
Practical and Scalable Transmission of
Segmented Video Sequences to Multiple Players

using H.264

Peter Quax, Fabian Di Fiore, Panagiotis Issaris,
Wim Lamotte, and Frank Van Reeth

Hasselt University - tUL - IBBT
Expertise Centre for Digital Media

Wetenschapspark 2
BE-3590 Diepenbeek

Belgium
{peter.quax, fabian.difiore, panagiotis.issaris,

wim.lamotte, frank.vanreeth}@uhasselt.be
http://www.edm.uhasselt.be

Abstract. We present a practical way to distribute viewports on the
same video sequence to large amounts of players. Each of them has per-
sonal preferences to be met or is limited by the physical properties of
his/her device (e.g., screen size of a PDA or processing power of a mo-
bile phone). Instead of taking the näıve approach, in which sections of
the video sequence are decoded and re-encoded for each of the clients,
we have exploited advanced features offered by the H.264 codec to en-
able selection of parts of the video sequence by directly manipulating
the encoder-generated bitstream. At the same time, we have overcome
several practical issues presented by the fact that support for these fea-
tures is sadly lacking from the state-of-the-art encoders available on the
market. Two alternative solutions are discussed and have been imple-
mented, enabling the generation of measurement results and comparison
to alternative approaches.

Key words: Video coding, Transmission, Remote Rendering

1 Introduction

Motivation. The integration of multimedia streams of various nature is an
important feature of many of today’s games. While audio communication is
widely supported — at least for some genres — the same is not yet true for
video. The causes for this are many, but the required processing power and
efficient distribution methods are probably the main culprits. Nevertheless, it
opens the door for many interesting applications. The successful integration of
video sequences for games is not limited to inter-person communication: various
other applications, such as omnidirectional video [1], the replacement of tradi-
tional computer-generated background images by real-life captured sequences

mailto:peter.quax@uhasselt.be
mailto:fabian.difiore@uhasselt.be
mailto:panagiotis.issaris@uhasselt.be
mailto:wim.lamotte@uhasselt.be
mailto:frank.vanreeth@uhasselt.be
http://www.edm.uhasselt.be
mailto:peter.quax@uhasselt.be
mailto:fabian.difiore@uhasselt.be
mailto:panagiotis.issaris@uhasselt.be
mailto:wim.lamotte@uhasselt.be
mailto:frank.vanreeth@uhasselt.be
http://www.edm.uhasselt.be


Fig. 1. Concept of distributing viewports on the same video sequence to large
amounts of players.

or enabling low-power devices to play state of the art games through remote
rendering can be envisaged. This paper considers the case in which parts of the
same video sequence(s) need to be transmitted to a number of players (see fig-
ure 1). Such a condition exists, for example, in remote rendering setups [2,3,4]
— in which a high number of individual viewports is generated on-the-fly by a
high-performance server setup. It would be beneficial if a single encoding step
could be used to generate a (large) stream, instead of maintaining multiple in-
stances of the video encoding software to generate the individual viewports. A
similar setup can be created for video communication purposes, in which a video
conference is used during gameplay (e.g., for FPS or MMO games). In case a
centralised server is responsible for generating the video sequences for individual
participants (depending on their bandwidth capacity or display size for exam-
ple), it would again be beneficial to generate a single video sequence that can be
segmented at a later time. It should be clear that a system that takes a single
(large) sequence and segments it through encoding/decoding parts of the frames
would not scale, thus the need arises for being able to crop the desired regions
directly from the encoded bitstream.



Contribution. As stated before, this paper focuses on sending parts of the same
video sequence to a multitude of devices, each having their own set of character-
istics and player preferences. Our technique focuses on selecting areas in a video
sequence for individual transmission directly in the encoded bitstream, without
requiring a separate decoding/encoding phase for each of them. In this paper
we elaborate on exploiting advanced features that exist in the H.264 standard
(e.g., slices) in order to target our applications. In addition, as there is currently
little to no support for these features in the available codecs we present a way to
work around these practical limitations and to enable an investigation into the
efficiency of the approach.

Approach. In this section, we will briefly explain the general outline of the
approach. For a more detailed description, we refer to the appropriate parts of
the paper. Consider the case in which a single large video sequence is generated
by an application, which is subsequently provided as input for a viewport se-
lection service (based on player preferences or device limitations). A näıve way
to perform the segmentation would be to decode a specific part of the sequence
and provide it as input for an encoding instance. It should be clear that such an
approach would not scale to the number of participants that is representative
for today’s games. Instead, one could provide some additional information in the
bitstream representing the large video sequence. Through the use of this infor-
mation, specific sections can be cropped simply by selecting those elements of the
bitstream that are useful, eliminating the need for separate decoding/encoding
phases. Of course, there are some requirements that need to be fulfilled in order
to be able to just cut out specific sections of the bitstream, one of them being the
requirement to remove dependencies between candidate viewpoint areas. This is
accomplished by using slices, one of the features offered by the H.264 standard.
In case we limit the motion estimation to these slices, they become self-contained
and can be cut from the encoded bitstream in an efficient manner. By following
through on this approach, we can combine several slices to re-generate complete
video sequences, representing different viewports.

Paper Organisation. In section 2, we provide a short introduction to the
features of the H.264 standard that are relevant for this paper. Some of the
applications are also described in more detail. Section 3 details our specific ap-
proach to the problem and discusses two alternative solutions. The advantages
and disadvantages of both are presented. A comparison between our approach
and others is presented in section 4. Some pointers to possible future work are
presented in section 5.

2 Related Work

A video encoder takes a sequence of frames as its input and spits out a —
typically much smaller — bitstream conforming to a certain specification. To do



so, block-based video codecs first divide each input frame into a grid structure of
which each individual area is called a macroblock. The resulting output bitstream
consists of a highly compressed representation of these macroblocks. As the
representation of each macroblock in the compressed form is of variable length,
a bit error in for example the first macroblock leads to the failure to decode any
macroblock in the frame.

The H.264 specification [5] provides a feature called a “slice” which allows
these macroblocks to be grouped. H.264, also known as MPEG-4/AVC, is the
most recent ITU & MPEG video coding standard widely used (Blu-ray, DVB-S2,
QuickTime, . . . ). Because H.264 allows macroblocks to be grouped into multiple
slices, each slide becomes individually en/decodable. A coded video bitstream
can have a very simple structure using one slice per frame, however, having
multiple slices is advantageous for parallel processing and network transmission
where errors in a slice will not prevent the correct decoding of the other slices.

In our work, we exploit this feature in order to ignore unnecessary slices
without having to re-encode the cropped region.

3 Approach

By regarding each frame of a video as being composed of many independent
areas, we could – for each client – select the areas needed according to his
viewport. As explained in section 2 the H.264 standard provides a way to divide
frames in smaller units by means of slices which are groups of macroblocks
belonging to the same frame and contain the actual encoded pixel data. In
general, the H.264 specification describes the slice structure as being totally
irregular, allowing each frame to be encoded in a different number of slices.

For our approach, we force our encoder to use a more regular slice subdivision
with each frame containing the same number of slices, and each slice occupying
the same area over all frames. Encoding a video stream using these constraints
allows us to instantly know the visual area a specific slice represents, without
needing to decode the actual contents.

Figure 2 illustrates several client requests for a particular view and the cor-
responding selected area of slices enclosing each view request.

Whenever a client wants to view just a particular part of the video, we
somehow need to remove the areas of the image falling outside the selected area.
The näıve approach of just sending only the selected slices imposes the client with
a corrupt bitstream which regular decoders can not cope with. Also, cropping
out pixel data as is common in known photo and videoprocessing tools would
imply compressing the cropped out region for each client individually, since each
client might be looking at a different segment of the video (i.e. a different area).
Recompressing the cropped out region could be feasible for a few clients, but it
cannot be considered scalable.

In the following subsections we elaborate on our specific approach to this
problem and discuss two alternative solutions.



Fig. 2. Each frame is subdivided into a same number of slices. For each client, the
areas depicted are needed to enclose the requested view (shown by the smaller
area).

3.1 Removing Slices

If we want to view just a particular part of the video, we need to remove the
areas of the image falling out the selected area. Ideally, this can be accomplished
by removing all unneeded slices (See figure 3).

Fig. 3. Removing blocks removes part of a frame. In this case, each row depicts
a single frame.

Unfortunately, deleting one slice affects all following slices. This is because
each slice starts with a “first mb in slice” field which contains the macroblock
number of the first macroblock coded in this slice. Therefore, as we delete entire
slices containing macroblocks, many macroblock numbers disappear and all slices
following a deleted slice need to be altered. Moreover, H.264 uses variable bit
length encoding meaning that different values are possibly encoded using codes



of different length. As a result, changing one single value could imply changes in
all bytes that follow.

One further problem is related to the fact that macroblocks are implicitly
identified by their number. The data that motion compensation uses to recon-
struct the frame is also identified by the same number. When the cropped out
area is static (i.e. the client’s view frustrum does not move) this causes no harm
as the renumbering due to the cropping is the same for each frame, and mo-
tion vectors point to the correct data. However, when the cropping window
moves (due to a moving view frustrum), problems arise as the numbering of
macroblocks is different before and after the movement of the cropping window.
Consequently, the motion compensation process in the decoder will start using
the wrong image data to reconstruct the image. The only way to avoid this
problem, is to stall the cropping window until the next intra-frame. This is a
full frame used in MPEG-4 AVC encoding (comparable to I-frames) that does
not need any information from the frame before it or after it to be played back
properly.

Furthermore, moving the view frustum might cause the video frame size to
change (see Figure 4). Although not restricted according to the specs, this causes
problems with current decoders including VLC, Xine and MPlayer.

(a) (b)

Fig. 4. Moving the view frustrum can cause the original (a) frame size to change
(b).

To summarise, removing the unnecessary blocks results in the smallest pos-
sible stream where the receiving end receives a simple stream with a resolution
matching its request without any modifications needed on the client side. The
mentioned issues, however, restrain this approach from being usable in real cases.

3.2 Replacing Slices

A different solution, which alleviates the aforementioned issues, uses replace-
ment rather than removal of slices. Slices which would have been removed in
the previous solution are now instead replaced by an artificially generated slice



of minimal size. Because of this, no slice numbers need to be altered and mo-
tion compensation uses the correct numbers. Furthermore, no shifting of bits is
needed as the existing and needed slices are sent as is. No header modification
is needed either.

As the slices need no modification, this approach is more scalable and each
client can be sent the slices it requires, unaltered. The only compensation of this
approach is the larger decoded picture buffer size at the decoder side and the
need for the decoder to be able to handle a larger number of slices.

The replacement slices can be generated on the fly (but can be cached too).
For intra-frames (comparable to I-frames), the replacement slices contain the en-
coded slice data consisting of a number of gray blocks. Concerning inter-frames
(comparable to B- and P-frames), the replacement slices contain encoded slice
data using skip-bits, representing data which can be skipped as they are sup-
posedly identical to the same data in the previous frame. This is also illustrated
in Figure 5(a).

(a) (b)

Fig. 5. a) Replacing slices empties part of a frame. b) Grouping empty slices.

Replacing each unneeded slice with a generated slice is suboptimal and results
in high overhead of headers. Furthermore, each slice might be sent individually
which would add more overhead due to RTP, UDP, IP and data link layer head-
ers. To this end, we also restructure the bitstream by generating slices containing
spans of macroblocks from one unaltered slice to the next unaltered slice (see
figure 5(b)).

We can conclude that this approach is very close to the space-efficiency-
optimal case (when using the slice-deletion technique), but without the compu-
tational overhead and addressing issues.



3.3 General Concerns

In this section we elaborate on some general concerns and workarounds, appli-
cable to both approaches.

Frame Dependency. Although slices are independently decodable, they do
depend on the previous frame being entirely available. So, if we look at figure 6
we can see the motion vectors pointing out of various slices to the same slices
in previous frames. However, as slices can be removed or replaced over frames
motion vectors could arise which don’t refer to the correct data in the previous
frame. To this end, we modified our encoder to restrict motion vectors to the
current slice area in the previous frame.

Fig. 6. Problematic motion vectors when slices are removed or replaced.

Grid Structure. Note that in the current approach, our slices are rectangu-
lar. As H.264 forces grouping of macroblocks to be consecutive in raster scan
order our slices cannot contain more than one row of macroblocks. Furthermore,
because each macroblock has a height of 16 pixels, the height of our slices is
constrained to 16 pixels as well. Therefor, in order not to end up with too many
slices each frame is divided into rectangular slices measuring 16 x 192 pixels.
It might also be worth investigating the FMO (Flexible Macroblock Ordering)
feature of the H.264 specification which allows ordering macroblocks in a more
flexible way. This could allow us to implement the grid structure more efficiently
by reducing the number of slices needed. Unfortunately, using FMO requires it
to be supported by both the H.264 encoder at the server side and the H.264
decoder at the client side which is not the case at present. Figure 7 depicts our
rectangular grid structure and the hypothetical case when employing FMO.

Moving View Frustrum. Moving the view frustum might also cause motion
compensation to use data we cropped out in previous frames (see figure 8). The
motion vectors could point to a area which is no longer within the cropped area.
We can send more slices then strictly needed. If during movement we reach the
border of the available area, we need to change the cropping area.



(a) (b)

Fig. 7. Comparison of grid structures. a) Currently supported by H.264 encoders
and decoders. b) Hypothetical case when employing Flexible Macroblock Order-
ing (FMO).

(a) (b)

Fig. 8. Moving the view frustrum can cause motion compensation to use data
we cropped out in previous frames.

Prediction Artifacts. If we would only send the slices needed to fill the current
viewport, any sudden and/or large movement could cause visual artifacts. This
is because we would be looking at an area for which we suddenly start receiving
predicted slices for which we do not have the basis of the prediction. In other
words, we start receiving predicted slices for that area, but we either never
received the initial slices or either received artificial slices which are plain gray.
As these artifacts are distracting, we send out more slices (i.e. located around
the viewport) than strictly needed to fill the current viewport.

4 Measurement Results and Comparison

In this section we elaborate on some results measuring our optimal proposed
approach of replacing unneeded slices by empty ones. All comparisons are made
against the official reference encoder (called JM or Joint Model) [6]. Our im-
plementation is also built on the reference encoder as this is the only encoder
available that fully implements the H.264 standard. Concerning the clients, no
specific decoder has to be employed.



All measurements were performed on the omnidirectional video sequence
shown in the top row of figure 9. The medium row depicts snapshots of two
clients with a different view on the input stream while the bottom row illustrates
the actual videostream sent to a third client.

Fig. 9. Top row) Snapshot of the input stream. Medium row) Snapshots of two
clients with a different view on the input stream. Bottom row) Snapshot of the
actual videostream sent to a third client.

Figure 10(a) shows the grid structure overhead caused by using 512 slices
per frame compared to 1 slice per frame (i.e. a full frame). Figure 10(b) depicts
the same information (first two bars) but also the significantly lower bitrate
(dark red bar) when applying our replacement approach to the 512 slices. Note
that once H.264 encoders and decoders support the FMO (Flexible Macroblock



Ordering) feature, the overhead due to the amount of slices will be reduced and,
hence, the final bitrate as well.

(a) (b)

Fig. 10. a) Grid structure overhead caused by using 512 slices per frame. b) The
purple bar shows the size of an encode with JM using 1 slice per frame (i.e. a
full frame). As indicated by the green bar, using JM to encode using 512 slices
per frame causes considerable overhead to represent the same frame. However,
the data our cropping server actually sends is significantly lower, which is shown
in the dark red bar.

Starting again from an unaltered stream (Figure 11(a), green bar) and ap-
plying our approach to just the inter slices (blue bar) already a reduction of
1.6Mbit for a 4.3Mbit stream is achieved. For the used samples, intra slices only
represent 1/7 of the data but they are relatively large compared to inter slices.
Additionally, using the replacement technique (replacing slices with black colour)
on both inter and intra slices yields a considerable advantage (orange bar). The
advantage of using the slightly more compact gray block representation is negli-
gible (yellow bar). Finally, regrouping the replaced slices partially alleviates the
overhead of the slices’ headers (dark red bar).

For higher quality streams (Figure 11(b)), our technique gives even better
results. Now, with only replacement of inter-slices we see a reduction of a 43Mbit
stream to 18Mbit (blue bar). Further replacement of intra-slices results in a
13Mbit stream (orange and yellow bar). Regrouping results in a stream just
below 13Mbit (dark red bar).

5 Conclusion and Future Work

We have shown a practical way to distribute parts of a video sequence to large
amounts of users. By adapting existing techniques from the H.264 standard, we



(a) (b)

Fig. 11. Bitrate reduction using the replacement technique. Green bar = unal-
tered stream; blue bar = inter slices replaced; orange bar = inter and intra slices
replaced (black); yellow bar = inter and intra slices replaced (gray); dark red
bar = inter and intra replaced and regrouped. a) Low quality stream. b) High
quality stream.

have shown that it is possible to perform the frame extraction directly from the
compressed bitstream, eliminating the need for additional decoding and encod-
ing phases. Test results have shown that the overhead associated with the slice
structures is mitigated by the bandwidth reduction in transmitting high-quality
video streams.

Additional benefit would be gained if FMO was practically usable and per-
formable with respect to both the encoder and decoder. As this is not yet the
case, we will look at the integration in open-source codecs (e.g., libavcodec).

Acknowledgements

Part of the research at EDM is funded by the ERDF (European Regional De-
velopment Fund) and the Flemish government. The research presented in this
paper is part of the IWT-Teleon project.

References

1. T.E. Boult, R. J. Micheals, M. Eckmann, X. Gao, C. Power, and S. Sablak. Om-
nidirectional video applications. In Proceedings of the 8th International Symposium
on Intelligent Robotic Systems, 2000.



2. Daniel Cohen-Or, Yuval Noimark, and Tali Zvi. A server-based interactive remote
walkthrough. In Proceedings of the sixth Eurographics workshop on Multimedia 2001,
pages 75–86, New York, NY, USA, 2002. Springer-Verlag New York, Inc.

3. Joachim Diepstraten and Thomas Ertl. Remote Line Rendering for Mobile De-
vices. In Proceedings of Computer Graphics International (CGI2004), pages 454–
461. IEEE, 2004.

4. Peter Quax, Bjorn Geuns, Tom Jehaes, Gert Vansichem, and Wim Lamotte. On
the applicability of remote rendering of networked virtual environments on mobile
devices. In Proceedings of the International Conference on Systems and Network
Communications, pages 16–16. IEEE, 2006.

5. H.264 : Advanced video coding for generic audiovisual services. World Wide Web,
http://www.itu.int/rec/T-REC-H.264, 2009.

6. H.264/AVC JM Reference Software. World Wide Web, http://iphome.hhi.de/

suehring/tml/, 2009.

http://www.itu.int/rec/T-REC-H.264
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/

	Practical and Scalable Transmission of Segmented Video Sequences to Multiple Players using H.264
	Peter Quax, Fabian Di Fiore, Panagiotis Issaris, Wim Lamotte, Frank Van Reeth
	Introduction
	Motivation.
	Contribution.
	Approach.
	Paper Organisation.


	Related Work
	Approach
	Removing Slices
	Replacing Slices
	General Concerns
	Frame Dependency.
	Grid Structure.
	Moving View Frustrum.
	Prediction Artifacts.


	Measurement Results and Comparison
	Conclusion and Future Work



