
Uniting Cartoon Textures with Computer Assisted Animation

William Van Haevre, Fabian Di Fiore and Frank Van Reeth

Hasselt University
Expertise Centre for Digital Media
transnationale Universiteit Limburg

Wetenschapspark 2, 3590 Diepenbeek, Belgium
e-mail:{william.vanhaevre; fabian.difiore; frank.vanreeth}@uhasselt.be

Abstract

We present a novel method to create perpetual animations from a
small set of given keyframes. Existing approaches either are limited
to re-sequencing large amounts of existing image/video data, or to
interpolating vector based drawings.

Our approach benefits from several ideas and techniques from video
textures, computer-assisted animation and motion graphs. It com-
bines the re-sequencing of existing material with the automatic gen-
eration of new data. Furthermore, the animator can interfere with
the animation process at each arbitrary moment.

First, a given set of keyframes is used to automatically generate a set
of in-betweens. The amount of in-betweens required, depends on
a distance metric preventing possible visual discontinuities. Next,
an optimised cost graph is derived from the generated frames, indi-
cating for all keyframes how many steps are required to travel from
one keyframe to another. Finally, by rearranging the generated sets
of in-betweens according to the cost graph, new animations can be
synthesised from the generated data.

The resulting animations are smooth, broader than the input data
and require no postprocessing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; I.4.0 [Im-
age Processing and Computer Vision]: General—Image processing
software

Keywords: computer animation, structured 2D animation, cartoon
textures, automatic in-betweening

1 Introduction

Motivation. Traditionally, 2D animation production has been a
labour-intensive artisan process of building up animated sequences
by hand. Most work and hence time is spent on drawing, inking and
colouring the individual animated characters for each of the frames.

In smaller-scale productions where resources are sparse and anima-
tors have to work more independently (due to the absence of dedi-
cated programmers or assistants), this time-consuming work can be
reduced by replacing parts of the animated scene with short repeti-
tive animations or endless animations reusing given frames.

Employing existing computer assisted approaches, animators
roughly can choose between two extreme options. They either
have to create endless looking animations in the traditional way
(e.g. frame by frame [Blair 1994; Patterson and Willis 1994]) or
in a fully automatic way (e.g. revert to video textures techniques
[Scḧodl et al. 2000; Campbell et al. 2002; de Juan and Boden-
heimer 2004]). The latter category which is based on video textures
delivers satisfying results but heavily depends on large incremental
data sets and cannot cope with visual discontinuities. The first, on
the other hand, is based on simple interpolating schemes and re-
quires only a very small set of input data. However, the amount of
interaction requested from the user is often too tedious and time-
consuming.

Objective. Our objective is to provide a method that facilitates
the creation of such endless animations or video loops for smaller-
scale productions. From a small amount of input data, animators
should be able to easily and interactively create perpetual anima-
tions of repetitive motions, and allow the integration of these an-
imations seamlessly into the rest of their artwork. As an exam-



ple, the image of the flower displayed in the inset, shows 5 hand
drawn flower positions from which a large amount of new cartoon
frames are derived. An interactively created endless animation of
this flower can be used to become part of the background scenery
in a vast number of cartoon animations.

Approach. Contrary to other approaches [Schödl et al. 2000;
de Juan and Bodenheimer 2004], the user only supplies a very small
set of extreme poses (i.e. less than 10 frames vs 100s of frames). By
re-sequencing input data (which does not need to be preprocessed
to remove inadequate material) and synthesising new art from it,
a large amount of new animation data is provided to the anima-
tor. Based on automatic in-betweening of keyframes, incremental
changes are made to the data resulting in smooth transitions without
visual discontinuities. No actual preprocessing or postprocessing is
required to improve the quality of the resulting animations, prevent-
ing possible loss of data.

In order to achieve our goals, our approach combines ideas and
techniques from video textures, computer-assisted animation and
motion graphs. From video textures creation, we borrow the idea
of using a distance metric to estimate the similarity of all pairs of
keyframes provided by an animator. Based on computer-assisted
traditional animations techniques, in-betweening is employed to ex-
tract new data from the input, according to these calculated dis-
tances. This data can be represented in a graph similar to a motion
graph [Kovar et al. 2002], on which graph walks are constructed
using a simple, goal based algorithm. This way, new interactive
animations can be synthesised.

Paper structure. This paper is organised as follows. We start
with an overview of related work on the topic of this paper. Then,
we give an overview of the animation pipeline used for the cre-
ation of our targeted animations. Next, The most important steps
from the analysis part of this pipeline are examined in more detail,
bringing us to the part where we describe how new animations are
synthesised from the available data. We end with some clarifying
results, our conclusions and topics for future research.

2 Related Work

Our approach benefits from several ideas and techniques from
computer-assisted traditional animation, video textures and motion
graphs. In this section we briefly elaborate on related work in these
fields.

2.1 Computer-Assisted Animation

One of the most obvious methods for generating new animations is
creating in-between frames by interpolating between two or more
given frames. In Computer-Assisted Animation (CAA), there are
essentially two types of interpolating systems: shape-based [Burt-
nyk and Wein 1971; Reeves 1981; Sederberg and Greenwood
1992; Kort 2002] and skeleton-based [Burtnyk and Wein 1976;
Shapira and Rappoport 1995; Sederberg et al. 1993]. However,
in-betweening in traditional animation, is not just interpolating be-
tween key drawings. When drawing the in-betweens, animators
utilise their background knowledge of the physical rules of the
world, their expert knowledge of when to bend or ignore these rules,
and the emotions they intend to evoke by the animation.

Bregler et al. use capturing and re-targetting techniques to track the
motion from traditionally animated cartoons and re-target it onto
new 2D drawings [Bregler et al. 2002]. By using animation as the
source, similar new animations can be generated. This approach
leads to very impressive results, but unfortunately some drawbacks
prevent it from being used extensively. The re-targetting process
is very dependent on a good choice of the source and target key-
shapes which one has to select and draw manually. The animator
has to watch carefully that the chosen key-shapes cover the entire
cartoon space (the entire range of possible poses). Furthermore, the
creation of the target key-shapes — these shapes replace the source
key-shapes — is a very tedious task since each source key-shape
requires a target key-shape to be drawn manually.

Rose et al. presented an inverse-kinematics methodology exploiting
the interpolation of example-based motions and positions [Rose III
et al. 2001]. The key issue of their system is to allow an artist’s in-
fluence to play a major role in ensuring that the system always gen-
erates plausible results. Starting from a small number of example
motions and positions, an infinite number of interpolated motions
between and around these examples are generated. This methodol-
ogy is highly focused on positioning articulated figures and there-
fore does not lend itself to traditional 2D animation.

2.2 Video Textures

Recently, Sḧodl et al. presented a technique that allows the creation
of repetitive and endless video given a short video sequence [Schödl
et al. 2000]. To achieve this, a sufficient number of pairs of similar
frames needs to be present. This amount depends on a distance
metric calculated on the image data of the individual frames. These
similar frames then act as smooth transitions from which normal
video playback can deviate, and thus rearrange the original frame
sequence into a new synthesised video. A drawback of this method
is revealed when no good smooth transitions are available. In this
case, the creation of a video texture is impossible.

More recently, de Juan et al. introduced cartoon textures [de Juan
and Bodenheimer 2004]. Borrowing the idea from video textures
to use a distance metric between all pairs of frames, they also rear-
ranged a given set of data. To reach a sufficient number of smooth
rearranges of cartoon data, a large amount of input data is required
which is mapped to a lower dimensional manifold (a similar ap-
proach was taken by Campbell et al. [Campbell et al. 2002] on
video data). Within this image space, the shortest path can be cre-
ated between any two frames. However, several issues can be iden-
tified. First, a very large data set of input frames (sometimes more
than 1000 frames) is required to ensure a decent variation of the an-
imation. Next, a large amount of preprocessing is needed to reposi-
tion the image data and apply background removal. Moreover, the
generated cartoon animations also demand a postprocessing step, in
which gaps (due to insufficient cartoon data) need to be filled with
some extra user input, and visual discontinuities are removed.

Our approach is based on data creation and starts with just a few
keyframes (less than 10) drawn by an animator. These frames will
serve as the required transitions to rearrange the generated anima-
tions as automatically desired or interactively commanded. By cre-
ating in-between frames for all pairs of keyframes all transitions
will remain smooth. This will be elucidated in the next sections.

2.3 Motion Graphs

Motion Graphs [Kovar et al. 2002] provide a method to control re-
alistic motion through a database of motion capture data. On the



constructed graph, that encapsulates connections among different
pieces of motion, graph walks are constructed that satisfy specific
constraints.

We applied a similar approach on image data and vector based
drawings, by constructing a graph that connects individual
keyframes by a path containing the required in-betweens that bridge
them. From this data structure, graph walks are extracted in a goal
based manner, resulting in interactive animations that incorporate
user specified parameters.

3 Overview

Creating new animations from a small set of input data requires sev-
eral steps to be executed one after the other. These can be divided
into two large phases: the first part analyses the input data and gen-
erates new data from it. The second one employs this new data
to create new animations by re-sequencing the generated material
according to specific rules and animator interactions.

The complete pipeline to create a cartoon animation from scratch
consists of the following steps (see Figure 1):

PHASE 1: analysis + data generation

1. The animator draws a few basic keyframes (Section 4.1).

2. The similarity between all pairs of keyframes is evaluated us-
ing a distance metric (Section 4.2).

3. From this measurement the number of required in-betweens
is derived after which the actual interpolation steps can be
performed (Section 4.3).

4. Steps 2 and 3 can be repeated iteratively until a sufficient
amount of frames are generated — 1 or 2 passes are suffi-
cient most of the times. The animator also can limit the in-
betweening to only a few frames within the first passes. This
way new keyframes are created, which can be altered to sat-
isfy specific conditions and constraints the animator had in
mind for the resulting animation. During the last pass, all fi-
nal in-betweening frames are generated.

PHASE 2: animation synthesis

5. Random animations can be synthesised from the generated
cartoon data, by rearranging the generated sets of in-betweens
(Section 5.1).

6. To allow for fast animator interactions, a cost graph is derived
from the generated frames indicating for all keyframes how
many steps there are required to travel from one keyframe to
another (Section 4.4).

7. This cost graph is optimised to represent the cost that is min-
imally required to travel between any pair of keyframes (Sec-
tion 4.4.1).

8. Using the interpolated frames and the optimised cost graph,
interactive cartoon animations can be synthesised (Section
5.2).

Steps 1 to 4 (also numbered in Figure 1) allow the user to create
random animations. When steps 5 to 8 are added to this process, in-
teractions with the generated animations can be incorporated. In the
following sections each step of the presented pipeline is explained
in more detail.

Figure 1: The pipeline of our process to create endless random or
interactive animations. Phase 1 consists of data analysis from a few
input keyframes and generates the required in-betweens to bridge
them. Phase 2 allows for the creation of random animations which
can be extended to comply with animator interactions.

4 Creating Cartoon Data

To relief the animator from the very time-consuming work that is
involved in generating sufficient frames for a new animation, a com-
puter aided alternative is required. Starting from a few keyframes,
drawn by the artist, a set of new frames should be generated auto-
matically.

4.1 Keyframes

The first step in our animation pipeline consists of the creation of a
few basic keyframes. To this end we employ user-controlled struc-
tured 2D modelling and animation techniques [Di Fiore et al. 2001]
in combination with automatic in-betweening. This methodology
clearly distinguishes between a separate modelling and an anima-
tion phase. This is similar to the 3D animation process and has been
proven to be very useful for the purpose of creating convincing 3D-
like animations, starting from pure 2D drawings, while preserving
the artist’s personal style.

Considering 2D animation from a technical viewpoint, two differ-
ent categories can be distinguished: (i) transformations in a plane
parallel to the drawing canvas (theXY plane), and (ii) transforma-
tions outside the drawing plane, especially all rotations around an
axis different from theZ-axis.

The former category of transformations is relatively easy to deal
with, whereas the latter is the main cause of all the trouble in
automating the in-betweening process (i.e. the underlying sub-
problems of silhouette changes as well as self-occlusion). It is in
the latter type of animation where the 3D structure comes into play
that is underlying the objects and characters in traditional animation
(and which is present in the animator’s — and viewer’s — mind),
but which is not present in the 2D drawings.

To tackle this without introducing too much 3D information, Di
Fiore et al. developed a solution based on structured 2D modelling
and animation techniques [Di Fiore et al. 2001]. This is imple-
mented as a multi-layered system. At level 0, objects are modelled



(a) (b) (c)

Figure 2: a–b) Two extreme poses of a drawn flower using subdivi-
sion curves (see depicted control points) as drawing primitives. c)
Generated in-between frame.

(a) (b) (c)

Figure 3: a–b) Two extreme poses of a face using subdivision
meshes over real images. c) Generated in-between frame.

as sets of depth-ordered 2D drawing primitives (e.g. subdivision
curves or subdivision surfaces). Level 1 manages and processes
explicit 2D modelling information and is fundamental in realising
transformations outside the drawing plane: for each set of ‘impor-
tant’ XY-rotations of the object relative to the virtual camera, the
animator creates a set of ordered 2D primitives. This is functionally
comparable to the extreme frames in traditional animation [Blair
1994; Patterson and Willis 1994]. Level 2 incorporates 3D infor-
mation by means of 3D skeletons or approximate 3D objects, while
level 3 offers the opportunity to include high-level tools.

Multi-level 2D strokes, interpolation techniques and on-the-fly re-
sorting are used to create convincing 3D-like animations starting
from pure 2D information. A rigid 3D look is avoided through
varying line thickness and the ability to have subtle outline changes
that are either impossible or tricky to achieve utilising 3D models
(see Figures 2(a–b)).

Besidesdrawingkeyframes, our animation system also includes the
possibility to create keyframes by incorporating real images depict-
ing extreme poses. To this end we provided a tool which allows the
animator to define a layered mesh structure over certain image parts
that contain interesting information. This is shown in Figures 3(a–
b) which depict two extreme poses of a human face. During the
animation, in-between images of these ‘real’ keyframes are con-
structed by warping the meshes imposed on the extreme frames to
each other in the same order as defined by the layered structure.

This structured 2D approach (i.e. explicit 2D modelling and auto-
matic in-betweening) is the computerised version of the animator’s
work place. Unlike purely 3D-based approaches, the resulting an-
imations still have many lively aspects akin to 2D animation. De-
pending on the purpose of the resulting animation and the quality
that is required, the amount of keyframes can reach from just a few
to several dozens. In general less than 10 keyframes suffice to cover
the usual viewpoints which occur in cartoon space.

4.2 Distance Graph

Given a sequence of user specified keyframes, in-betweens should
be generated automatically. An important aspect of this process is
the calculation of the amount of in-betweens needed. To determine
this number, a distance valued between all pairs of frames is calcu-
lated. This distance is defined by a function of the displacement of
the control points from which the frames are constructed. For each
pair of extreme frames the following rules need to be considered:

1. The amount of in-betweens needed between two keyframes
depends on the properties of the deformation of the displayed
object. If the deformation is global (the magnitude of the
largest displacement of any control point remains below a fac-
tor x times the average movement of all control points), a suf-
ficient amount of in-betweens should be introduced to mini-
mally interpolate the average deformation. If the deformation
is local (only specific parts of the object are changed or the
largest displacement is minimallyx times bigger than the av-
erage control point transformation), the largest deformation
defines the required amount of in-betweens.

2. This amount is also relative to the magnitude of the deforma-
tion of the displayed object. Small changes to the displayed
object require only a few interpolation steps, large deforma-
tions on the other hand, need a larger number of in-betweens.
When the extreme frames are too different from each other,
the interpolation should be prevented.

For each pair of keyframes the distance between the data is mea-
sured using the actual positional information of the control points
from which the image was built. By averaging all control point de-
formations between a pair of keyframesi and j and keeping track
of the largest control point displacement, the previously mentioned
rules can be taken into consideration. A user specified thresholdt
prevents unwanted frame interpolations. The distance valued(i, j)
is a function of these individual components:

d(i, j) = f ( maxd(i, j), avgd(i, j), t )

These values can be stored in anxn matrix D with n the number
of keyframes. Each matrix entrydi, j represents the distance from
keyframei to keyframe j (di,i = 0,∀i). The following matrix de-
picts the distance graph corresponding to the 5 keyframes shown in
Figure 4:

D =


0 102 189 max max

102 0 97 180 max
189 97 0 89 216
max 180 89 0 130
max max 216 130 0


The absence of a value (denoted bymax), indicates that no
in-betweens should be generated between the corresponding
keyframes because there was not enough similarity detected (a large
d value), making automatic interpolation difficult.

4.3 Automatic In-betweening

Provided with the user specified keyframes and the distance ma-
trix D, the actual interpolations of the keyframes can be performed
resulting in the required amount of in-betweens to accomplish a
smooth transition from one frame to another. As a global property



F =


0 5, ...,23,1 24, ...,60,2 − −

23, ...,5,0 1 61, ...,78,2 79, ...,113,3 −
60, ...,24,0 78, ...,61,1 2 114, ...,130,3 131, ...,172,4

− 113, ...,79,1 130, ...,114,2 3 173, ...,197,4
− − 172, ...,131,2 197, ...,173,3 4



Matrix 1: Frame matrixF for the flower example (see Figure 4): each elementfi, j contains the path to follow within the frame space,
when moving from keyframei towards keyframej. For example, to direct the animation from keyframe 1 to keyframe 3 (zero based), the
in-between frames 79 till 113 need to be displayed, ending with frame 3 itself.

of the interpolation process, the animator can decide on the amount
of interpolation steps used to bridge a specific distance.

The actual interpolation process is part of the employed structured
2D modelling and animation methodology (see also Section 4.1).
Figures 2(c) and 3(c) illustrate the in-betweening process.

At this stage in the pipeline, for each pair of keyframes with a valid
frame distance, a short animation sequence is created that connects
them. Storing these sets of interpolating frames into a matrixF
(Matrix 1), allows rapid retrieval of the correct frame sequences
while generating a new animation. At each matrix positionfi, j , the
frames created between keyframei and keyframej are stored. The
content of matrixF can be interpreted as a simplified motion graph
[Kovar et al. 2002], built from the keyframe indicesi and j, and
connected through the generated sequences that bridge them.

Matrix 1 shows the frame matrix corresponding to the flower de-
picted in Figure 4.

4.3.1 Iterative Process

Using the method of automatic in-betweening, an iterative process
can be established to increase the amount of initial keyframes. By
forcing the interpolation of one or a few extra keyframes between
frames with a large relative distance, large displacements of control
points can be broken into smaller steps. Furthermore, the animator
is always in control and hence allowed to modify these generated
in-betweens to his/her specific desires.

After the creation of the frame matrixF , the first stage in the cre-
ation of a new animation is finished. Section 5.1 explains how at
this point in the pipeline random animations can be generated using
a straightforward algorithm.

However, transitions between two keyframes are often not possible
because the required in-betweens are absent. If the distance ma-
trix D contains insufficient entries, the animator should consider
drawing more frames (possibly aided by a forced calculation of an
in-between). Otherwise, an alternative path to travel between these
frames, making use of other reachable keyframes, is required. This
alternative route, should connect the keyframes in a straightforward
manner without deviating too much from the planned animation se-
quence. To accomplish this, a cost graph is added to the animation
pipeline.

4.4 Cost Graph

At this point in the pipeline, a computer generated number of inter-
polated frames have been created between several pairs of original
keyframes. The cost to travel from framei to frame j can be de-
fined as the length of the frame sequence that connects these frames.
These costs can be stored in anxn matrix C with n the number of

OptimiseCostGraph( )
Label undefined positions with maximum cost;
while a cost value changeddo

for each matrix position(i, j) do
search an indext for which: ci,t +ct, j ≤ ci, j ;
when found: updateci, j and storet;

end for
next

Listing 1: This algorithm optimises the initialised cost matrixC so
that it contains the lowest cost between all pairs of keyframes.

keyframes. Each matrix entryci, j represents the cost to travel from
keyframei to keyframej (ci,i = 0,∀i). The following matrix depicts
the cost graph corresponding to the 5 keyframes shown in Figure 4:

C =


0 20 38 max max
20 0 19 36 max
38 19 0 18 43

max 36 18 0 26
max max 43 26 0


This cost matrixC can be interpreted as a cost graphG, containing
1 node for each keyframe and edges between all pairs of keyframes
for which in-betweens are generated. The edge between framei and
frame j is labelled with cost valueci, j .

4.4.1 Cost graph Optimisation

At this point the cost graph is not fully connected. Several edges
between keyframes are still undefined due to frame distance cal-
culations that result in a value laying above the earlier mentioned
user specified threshold. These connections, however, can be cre-
ated iteratively. By means of successive traversals of already ex-
isting connections, a path can be found between any two original
keyframes (if the cost graph was closed). In addition, several con-
nections can be improved by means of alternative routes in the ex-
isting cost graph. To accomplish this, the algorithm of Listing 1 is
used:

1. label positions with an undefined cost value with a maximum
cost;

2. for each pair of keyframe indices(i, j), search for an indext
for which: ci,t + ct, j ≤ ci, j ; if such a valuet is found, store
ci,t + ct, j as the new cost to travel from keyframei towards
keyframe j and mark keyframet as a new possible frame to
go to from framei when travelling towards framej;

3. repeat step 2 until no more improvements are encountered.

The improved cost matrixC indicates for each pair of framesi and
j the minimal cost to connect them:



Coptimised=


0 20 38 56 81
20 0 19 36 62
38 19 0 18 43
56 36 18 0 26
81 62 43 26 0


The encountered deviations from the original path, improving the
cost to travel between two frames, can be stored in a matrixP. At
each matrix positionpi, j a set of frame numbers is constructed, indi-
cating which keyframes to aim for, when travelling from keyframe
i to keyframe j. Whenever a better path is found, the current list
is cleared and a new set of better deviations is built up. When no
further optimisations are encountered, an element from the set at
matrix positionpi, j represents the next node in a shortest path from
keyframei to frame j. This information can now be used to travel
between keyframes using a minimal number of frames.

P =


− 1 2 1,2 2
0 − 2 3 2,3
0 1 − 3 4

1,2 1 2 − 4
2 2,3 2 3 −



5 Video Synthesis

In the following sections two methods are proposed for generating
a new cartoon animation from the generated data. Both of them are
highly related to the concept of a graph walk, introduced by Kovar
et al. [2002].

5.1 Random Animations

The first method simply creates a new animation by randomly pick-
ing a new keyframe,j, as a goal to purchase from the current dis-
played keyframei. That way, theci, j frames of the short sequence
fi, j that bridges the distance between the current keyframei and
the targetj are played. If matrixF doesn’t provide the required in-
betweens to connect keyframei with keyframe j, another random
goal can be selected.

The resulting animations are completely random and can best be
compared with the usability of cartoon textures [de Juan and Bo-
denheimer 2004]. The keyframes from which they are built serve
as the transitions required to rearrange the generated data and to
combine the different short animations that exist between the in-
dividual keyframe pairs. In most cases, the action represented by
the generated cartoon is very simple. More meaningful animations
demand a different approach as explained in the next section.

5.2 Interactive Animations

Contrary to random animation creation, this section describes an
algorithm to generate new animations containing awell definedand
ameaningfulcontext.

Exploiting the cost matrixC in combination with the shortest
path info from matrixP animations can be generated interactively.
While the algorithm is generating random goals for the animation
to aim for, the user can interfere with this process and provide the
next keyframe to reach for (see Listing 2). For example, while the

GenerateInteractiveAnimation( )
while generating animationdo

if displaying a keyframej then
if user interaction was recorded:g is latest requestthen

select new goal fromp j,g;
else

pick new random goal;
end if

end if
next

Listing 2: This algorithm extends the random animation generation
of cartoon textures to an interactive approach, creating more mean-
ingful, user directed animations.

animation system is displaying one of the in-betweens that connects
keyframei with keyframej, the user can propose a new goalg. Sev-
eral candidates might exist to reachg starting from j, all of them
through different paths of minimal length (e.g.,p4,1 for the flower
proposes 2 possible shortest paths: passing through keyframe 2 or
through keyframe 3). As soon as keyframej is reached, one of
the elements of matrix positionp j,g is randomly chosen as the next
intermediate goal to aim for. This new goal is the next keyframe
within the shortest path from keyframej towards keyframeg. As
long as keyframeg is not reached, new intermediate goals are in-
troduced, always bringing the playback of the animation closer to-
wards keyframeg. Finally, wheng is reached and no further in-
teractions from the user are recorded, the algorithm continues to
pick new random goals (if an endless animation is desired). At any
moment the user can make a new request for a specific keyframe,
deviating the current graph walk to a new destination.

6 Results

In Figure 5 a few snapshots are displayed from an animation of a
flower, based on the keyframes displayed in Figure 4. It took an
unskilled animator less than 30 minutes to draw all extreme frames
and almost no time (less than a minute) to generate the animation.
From the 5 initial keyframes a set of 193 in-betweens was derived,
according to the pairwise inter-frame distances. The resulting ani-
mation is smooth and the appearance of the flower can be controlled
interactively by the animator (e.g. go far left, left, middle, . . . ). By
applying a user defined threshold on the allowed inter-frame dis-
tances, and using the optimised cost graph, bad transitions are pre-
vented, and a shortest path can be used to reach the requested flower
position. In this example, the in-betweening process was restricted
to movements that only bridge keyframes that are located 2 posi-
tions (in terms of keyframes) from each other (e.g. from the far left
position to the middle one).

Another example of curved based drawings is shown in Figure 6.
To create this animation (from which a few snapshots are shown in
Figure 7), a few snapshots from a moving figure were modelled. In
addition, several intermediate frames were created and altered in a
extra iterative pass of phase 1 of the presented animation pipeline
to control the direction of the animation. Consequently, our opti-
mised cost graph not only allows smooth interactive transitions be-
tween the letters but also guides the animation between the actual
positions through the specifically intended intermediate keyframes.
This is accomplished by applying a well chosen threshold on the
pairwise frame distances (in this case restricting the automatic in-
betweening process to frames with a high similarity). In total, 13
frames were drawn and 473 were added automatically.

Figure 9 demonstrates how a video-like result can be achieved by
applying our algorithm to image data instead of vector based draw-



ings. The displayed snapshots of this animation are part of a short
animation created from a set of 26 keyframes from which a few are
displayed in Figure 8. This first approach, based on the mouth po-
sitions of the individual letters of the alphabet already proves the
usefulness of our technique. Improving this by actually modelling
the phonemes of a language should give an even more convincing
and more usable result.

A similar example (Figure 10) was created from facial expressions.
In this case, only the 5 keyframes displayed in Figure 11 were used.
As an example of the applicability of the resulting interactive ani-
mation, this (and the previous) example could be used to extend a
standard chat application with smooth facial expression transitions
enriching communication with ‘realistic’ emotions.

Discussion In all the given examples, the actual creation of the
basic keyframes requires most of the animators’ time. However,
this artistic part of the animation creation process will always re-
main a task to be performed by the animator himself/herself. The
creation of the in-betweens takes only a few minutes while the cre-
ation of the animation itself happens in real-time (including pos-
sible interactions of the animator). Calculating the pairwise inter-
frame distances and the resulting optimised cost graph takes less
than a second and is therefore negligible from the rest of the calcu-
lations.

All examples were tested on a commodity personal computer (Pen-
tium IV 3.06 GHz, ATI MOBILITY RADEON 9000).

7 Conclusion and Future Work

We presented a novel method that facilitates the creation of end-
less animations or video loops for smaller-scale productions. To
this end, a hybrid approach was applied benefitting from several
ideas and techniques from video textures, computer-assisted ani-
mation and motion graphs. By combining the re-sequencing of ex-
isting material (phase 1) with the automatic generation of new data
(phase 2) into a two-phase animation pipeline, new animations can
be synthesised. Furthermore, the animator can interfere with the
animation process at each arbitrary moment.

The resulting animations are smooth, broader than the input data
and require no postprocessing.

We would like to address the issue of controlling the speed of the
animation which in general is related to the content of the animation
itself. In the current system, the speed of the animation is defined
by the inter-keyframe distances and the timing enforced by the ani-
mator. In the future we would like to incorporate dynamic changes
of velocity into an earlier stage of the animation pipeline.

Acknowledgements

We gratefully express our gratitude to the European Fund for
Regional Development (ERDF), the Flemish Government and
the Flemish Interdisciplinary institute for Broadband Technology
(IBBT), which are kindly funding part of the research reported in
this paper. Many thanks go also to Bjorn Geuns for his artistic con-
tribution.

References

BLAIR , P. 1994. Cartoon Animation. Walter Foster Publishing
Inc., ISBN: 1-56010-084-2.

BREGLER, C., LOEB, L., CHUANG, E., AND DESHPANDE, H.
2002. Turning to the masters: Motion capturing cartoons. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, vol. 21(3), ACM,
399–407.

BURTNYK , N., AND WEIN, M. 1971. Computer-generated key-
frame animation.Journal of the Society Motion Picture and Tele-
vision Engineers 8, 3, 149–153.

BURTNYK , N., AND WEIN, M. 1976. Interactive skeleton tech-
niques for enhancing motion dynamics in key frame animation.
Communications of the ACM 19, 10, 564–569.

CAMPBELL , N. W., DALTON , C., GIBSON, D., AND THOMAS.,
B. 2002. Practical generation of video textures using the auto-
regressive process.British Machive Vision Conference(sep),
434–443.

DE JUAN , C., AND BODENHEIMER, B. 2004. Cartoon
textures. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, New York, NY, USA, 267–276.

DI FIORE, F., SCHAEKEN, P., ELENS, K., AND VAN REETH,
F. 2001. Automatic in-betweening in computer assisted anima-
tion by exploiting 2.5D modelling techniques. InProceedings of
Computer Animation (CA2001), 192–200.

KORT, A. 2002. Computer aided inbetweening.NPAR2002: Sym-
posium on Non-Photorealistic Animation and Rendering(June),
125–132.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion
graphs. InSIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 473–482.

PATTERSON, J. W.,AND WILLIS , P. J. 1994. Computer assisted
animation: 2D or not 2D?The Computer Journal 37, 10, 829–
839.

REEVES, W. 1981. Inbetweening for computer animation utilizing
moving point constraints.Computer Graphics 15, 3, 263–269.

ROSE III, C. F., SLOAN , P.-P. J.,AND COHEN, M. F. 2001.
Artist-directed inverse-kinematics using radial basis function
interpolation. In Proceedings of Eurographics symposium
(EG2001), vol. 20(3), 239–250.

SCHÖDL, A., SZELISKI , R., SALESIN, D., AND ESSA, I. 2000.
Video textures. InSIGGRAPH 2000: Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New Orleans, Louisiana, USA, K. Akeley,
Ed., 489–498.

SEDERBERG, T. W., AND GREENWOOD, E. 1992. A physically
based approach to 2D shape blending.Computer Graphics 26,
25–34.

SEDERBERG, T. W., GAO, P., WANG, G., AND MU, H. 1993. 2D
shape blending: an intrinsic solution to the vertex path problem.
Computer Graphics 27, 15–18.

SHAPIRA, M., AND RAPPOPORT, A. 1995. Shape blending using a
star-skeleton representation.IEEE Computer Graphics and Ap-
plications 15, 44–51.



Figure 4: Five curve-based keyframes depicting extreme poses of a flower.

Figure 5: Several snapshots from an animation created from the keyframes in Figure 4. The animator can decide whether the flower bends
towards the left or the right side (and also how far), simply by pointing out the required new flower shape. Using the optimised cost graph
bad transitions are prevented, and the shortest path can be used to reach the requested flower position.

(a) (b) (c) (d) (e)

Figure 6: Five of thirteen keyframes used to create a moving figure animation. To create a smooth animation, several poses of this figures
body were modelled (a - c). In addition, several intermediate frames were added to control the direction of the animation (d - e). This way, our
optimised cost graph not only allows smooth transitions between the different position but also will guide the animation through the ‘correct’
keyframes, which were specifically created by the animator to uphold his/her original intentions.

Figure 7: Several stills from an animation created from the keyframes in Figure 6. By applying a good threshold to the calculated distance
matrix D, only those in-between sequences are generated that connect sufficiently similar keyframes. In total, 13 frames were drawn and
473 were generated automatically. In combination with the corresponding optimised cost matrixC, a path between two poses always passes
through the intermediate keyframes, specifically intended by the animator.



Figure 8: Five image examples out of a set of 26, displaying a few of the most important placements of the mouth while speaking. Using
our interactive animation pipeline on this mesh-based example, animations can be created in which the displayed person simulates speaking
actual phrases.

Figure 9: Several stills of an animation created from the keyframes in Figure 8. The successive smooth changes of the mouth position
resemble footage of a speaking man in a very convincing way.

Figure 10: Keyframes used to generate a facial expression animation. Only these 5 pictures had to be taken to allow for all possible transitions
between these emotions based on in-betweening. For each keyframe, a mesh is placed on the face to create the required interpolations
afterwards.

Figure 11: Several generated frames of an animation created from the keyframes in Figure 10.


