i n g s k i n r e f =” s0 ”/>

</ t r a n s f o r m a t i o n s >
</ u i t y p e >
<c h i l d r e n >
<o b j e c t i d =” o1 ” name=” b u t t o n ”>
<u i t y p e t y p e =” b u t t o n ”>
<l a b e l >ok</ l a b e l >
<e v e n t t y p e =” o n c l i c k ” a n i m a t i o n =” a0 ”

a c t i o n =” e x i t ”/>
<e v e n t t y p e =” onmouseover ” a n i m a t i o n =” a1 ”/>
<e v e n t t y p e =” onmouseout ” a n i m a t i o n =” a2 ”/>
< t r a n s f o r m a t i o n s >
< t r a n s l a t i o n x =”60” y=”40”/>
<s k i n n i n g s k i n r e f =” s1 ”/>

</ t r a n s f o r m a t i o n s >
</ u i t y p e >

</ o b j e c t >
</ c h i l d r e n >

</ o b j e c t >
</ s t r u c t u r e >

4.1 Structure

The structure part of an IDU contains the high-level in-
formation, for instance the events and animations linked
with the unit, as well as the name of the object and the cor-
responding skins (styles). The individual structure parts of

the IDUs are bundled in a general structure file, in which
also the hierarchy of the IDUs is represented. Transforma-
tions of a unit are recursively applied to its children. Listing
1 contains the structure file of the dialogbox described in
this paragraph.

The structure file provides information which has noth-
ing to do with the graphical presentation. There is a clear
separation between functionality and style (visualization).
This implicates that it is possible to choose a specific visu-
alization or animation according to a certain context or role.
A road-side technician gets a more detailed presentation of
an object than a driver gets, or a visualization where other
parts are emphasized.

Listing 2. Animation file of dialog example
(fig. 3)

<a n i m a t i o n i d =” a0 ” name=” b o x f l y ” dur =”4”
loop =”1”>
<f rame i d =” f0 ” t i m i n g =”0”>
<o b j e c t i d r e f =” o0”>
< t r a n s f o r m a t i o n s >
< t r a n s l a t i o n x =”20” y=”50”/>
< r o t a t i o n a n g l e =”0”/>
<s c a l i n g x =”1” y=”1”/>
<s k i n n i n g s k i n r e f =” s0 ”/>

</ t r a n s f o r m a t i o n s >
</ o b j e c t >

</ f rame>
<f rame i d =” f1 ” t i m i n g =”50”>
<o b j e c t i d r e f =” o0”>
< t r a n s f o r m a t i o n s >
< t r a n s l a t i o n x =”0” y=”100”/ >
< r o t a t i o n a n g l e =”−90”/>
<s c a l i n g x =”1” y=”1”/>
<s k i n n i n g s k i n r e f =” s0 ”/>

</ t r a n s f o r m a t i o n s >
</ o b j e c t >

</ f rame>
<f rame i d =” f2 ” t i m i n g =”100”>
<o b j e c t i d r e f =” o0”>
< t r a n s f o r m a t i o n s >
< t r a n s l a t i o n x =”0” y=”−100”/>
< r o t a t i o n a n g l e =”−90”/>
<s c a l i n g x =”1” y=”1”/>
<s k i n n i n g s k i n r e f =” s0 ”/>

</ t r a n s f o r m a t i o n s >
</ o b j e c t >

</ f rame>
</ a n i m a t i o n>

The events in Listing 1 have their own functionality.
The first event closes the program after clicking the button
(when the animation with id = a0 ends, i.e. box moves out of
the screen). The second event changes the color of the but-
ton when the mouse cursor hovers about it (animation with

id = a1). Event number three has the reverse effect (change
the color to the initial color when the mouse leaves the but-
ton, animation with id = a2). The transformation tag
within the uitype tag represents the initial situation of the
object in the application.

4.2 Animation

As an example, take the scenario where the driver has to
fill the oil reservoir. The user has to open the hood, remove
the cap of the reservoir and fill it with oil. These steps,
represented in Figure 9, have to be visualized in the user
interface, and they are more clear when present them with
animated graphics. The interface shows a user how to do
something. When using animations properly, it is easier to
understand the visualized information.

Also the animation part is separated from the structure
and style part of an object. For example we can change
an animation without changing the appearance. The anima-
tion file contains the information about the animations of
the abstract objects defined in the structure file. Objects can
be animated in two different manners: transformation and
warping. These affine transformations in the framework in-
clude translation, rotation, scaling, skewing and shearing.

The animations are described with keyframes. For each
keyframe the transformation of objects is specified. These
objects match the objects defined in the structure file. List-
ing 2 gives an example of an animation file belonging to the
dialog example.

Figure 4. Relations between the properties of
an IDU

4.3 Style

In the skin file the visible characteristics of an IDU are
defined. It contains the primitives (in our case vector graph-
ics) that determine the appearance of the object. The syntax
of the description is based on SVG primitives to guarantee
consistency with other SVG viewers and editors. Listing 3
gives an example of a skin file. This skin file belongs to
the dialogbox example and represents the box. The primi-
tives in Figure 5 can be used in the style description. Also
properties of primitives can be adjusted: color, linewidth,
fill etc.

Listing 3. Skin file of dialog example (fig. 3)
<s k i n i d =” s0 ” name=” box”>
<svg wid th =”90” h e i g h t =”60”>
<polygon f i l l =” g ray ” s t r o k e =” b l a c k ”

p o i n t s =”0 ,0 0 ,60 90 ,60 90 ,0”/ >
< t e x t x =”5” y =”15” f o n t−c o l o r =” r e d”>

&u i t y p e ; < / t e x t >
</ svg>

</ sk in>

The vector graphics we use in the framework are de-
scribed in XML and consequently platform-independent.
They are scalable and animatable due to the storage of
the coordinate points making up the primitives. There are
many applications suitable for drawing vector-based im-
ages. Even traditional drawing programs have facilities to
export to SVG. This enables designers to create their own
object layouts using their favorite external program (e.g.
Adobe Illustrator), and to use them as skins for units in the
framework.

5 Runtime Animation and Multi-
Device Rendering of the IDUs

In this section we will discuss the runtime animation and
multi-device rendering of created IDUs.

5.1 Runtime Animation

As we mentioned earlier, the data presentation is repre-
sented as a skeleton (hierarchy) of IDUs. An example of a
specific interface is given in Figure 6. In a user interface
every unit or widget has its own local coordinate system.
The primitives making up the skin or style are defined re-
lated to this system. Every transformation is relative to the
transformation of its parent. The screen of the target device
is considered as the global coordinate system.

Figure 5. Primitives forming the basic layer of
the framework

Forward Kinematics are used to calculate the global
transformation of a child. The obtained matrix is multiplied
with each point of the vector primitive to derive its global
coordinates. Whenever an object has different skins in the
keyframes of an animation, interpolation is applied between
these skins.

The final presentation can hold several animations in
which every animation consists of frames and keyframes.
The latter are defined by the user, whereas the first
are generated on-the-fly using interpolation between the
keyframes [7]. Frames can be considered as particular con-
figurations of object transformations. Figure 7 gives an
overview of the IDU animation part of the framework. A
transform object, as shown in Figure 7, is a transfor-
mation of the corresponding object in a specified frame.

5.2 Multi-Device Rendering Engine

The transferability to other platforms is handled by pro-
viding a basic, thin layer as the foundation of the frame-
work. This layer is a set of drawing primitives and is ‘thin’
because we only have to use drawing functions of the target
platform for these specific primitives. Hence, this means
that every platform with support for 2D drawing is able to
render the application. As a result we could also expand to
other devices, or even to the Web.

Figure 6. Hierarchy of a specific user interface

The thin layer consists of six functions: Draw-
Line(), DrawPolygon(), DrawPolyLine(), DrawRect(),
DrawEllipse() and DrawText(). Since it is not possible to
draw curves on every (mobile) platform, we implemented
a recursive subdivision algorithm to approach curves by
straight lines [6]. Paths, filled curves or filled paths can
then be considered as polygons. The primitives used in the
style description are mapped in the framework to one of the
six drawing functions.

These functions, bundled in one abstract class, are the
only points of contact between the framework and the
platform. By subclassing this abstract class, the frame-

Figure 7. Overview of the object animation
module

Figure 8. Architectural overview

work can be easily transferred to other devices or plat-
forms. Figure 8 shows the architectural overview. The
Graphical Context class contains 2D API draw-
ing functions for primitives. It is possible to take a
drawPixel() method as the basis, but we use the draw-
ing functions for primitives, otherwise we had to implement
algorithms to draw the primitives using the drawPixel()
method.

Scaling of the data presentation is automatically done ac-
cording to the target screen resolution without losing qual-
ity. Because of the limited computing power of mobile de-
vices related to desktop PCs, it is not recommended to draw
fancy and slow 3D graphics, but using fast and still attrac-
tive 2D graphics. After all, the user or artist can draw his
widgets in his favorite drawing application, save the files as
SVG and use them in the framework.

Regarding the animation it is also easy and time-saving
to use vector graphics. Transformations only have to be
applied to the points making up the primitive, contrary to
the case of raster data (bitmaps) in which they have to be
applied to all the pixels of the picture.

Figure 9. PSII application (role: driver, task: refill oil reservoir, device: PDA)

6 Case: PSII - Problem Solution Information
Interface

In this section we elaborate on an implementation case;
the Problem Solution Information Interface (PSII) that illus-
trates the use of IDUs. PSII is an application that helps the
user to solve problems of her/his car. The graphical presen-
tations are described in the hXMLa format. IDUs are used
to guide the user through the repair process by providing
interactive and animated schematical car information. Con-
trary to the use of straight-forward bitmap data, IDUs allow
us to adapt the user interface according to context informa-
tion.

The PSII application is used in different situations: on
different devices, for different persons, and to complete dif-
ferent tasks. The interface of the application has to cope
with these variances, also mentioned in Section 3: differ-
ent roles, devices and tasks. When a car failure occurs,
the corresponding repair instructions are provided by the
MCE system as an information bundle via the Service Por-
tal. To provide this information on different devices and for
different types of persons, adaptation to the type of device
and the profile of the user is necessary. IDUs are adaptable
to different screen resolutions, and they are able to provide
specific animations, interactions and appearances due to the
user role.

The repair information consists of schematic drawings
of repair instructions. These instructions are presented in a
sequence of steps to lead the user through to process. The
data is interactive and the specified action is emphasized by
animating the corresponding object(s). The user can click
on objects to trigger animations or to get extra information.
Figure 9 gives an example of a simple process where the
user has to fill the oil reservoir of the engine. Three steps
have to be completed: open the cap of the reservoir, pour oil
into it and put the cap back on the reservoir. By presenting

this information with IDUs we can easily attach animations
and different visualizations to parts of the engine. This step-
by-step interface just exemplifies the use of IDUs.

The example in the previous paragraph is linked with the
driver profile (as shown in the most left image of Figure 9).
Figure 10 shows an example of the same content (engine),
but used for another profile (roadside technician) to com-
plete another task (change the spring of the left piston of the
engine). We can use the same IDUs to visualize the process,
only other animations (separated XML files) have to be ap-
plied to the objects. It is also easy to change the appearance
of objects, e.g. the left spring in the second screenshot is
visualized in another way compared to the last screenshot.

As stated in the second paragraph, three types of
variances exist: there are different roles, different devices
and different tasks. These issues are roughly covered by
using IDUs.

Tasks

The tasks in the repair scenario depend on the role of
the user, and are steps to reach a goal: to operate and to
repair the car. To support these tasks, IDUs provide a rich
graphical and interactive presentation of the different steps
in the information process. Appropriate animations or
visualizations can be selected specifically for a task. Tasks
are closely connected with user roles. The task description
itself is not included in the hXMLa language.

Roles

It is possible to link profiles with objects, events and
animations in the structure file of the hXMLa language.
The roadside technician for example needs probably other
information than the driver needs. Due to a certain profile,
an object can have another presentation, another event

Figure 10. PSII application (role: roadside technician, task: change spring of piston, device: PDA)

can be linked with the object or another animation can be
shown when interacting with the object. In the XML file
we can link profiles as follows (profile 1 = driver, pro-
file 2 = roadside technician, profile 3 = workstation worker):

<event type="onclick" animation="0"
profiles="0,1"/>

In this example the animation with id=0 is shown
when clicking on the corresponding object in the driver
profile and the roadside technician profile, but not in the
workstation worker profile.

Devices

By using XML for the hXMLa description of the IDUs,
platform-independency is guaranteed. The rendering en-
gine of the framework only uses 2D drawing functionalities
of the platform, so a thin layer forms the point of contact of
the framework with the system where it is running on. The
advantage of using vector graphics is the scalability without
losing quality, so adaptation to other screen resolutions is no
problem. The graphics are not yet being reduced automat-
ically to device capabilities. Because a hierarchy of vector
data skins is used, it is possible to represent less or more
detail, according to the resources available on the device.
Another advantage of using vector data is the possibility to
change parameters on the fly. Figure 1 shows the PSII ap-
plication running on a PDA (Pocket PC) and on a Symbian
phone (Nokia N-Gage).

7 Conclusion

In this paper we presented a framework to support the
creation of rich graphical data presentations. Although a lot
of research in the field of interactive visualization of graph-
ical information has been done, there is a growing opportu-
nity to create scalable and animated graphical data presen-
tations on heterogeneous mobile devices. We presented a
scalable information visualization technique, based on the

use of Interactive Data Units. These IDUs have to support
the user when confronted with the complexity of car repair
procedures.

Figure 11. Hierarchy of objects of the engine
IDUs

IDUs are scalable, animatable, well adaptable, and de-
scribed in a platform-independent way. They consist of a
separated style, structure and animation description. This
separation has the advantage of giving an existing IDU
a new appearance while preserving its functionality. The
structure description of the IDU can be seen as a high-level
specification the IDU (e.g. which animations or skins are
linked with the object) whereas the skin or style description
is rather low-level emphasizing the appearance of the IDU
(e.g. color of the object).

Information is provided by a remote service and can be
loaded dynamically into the application. Depending on the
role of the user, the device he/she uses and the tasks he/she
has to complete, an appropriate presentation of this data is
provided. The information is used to lead the user through
the problem solution process, as well as to provide more
information in a more complex car failure. To cope with the
different variances in the scenario (tasks, roles and devices),

adaptivity of the user interface is necessary.
In Section 6 we presented an implementation using IDUs

for a car reparation scenario. A sequence of steps is pro-
vided to the user, which helps him/her in the repair process.
By using IDUs, issues about adaptivity are covered. In con-
trast with using bitmap drawings to present the data, IDUs
allow more freedom due to the separation of structure, ani-
mation and style of visuzalized information.

8 Acknowledgments

The research at the Expertise Centre for Digital Media
(UHasselt) is partly funded by the Flemish government,
EFRO (European Fund for Regional Development), tUL
(transnationale Universiteit Limburg) and the Flemish In-
terdisciplinary Institute for Broadband Technology (IBBT).
The MYCAREVENT1 project FP6-IST No. 004402 is an
Integrated Project sponsored by the European Commission
in support of the Strategic Objective “Information Society
Technologies (IST)” in the Sixth Framework Program. The
authors would also like to thank Jan Van den Bergh for pro-
viding valuable ideas and Bjorn Geuns for his appreciated
graphical input and feedback.

References

[1] ECMA script. World Wide Web, http://www.
ecma.ch, 2002.

[2] B. Bederson, A. Clamage, M. Czerwinski, and
G. Robertson. Datelens: A fisheye calendar interface
for PDA’s. In Transactions on Computer-Human Inter-
action, volume 11, pages 90 – 119. ACM, 2004.

[3] B.-W. Chang and D. Ungar. Animation: From cartoons
to the user interface. In ACM Symposium on User In-
terface Software and Technology, pages 45–55, 1993.

[4] G. Houben, J. V. den Bergh, K. Luyten, and K. Con-
inx. Interactive Systems on the Road: Development of
Vehicle User Interfaces for Failure Assistance. In Pro-
ceedings of First Workshop on Wireless Vehicular Com-
munications and Services for Breakdown Support and
Car Maintenance (W-CarsCare), pages 84–89, Nicosia,
Cyprus, April 2005. European Wireless 2005.

[5] Macromedia. Flash. World Wide Web, http://www.
macromedia.com/.

[6] R. J. Oddy and P. J. Willis. Rendering NURB regions
for 2D animation. In Computer Graphics Forum, num-
ber 11(3), pages C–35 – C–44 and C–456, September
1992. Eurographics 92 Conference, Cambridge.

1http://www.mycarevent.com

[7] M. Owen and P. Willis. Modelling and interpolation
cartoon characters. In Proceedings of Computer Ani-
mation ’94. IEEE, May 25-28th 1994.

[8] W3C. Scalable vector graphics. World Wide Web,
http://www.w3.org/Graphics/SVG/.

