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Abstract

Our work in the area of non-photo-realistic render-
ing (NPR) focuses on visualising 3D models in a car-
toon rendering style: the geometrical objects are internally
coloured using two or three colours, while simultaneously
using an explicit outline. Many NPR techniques are time-
consuming processes, whereas we aim at real-time ren-
dering performance on mainstream graphics PC hardware
without losing a high image quality. Particular emphasis
is also put on getting smooth transition borders between
the bi-tonal cartoon-colours by applying an object preci-
sion triangle subdivision technique. Rapidly finding these
transition borders as well as silhouette edges is a topic of a
new algorithm. As silhouette lines and light effects are use-
ful indicators for computer vision, this algorithm also looks
interesting for applications in that field.

1. Introduction

Techniques originally meant for 3D computer graphics
are starting to find their way into 2D animation. Cartoon-
style rendering is typically something that is considered to
be purely 2D. We show how 3D scenes can be rendered
and animated effectively using adequate algorithms for this
particular type of non-photo-realistic rendering.

As graphics hardware constantly increases in perfor-
mance, while simultaneously becoming cheaper, we also
want to exploit its power to the maximum. This helps in
reaching our additional goal: getting top real-time execu-
tion speeds. Current graphics hardware has been optimised
to perform standard tasks for Gouraud shaded z-buffered
rendering, and we demonstrate how it can be effectively
put to use for non-photo-realistic rendering such as cartoon-

style rendering.
We would like to emphasise that the goal of this paper

is to get real-time cartoon rendering performance on stan-
dard graphical hardware. Some cartoon-like effects can be
obtained using a colour quantisation scheme or applying
texture-mapping in unusual ways, sometimes even built into
high-end graphics hardware. The solution we propose in
the current paper works real-time with much less demand-
ing hardware requirements. Our techniques are more flex-
ible assigning individual colours to different surfaces, and
our approach lends itself to obtaining nicely smoothed tran-
sition borders instead of either the staircase effects or too
fuzzy borders produced by methods based on quantisation
or texture-mapping.

In addition, we introduce a new algorithm for quickly
locating all silhouette edges. Furthermore, this algorithm
can be adapted to locate the borders between the cartoon-
colours.

This paper’s sections are organised as follows. Section
2 describes related work in the field while Section 3 ex-
plains the details of our rendering process. In Section 4
we describe an alternative approach for locating silhouette
edges. Section 5 shows some of our examples, while Sec-
tion 6 presents the conclusions of this paper, some thoughts
on our future research, and a few acknowledgements.

2. Related Work

Philippe Decaudin was the first to specifically look at 3D
cartoon rendering. In his Ph.D. dissertation [2] he exten-
sively describes the particular problems and shows possible
solutions, however in a far from real-time implementation.
A much speedier approach is shown by [8], who is juggling
with on-the-fly calculations of texture-co-ordinates in a one-
dimensional texture. We used an approach similar to theirs

mailto:jclaes@studio1.uib.es
mailto:fabian.difiore@luc.ac.be
mailto:gert.vansichem@luc.ac.be
mailto:frank.vanreeth@luc.ac.be


to generate cartoon-style images and animations, and suc-
ceeded in speeding up the process while at the same time
improving the quality of the images.

To find and render the silhouette edges in a polygonal
model, two solution categories have been proposed. The
first encompasses image space algorithms using several ren-
dering stages, while either modifying depths [13] or scaling
polygons [12]. The main advantage of image space based
methods is that they also work on unconnected polygon
meshes without the need for pre-processing, so they keep
working well when the polygons are dynamically recreated
or deformed for each individual animation frame. Draw-
backs are that, due to the multiple rendering stages, the
process is slowed down and also they lack the freedom to
control the silhouette, such as adding texture or drawing a
smoothing curve over it.

Therefore many NPR researchers opt for algorithms
based in object space to determine the silhouette edges. In
contrast with the image space based approaches, here the
process is not necessarilyO(n) – with n being the num-
ber of edges in the input model. Nevertheless, many re-
searchers still opt for anO(n) approach – even including a
pre-processing step – in order to work with simplified data
structures [1, 8]. If the model is fixed during the anima-
tion and connectivity information is present, it is possible
to work out algorithms that are faster thanO(n). [9] im-
plemented a stochastic search to quickly find many – but
not necessarily all – silhouette edges. [5] shows a method
based on the Gauss map to find these edges in a model with
n edges andk silhouette edges in a time proportional to
O(k log n), but limiting themselves to orthographic views.
In order to cope with perspective views, [14] and [7] use a
hierarchical tree of cones. A conversion to homogenous co-
ordinates in a 4D space and afterwards projecting this back
to eight 3D cubes is a rather complicated extension to [5],
proposed by [6]. We opt to do all calculations in 4D, gener-
alising Gooch’s algorithm in a straightforward and elegant
way and furthermore making it suited for light calculations.

3. Cartoon-style Rendering

In order to get a typical cartoon-style look, some specific
means of expression are used. Silhouette lines, border lines
and sharp edges (creases) are drawn in a thicker line style.
Also, objects are filled with a limited number of colours.
Please refer to section 5 to view some example images.

3.1. Input

As geometrical input, a triangular mesh is used, which is
a very common approach in current renderers.

3.2. Silhouette Lines

For a given view direction, silhouette lines are drawn ev-
erywhere on the border of the visible part of an object. The
silhouette for a cylinder, for example, consist usually of two
parts of a circle and two straight lines. Whenever the point
of view changes, the silhouette lines will be on a different
position on the surface of the object.

We use a method that’s suitable for most existing polyg-
onal input. Although the method isO(n) for n input poly-
gons, the algorithm uses only a marginal portion of the cal-
culation time. We should stress that the rendering of the
object – even in a constant colour – is already necessarily
O(n) and that the number of silhouette edges can be quite
high for finely detailed objects that are not too smooth.

Nevertheless, we have also developed a faster algorithm,
which is suitable for larger objects or for a variation of the
rendering style in whichO(n) would not be required. This
algorithm is explained in section 4.

Our current approach is the following: the unordered in-
put faces are organised in an efficient topological data struc-
ture in a pre-calculation step. That is, we build a winged-
edge data structure, giving us for every edge its vertexes, the
adjacent faces and the neighbouring edges. We refer to [4]
for properties and possible ways of implementing this kind
of data structures.

In a polyhedral model, a silhouette line is an edge that
is connected to both a front-face and a back-face. (Front-
faces are those faces of which the normal points towards the
viewer, while back-faces point away from the viewer). Ev-
erywhere they meet, a piece of the silhouette can be added.
At this point, our data structure is very useful: whenever we
find an edge lying between a front and a back-face, we mark
this edge as being part of the silhouette. By traversing the
edges in an order related to the neighbourhood of edges al-
ready found, we are able to get the silhouette as connected
chains; this would not be possible with other approaches
[1]. The connected chains of silhouette edges are useful
to correct rendering problems where two edges touch, or to
add special effects like drawing a spline or an artistic texture
to further enhance them [9].

3.3. Sharp Edges

We analyse the given input to calculate which edges are
sharp. When the dihedral angle between two neighbouring
faces is smaller than a user-supplied maximum, the edge is
marked as sharp. Also edges that only connect to one face in
the currently investigated mesh are marked as being sharp.
Again our topological model helps to speed up the neces-
sary searches. While silhouette edges need to be calculated
again for each individual rendering, the sharp edges can be
efficiently collected in a pre-processing step.



3.4. Limiting the Number of Colours

The most typical feature in a cartoon-style drawing is the
limited use of colours.

We use the Gouraud shading model (see e.g. [3] chapter
16.2). This is a standard shading model for polygonal input
managing with ambient light, diffuse and specular reflection
and realises a smooth transition of colour.

In our cartoon renderer, the user chooses the amount of
colours (usually two or three) for a given surface to be ren-
dered. If no specular highlights are requested, two colours
are chosen: one for the darker parts that get no or only a lit-
tle direct light and one for the main parts in the light. If the
user also asks for specular highlights, a third colour (that
is very close to white) is added. The pre-chosen colours
are created by our system and are based upon the original
material properties. We call these pre-chosen colours the
cartoon-colours. For each material, the user can overwrite
our default-calculated cartoon-colours as well as the values
that limit the border between the colours. Additionally, the
user has the option to associate a texture to a cartoon-colour
region.

The cartoon rendering is a two-step process: the values
that are calculated in the pre-processing step are used in the
final rendering step. In the pre-processing step, the scene
is rendered via standard Gouraud shading. For every vertex
of every visible face, a colour value is calculated. These
intermediate values are stored to be used in the rendering
step.

In the final rendering step, the colour for every face is
determined. The simplest approach is giving the cartoon-
colour that most closely matches the mean colour of the face
to the entire face.

A drawback of this approach is that a staircase effect
pops up (see figure 2). [2] suggests using a model with
more faces to improve the image quality. But that reduces
performance significantly and only diminishes the staircase
effect without really solving it. Another solution is to use
texture-mapping [8], but that approach is either too aliased
or has too fuzzy borders between the cartoon-colours (see
figure 5(c)). Moreover, in our solution we keep the texture-
mapping capabilities of the hardware free to be used for
other effects.

We decided to subdivide the faces if necessary, so we
only require extra processing for the polygons that have two
or three colours. This subdivision process will be explained
in detail in the next section.

3.5. Subdividing Faces Using Interpolation

We suppose that our input only consists of triangles. If
not, the faces can be triangulated using standard software or
by implementing an algorithm such as in [11].

(a) (b) (c)

Figure 1. Three possible subdivisions.

For every vertex of the triangle, we determine which
cartoon-colour most closely matches it. By comparing the
colours for the vertices, three cases can arise (see figure 1).
a) The three colours are all equal. No splitting is needed:
the face gets the same colour as the points.
b) Two colours are equal and the other one is different. On
two edges in-between points are calculated. The face will
be divided in two via the line connecting these in-between
points. Each piece will get the colour that matches the
points it is closest to.
c) The three colours are all different. In that case in-between
points will be calculated on each edge. A fourth pointm
will also be determined. This pointm is defined as the
centroid of the three in-between points. By connectingm
to each in-between point, the original face will be cut into
three pieces. The colour of each piece is again determined
by the colour of the nearest original vertex.

(a) (b)

Figure 2. Without versus with subdivision.

Figure 2(a) illustrates the need for subdividing. Here the
grey-coloured arc marks the form that ideally would divide
the light and the dark area on the polygon mesh. In the
drawing at the left, no polygons are subdivided, while on
the right the subdivisions are calculated using the interpola-
tion of intensity values in each vertex. As can be noticed,
the dark area in the left picture is very rough, while the cor-
responding area on the right is much smoother. Both dark
areas have straight edges and use the same input data, but
look totally different.

Figure 2(b) is a concrete illustration of our technique.
The sphere at the left is rendered without the subdivision,
while the sphere at the right uses the subdivision scheme
that is described in the following sections. The image with
the subdivisions looks much smoother and also behaves
much more fluently in animations.



3.6. Calculating the In-between Points

The in-between points are calculated by linear interpola-
tion of the colours.

Let a andb be the two points for which an in-between
pointr is needed. Letia andib be the respective intensities
of the colour in these points, andIa andIb the respective
cartoon-colours. The intensity inr, ir, has to be equal to the
threshold between the two cartoon-colours,Ia andIb. This
threshold can either be chosen freely by the animator, or it
can be some simple derivation ofIa andIb. An example is
to chooseir as the mean betweenIa andIb, thus:

ir = (Ia + Ib)/2 (1)

The fact thatr lies on the line betweena andb allows us to
expressr as a linear combination:

r = t ∗ a + (1− t) ∗ b (2)

In the Gouraud model of interpolating colour inside a face,
the same interpolatort also governs the relation between the
intensities:

ir = t ∗ ia + (1− t) ∗ ib (3)

Rewriting equation 3, we get a formula fort:

t = (ir − ib)/(ia− ib) (4)

If we now use the value ofir obtained in equation 1, we get
a value fort. Substituting that value oft, equation 2 will
deliver us the desired in-between pointr:

r = b + (ir − ib)/(ia− ib) ∗ (a− b) (5)

3.7. Overview of the Rendering Process

In this section, we show a simplified overview of the car-
toon rendering process:
Pre-processing step:

• Read the objects into memory, building up a winged-
edge data structure.

• Create a display list for each surface in the objects.
• Calculate and mark sharp and border edges.

For each individual rendering:

• Get the view transformation from the underlying ani-
mation program.

• Render the display list of each surface into the feed-
back buffer1 using Gouraud shading.

1When in feedback mode, no pixels are produced by rasterisation. In-
stead, information (such as screen co-ordinates and colour values) about
primitives that would have been rasterised is fed back to the application.

• The feedback buffer is processed, so the actual ren-
dering can start, using the calculated vertex colours
to assign cartoon-colours and optionally subdivide the
polygons. In this step the cartoon polygons are ren-
dered into the screen buffer.

• The sharp edges are drawn.
• Calculate silhouette lines: the list with non-sharp

edges is processed, drawing all edges that connect a
front-face with a back-face (depending on the view di-
rection).

The pre-processing step, which is executed only once per
session, takes several seconds to complete. But each render-
ing step can be performed in real-time, at least until a cer-
tain complexity of the scene (about 10,000 polygons with
our current hardware).

The use of the feedback buffer turns out to be especially
beneficial. An initial remark is that not all the rendering is
done twice. In the first rendering (the one to the feedback
buffer), all objects are transformed from object co-ordinates
to screen space. In the second rendering (the actual ren-
dering of the adapted mesh), all co-ordinates are already in
screen space without the need for any transformation. Fur-
thermore, in order to make optimal use of the fact that the
processor on the main machine and the processor on the
graphical board can perform tasks in parallel, the rendering
to the feedback buffer is started in a separate thread, each
time with a different part of the object, while the main pro-
cessor does the subdivision and colouring of the previous
polygons.

4. A Faster Silhouette Detection Algorithm

Analogous to [5] and [6], we convert the silhouette edge
detection to a dual problem. Each face in the primal space
is represented as a 4D point in the dual space via its plane
equation. After normalisation, these points form a sphere,
known as the Gauss map of the faces in the primal space.
This allows us to convert problems in the primal space to
easier to attack problems in a dual space.

The older approaches represent the edge between two ad-
jacent faces as the arc joining the dual points that represent
those faces. We – on the contrary – simple look at the dual
edge as a pair of points, one for each of the faces.

The camera used in the rendering can either be a 3D
point or a 3D direction vector. The camera is represented
in the 4D dual space by converting it to homogenous co-
ordinates, i.e. having the 4th co-ordinate equal to1 for a
point in the scene, and having it equal to0 for a direction
vector.

To check whether a face with the plane equationAx +
By + Cz + D = 0 is a front face, we have to substitute the
camera(V x, V y, V z) in its plane equation and look for a



positive value. In the dual 4D space, this is just a dot prod-
uct: (A,B,C, D).(V x, V y, V z, V w) to be evaluated. To
find silhouette edges, we have to find edges in the dual space
for which the corresponding faces give different signed re-
sults for the dot product.

In order to rapidly search for silhouette edges, all the
edges of the input model are stored in a 4D variant of
an octtree. At the highest level, one 4D cube – ranging
from (−1,−1,−1,−1) to (1, 1, 1, 1) – encloses the Gaus-
sian sphere. By splitting the space for each co-ordinate in
two, this 4D cube can be divided into 16 smaller 4D cubes.
This process of dividing into sub-cubes can be repeated re-
cursively until some small enough limit level is reached. In
a pre-processing step, each edge is recursively put into an
as small as possible sub-cube that encloses both points rep-
resenting the edge. Only sub-cubes that contain at least one
edge are represented.

In a final pre-processing step, we assign two bounding
boxes to each sub-cube. The first bounding box encloses all
edges belonging to the sub-cube’s children while the second
one encloses the sub-cube’s own edges.

So far for the pre-processing. Now at runtime, for the
silhouette edge detection from a given camera position, the
4D octtree is traversed recursively, only looking at those
sub-cubes for which at least one of the two bounding boxes
has both a positive and a negative value for the dot product.
During the traversal of the 4D octtree, all edges stored on
each visited level are tested for being a silhouette edge.

If we suppose – as in the papers referenced in the related
work section – that the number of silhouette edges for a
“usual” object is relatively small compared to the number
of total edges, our algorithm will have to test only a small
fraction of the input edges. The main difference with the
referenced papers is a simpler setup adapted to perspective
views, while using bounding boxes that are much tighter
than a hierarchy of cones.

Figure 3 shows the performance of our algorithm and the
number of edges tested in relation to the number of cubes
created.

(a) (b)

Figure 3. a) Performance of our algorithm.
b) Tested edges compared to created cubes
(based on the fish of figure 4(a)).

The proposed algorithm can be adapted to find the poly-

gons that contain the border between cartoon-colours.
Therefore, we have a closer look at the light equation,

for simplicity limiting ourselves to an ambient termA and
one diffuse light. The light intensityI is then:

I = A + max(0, N.L) (6)

HereN is the surface normal andL is the normalised vector
from the surface towards the light. Note that the clamping
of the diffuse light to be at least0 has no effect forN.L
sufficiently large, as is the case for the area where the bor-
ders between the cartoon-colours are defined. This way the
light formula can be rewritten to only depend on the normal
plane on the surface and be compared as larger or smaller
than0, depending on a value derived from the chosen border
between the colours.

So, instead of the equations of the planes of the faces, in
the 4D octtree, this time we store the normal plane of the
points of the model. We can then quickly find those points,
for which our winged-edge data structure supplies the poly-
gons that are to be divided, as they have to be coloured by
more than one cartoon-colour.

5. Examples

(a) (b) (c)

Figure 4. a) A fish (without/with subdivision).
b) A desk lamp. c) A moon shaped toy.

The fish of figure 4(a) contains 6,280 faces and 3,164
vertices. Both the version using subdivision and the version
without subdivision get rendered at a speed of 30 frames per
second. The desk lamp of figure 4(b) and the moon (6,320
faces) of figure 4(c) are both rendered at 26 frames/sec.
Note that there are two light sources used to illuminate the
moon-shaped toy.

The deer of figure 5 consists of 10,396 faces and gets
rendered at a speed of 18 frames per second. Figure 5(c)
shows what happens when texture smoothing is turned on:
the smoothing region is too large, making the border be-
tween the bi-tonal regions very fuzzy. Figures 5(d, e) give
examples of how texture-mapping can be used to obtain dif-
ferent rendering styles.

For figure 6(b) we turned on the “Multi-sampling for
High-Resolution Anti-aliasing (HRAA)”, an anti-aliasing



(a) (b) (c) (d) (e)

Figure 5. a, b) A deer rendered without/with
subdividing. c) Smoothing the texture as sug-
gested by [8]. d) Replacing a cartoon colour
with a texture and (e) texturing the silhouette.

(a) (b) (c) (d)

Figure 6. A standard rendering without anti-
aliasing (a) versus anti-aliasing turned on (b).
(c, d) show zoom-ins on (a, b).

method implemented in hardware on the GeForce3 graph-
ics board. The anti-aliasing is supported without any loss of
speed. Figures 6(c, d) show zoom-ins on a detail of figures
6(a, b). If we reverted to the texture-mapping approach sug-
gested by [8], the smoothing would only be able to smooth
the silhouette edges but would keep rendering the border
between the cartoon-colours with a staircase effect.

6. Conclusions and Future Research

In this paper we describe our approach to successfully
implementing a cartoon-rendering. Furthermore, we ex-
plain the techniques that are used to boost this rendering
to real-time performance using currently available off-the-
shelf hardware. We also elucidate the techniques to use to
get the quality of the images as high as possible, given the
real-time constraint.

In addition, we present a compact new algorithm to
rapidly search for silhouette edges and for the polygons con-
taining the borders between the cartoon-colours.

In our future research, we would like to investigate other
applications of our silhouette edge detection algorithm,
such as in the field of computer vision [10]. The quick loca-

tion of silhouettes and shading borders could be especially
helpful in detecting the orientation of known objects.
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