
Sketching with a Low-latency Electronic Ink Drawing Tablet

Alex Henzen Neculai Ailenei∗

Philips Emerging Display Technologies
Jan Campertstraat, 5

Heerlen (the Netherlands)

Fabian Di Fiore Frank Van Reeth†

Hasselt University
Expertise Centre for Digital Media
transnationale Universiteit Limburg

Wetenschapspark, 2
BE-3590 Diepenbeek (Belgium)

John Patterson‡

Dept. of Computing Science
Glasgow University
17 Lilybank Gardens

Glasgow G12 8QQ (Scotland, UK)

(a) (b) (c) (d) (e) (f)

Figure 1: Shows a curve as drawn by the nervous hand tool. Shot (a) showing the original curve. Shots (b–d) show the artist as s/he modifies
another corner of the curve, dragging this corner inwards whilst also smoothing it out. Shot (e) shows the curve as the old curve begins to
fade with shot (f) showing the final lie of the curve.

Abstract

Drawing on paper is an experience which is still unmatched by any
input device for drawing into a computer in terms of accuracy, dex-
terity and general pleasantness of use. This paper describes a paper-
like drawing tablet which uses electronic ink as its output medium
with stylus-based touchpanel input. The device mimics the expe-
rience of drawing in a manner which can be adjusted to approach
the feel of different kinds of paper. We discuss further some basic
issues which need to be addressed in managing interfacing to such
a device, specifically the avoidance of the legacy of mouse-oriented
point-and-click interfaces which have influenced GUI design for
so long. We see a sketch-based model for interaction, based on
free-form curve drawing, as being the way forward but new inter-
action models are required. The tablet is initially intended to serve
as an input-device for cartoon drawing and editing, so the product
of any sketching process has to be presented to the rest of the anima-
tion data-path in terms of a conventional curve model, here Bézier
chains. We discuss models for achieving this without having to re-
sort to legacy curve-editing techniques which have no counterpart
in drawing on paper or in the repertoire of the traditional anima-
tor. Potential uses of these interaction techniques go well beyond
supporting the cartoon drawing application.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Input devices; I.3.3 [Computer Graphics]: Pic-
ture/Image generation—Line and Curve Generation; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Ergonomics; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques

Keywords: Input devices, Line and Curve Generation, Interaction
Techniques, Electronic Ink

∗e-mail: {alex.henzen, neculai.ailenei}@philips.com
†e-mail: {fabian.difiore, frank.vanreeth}@uhasselt.be
‡e-mail: jwp@dcs.gla.ac.uk

1 Introduction

Capturing drawings for computer processing has always been prob-
lematic, especially for sustained work as is typical in cartoon ani-
mation. There are basically two routes, scanning and direct input.
Scanning involves drawing on paper, then capturing the drawing
with an accurate flatbed scanner. This results in a raster image
which has to be subjected to further processing before any ‘creative’
steps can be applied to it. Direct input involves making the draw-
ing through direct computer interaction with a drawing program
and a matched input device, usually a mouse or passive tablet-and-
stylus. This results in an internal data structure which defines the
appearance of the drawing and from which the entire history of the
process of making the drawing is potentially available. In particular
the drawing can be defined in a so-called vector or stroke-based for-
mat in which the primitives are straight lines and free-form curves
along with associated attributes like control-point coordinates, line
thickness, colour etc. This structure facilitates subsequent process-
ing steps and makes automatic in-betweening — the generation
of intermediate drawings between key poses, as required in large
numbers in cartoon animation — feasible. By contrast deriving an
equivalent structure from the raster image of a scanned-in drawing
is not possible by purely automatic means, and the lengthy and te-
dious task of reconstructing it interactively is simply not practical.

Ergonomic considerations have forced the developers of cartoon
animation software to favour scanning-in drawn artwork and im-
plementing a truncated data-path which leaves the in-betweening
step as an unautomated process [Patterson and Willis 1994]. This
puts an absolute constraint on improving the productivity of an an-
imation studio with computer support and disallows any process
which could rely on in-betweening or the vector form, such as sta-

ble rendering of highly textured brush strokes. While technical con-
siderations overwhelmingly support direct input and vector artwork
the artist’s environment is in practice unacceptably unpleasant for
sustained work.

This paper introduces a new form of interactive drawing tablet,
Electronic Ink, which has the potential to support a drawing experi-
ence far more like pencil and paper than other interactive displays.
Functionally it is very similar to an LCD display backed by a tablet
and stylus, like the Wacom Cintiq™ or as found in a TabletPC,
but ergonomically it is very different. The display medium is E-
ink™ which is a thin composite layer whose (subtractive) colour
can be switched electrically from one stable state to another. When
the E-ink layer is placed over its switching electrodes it forms a
surface which is as rigid as its supporting layers and which, when
switched, shows a high-contrast, high-resolution image with negli-
gible parallax when illuminated with ambient light — in fact quite
similar to paper.

Electronic ink drawing tablets offer the possibility of readdressing
the whole question of direct input but at the same time pose the
question of appropriate models of interaction more starkly than with
any other interactive display. If the medium is to be seen as paper-
like it should not behave in a very un-paper-like way. Furthermore,
its specific advantages should be exploited properly, particularly
the virtual absence of parallax which makes the traditional point-
and click approach assuming the use of clumsy tools to move a
cursor around particularly inappropriate. Sketching would seem to
be an appropriate metaphor, which in an animation context mainly
involves curve drawing and editing. Unfortunately the usual mod-
els for curve editing are heavily biased towards point-and-click and
optimised for manipulation with clumsy interaction tools like mice.
Essentially a curve — as close to the intended shape as can be man-
aged in a single interaction — is introduced into the drawing area,
then manipulated into place with controls based on the mathemat-
ical formulation of the curve or curve chain. While this approach
mitigates the clumsiness of mouse interaction, nothing less like the
experience of drawing with pencil on paper, the very experience
which most attracts artists to a profession which promises endless
drawing, can be imagined.

In this paper we will be exploring new sketch-based models for in-
teracting with and editing free-form curves, here specifically Bézier
chains. The rest of the paper is structured as follows. In Section 2
we describe the electronic ink technology and the intention behind
its adoption, in Section 3 we discuss the basic approach to curve
drawing and methods of managing interaction, and in Section 4 we
introduce two sketch-based models for curve editing. Results are
exemplified in Section 5. Section 6 is our conclusions section in
which we also set contexts for our work. It should be noted that the
electronic ink devices we are working with at the time of writing are
engineering prototypes and that our interaction models are currently
being explored in simulation. In the end our models are only really
practical in an interactive environment sustained by fully developed
electronic ink panels and that development in turn is influenced by
the models they have to sustain.

2 Electronic Ink Technology

When committing any type of artistic expression to paper, there
are many factors influencing the end result. Among those are the
drawing/painting tool and the paper’s characteristics, e.g. softness
or roughness. In the animation context it is still the case that most
artwork is created on paper and subsequently digitised for what is
in effect post-production. Some attempts have been made with di-
rect input, where touchpanels and digitisers are used in combination

Figure 2: Microencapsulated Electrophoretic Display.

with computer displays but this is more usually employed in 3D an-
imation where using a computer is not optional.

Vansichem et al. focused on the simplicity of the classic pen as
an input device for drawing computer animation [Vansichem et al.
2001]. Here they used pen input to create the geometrical data
needed for the automatically generation of the in-betweens. In
doing this they focused on creating a digital curve drawing tool
that works in a natural and intuitive way, which implies that the
tool has to work in real-time and that the movement of the pen
has to be closely tied to the resulting curve. However they did
not take into account the difference in hand-eye coordination be-
tween drawing with a pen on paper and drawing with a digital pen
on a tablet while watching the screen. Attempts have been made
to combine a flat panel LCD display with a touchpanel but basic
shortcomings fail to relieve the unpleasantness of current forms of
direct input. Complaints include excessive parallax, highly quan-
tised spatial resolution (both of which work against accuracy of in-
put capture), unacceptable backlighting, and an unpaper-like feel
(too smooth and slippery). To overcome these problems, a display
was required which does not show these problems. One such dis-
play is the electronic ink panel in which the display is provided
by an electrophoretic layer and input via a commercially available
pressure-sensitive electromagnetic panel, of the kind available com-
mercially, behind the display.

The original drawback with electronic ink was that it was not op-
timised for fast response. Full, accurate switching from black to
white or vice-versa could take around 1 second which is well out-
side the 40 ms response time usually necessary to be considered
an ‘immediate’ reaction. For correct reproduction of grey-levels,
it is necessary to let a display update finish uninterrupted before a
new display update can be initialised. New update strategies have
been developed to allow continuous display updates, to the point
that a user will not object to the time lag between input and actual
reproduction [Henzen et al. 2004]. Considerably faster responses
than those achieved at present will be possible in the near future
[Whitesides et al. 2004]. These await a further development effort.

2.1 Electrophoretic Layer

The display layer used in the panel is manufactured by the E-Ink
Corporation. It is based on microencapsulated electrophoretic lay-
ers, as shown in Figure 2, where two charged particle types, white
and black, can be switched by means of an electric field. The result

Figure 3: Prototype pane.

is a black-white switching layer, an example of which is shown in
Figure 3. A layer of this kind is laminated onto a dedicated back-
plane and driven by specially designed electronic circuits [Henzen
et al. 2002]. Although not specifically designed to have a fast re-
sponse time, the response is fast enough to generate sufficiently
good optical response directly following the stylus tip. The under-
lying principle is that the transition from black state to white state
and vice versa does not take much time; 300 ms usually suffices.
However, the accuracy of the grey level (16 grey levels) is not very
good. This means that updates can be fast, but no strict require-
ments on accuracy should be posed. On the other hand, updates
can be accurate, as long as sufficient time is invested. The draw-
ing tablet therefore cuts corners when speed is required, and will
restore accuracy once time is available.

2.2 Panel Engineering

The touch sensor used is a prototype panel employing electromag-
netic signals to detect position and status of a special, passive stylus.
The panel delivers information about stylus position, pressure and
inclination, as well as the position of up to four switches incorpo-
rated in it. In tests no interaction between input sensor and output
display has been detected which had been a concern.

Strategies for driving electronic ink panels were, until now, based
on accuracy in reproducing grey levels [Zehner et al. 2003]. Since
accuracy requires effort (time), update used to be slow, and new in-
put was inhibited until the full image was written. If drawn input
must be processed, it is unacceptable to suspend processing new
touchpanel input until the previous information has been fully up-
dated. Instead, the module accepts input data continuously, and the
pixel addressing starts as soon as the coordinates are received.

(a) (b)

Figure 4: a) Smooth Hand. b) ‘Nervous’ Hand.

2.3 Operating Environment

The software driver is adapted to respond in the same manner as a
normal digitiser input, but the display on top is provided with the
drawn input data, thus directly representing the drawing on screen.
One goal is to make the experience of using the device as paper-like
as possible. Currently the sense is one of drawing on aluminium
which is certainly rigid enough. By contrast the medium used in an
LCD panel is soft and the thick transparent protective layer which
causes the parallax problem has to be reinforced to stop it bending
under stylus pressure distorting what is seen beneath. The support
of this glass layer is a significant and persistent problem for this
type of display as increased size requires increased thickness and
worse parallax. For the electronic ink panel the problem is some-
what different as the surface needs to resist the passage of the sty-
lus and feel less rigid. The former may be achieved in a number
of ways, by coatings or by providing an intrinsically rough protec-
tive layer otherwise needed for sealing purposes. The latter can
be achieved by providing a (slightly) compressible core to the sty-
lus whose function is otherwise solely to press on the very slightly
compressible resistor used to provide pressure readings. These as-
pects are to be the subject of an evaluation process to be conducted
shortly.

3 Free-form Curve Model

If one goes to the lengths of trying to simulate the experience of
drawing on paper the most obvious metaphor for the interaction
model is one which is like sketching with pencil and paper. The
basic interaction element is thus not a point, but a stroke, although
internally strokes will be represented in terms of points (e.g. poly-
line vertices or control points). When drawing or writing users tend
to make two different kinds of strokes, which collectively can be
said to be done either with a smooth hand or a ‘nervous’ hand. Fig-
ure 4 shows two drawings, one executed by a smooth hand (a) and
the same drawing executed by a nervous hand (b).

To make the point Figure 4 is a modification of animators’ practice
[Patterson and Willis 1994]. An animator would typically produce a
drawing like that of Figure 4(b) in which the correct line path would
be seen from repeatedly going over the same line. While the results
of each stroke would be apparent in the clutter the line path would
also be apparent as a black core. A ‘clean-up’ artist would then
take the drawing and produce something like Figure 4(a) by tracing
the paths with a smooth hand. A certain amount of interpretation
is required because while the black core will contain the desired

line direction it may not constrain it tightly. A few animators have
trained themselves to use a smooth hand consistently, often because
of the constraints of computer systems, and for them the smooth
mode will always be enough, but animators from an unconstrained
or traditional training commonly use the nervous form to pin down
the ‘lay’ of their line.

For automated in-betweening it is essential to be able to extract the
core line as a free-form curve, i.e. to fit a curve model as closely
as possible to a set of points, for example a polyline approximating
the core line. Our freeform curve model is that of a Bézier chain
and the curve control points are what are in-betweened (so there is
a correspondence problem which is resolved by ensuring matching
chain links in corresponding curves which are identified through
corresponding hierarchies). Curve fitting is done at the same time
as the artist draws a stroke, so this supports a ‘smooth’ hand model
at a minimum. Some curve fitting techniques for the purpose of
interpreting hand drawn strokes are introduced by Baudel [Baudel
1994] and Schneider [Schneider 1990]. We however are mainly
interested in creating curves in an intuitive and real-time manner.

In our system the creation of a stroke is done interactively by sam-
pling a stylus along the trail of the stroke. This only happens when
the tip of the stylus touches the touchpanel. To allow for real-
time high-level manipulation of the stroke the individual pixels that
make up the stroke are not used, in contrast to their use in the ner-
vous stroke algorithm. Instead, a high-level internal representation,
using cubic Bézier curves, is created, using the classical formula
quoted in the following equation.

f (t) = (1− t)3B1 +3t(1− t)2B2 +3t2(1− t)B3 + t3B4 (1)

While sampling the stylus we simultaneously perform an itera-
tive curve-fitting technique based on least-squares error estimation
which is done ‘on the fly’ while the curve is being drawn, using the
solution of Vansichem et al. [Vansichem et al. 2001].

When fitting a cubic Bézier spline to a set of n data points, we
need to determine its control points B1, B2, B3 and B4 so that the
difference between the spline and the corresponding data points (P1,
P2, . . . , Pn) is as small as possible. The start and end point (B1
and B4) of the spline can be chosen in function of the smoothness
represented by the parameter s: the number of shared data points.

B1 = Ps

B4 = P
(n−s) (2)

The two other control points (B2 and B3) can be constructed by
means of least square minimisation [Press et al. 1995].

S =
n

∑
i=1

(Pi − f (ti))
2

∂S
∂B3

= 0,
∂S

∂B2
= 0 (3)

In order to use this method we must find the t-values of equation 1
along the cubic Bézier spline, which correspond to the data points.
These values t1, . . . , tn are found as an approximation of the chord
length between each pair of data points.

Let di, j be the distance between Pi and Pj:

di, j = |Pi −Pj| (4)

The total chord length is:

L =
n−s−1

∑
i=s

di,i+1 (5)

We now can calculate the t-values and use them in the least square
minimisation:

ts = 0

ti = (
i−1

∑
j=s

d j, j+1)/L, ∀i > s (6)

ti = −(
i+1

∑
j=s

d j, j−1)/L, ∀i < s

Substituting Equations 1, 4, 5 and 6 in Equation 3 yields the fol-
lowing equations:

B1 ∑ ti(1− ti)
5 +3B2 ∑ t2

i (1− ti)
4 +3B3 ∑ t3

i (1− ti)
3

+B4 ∑ t4
i (1− ti)

2 −∑Piti(1− ti)
2 = 0

B1 ∑ t2
i (1− ti)

4 +3B2 ∑ t3
i (1− ti)

3 +3B3 ∑ t4
i (1− ti)

2 (7)

+B4 ∑ t5
i (1− ti)−∑Pit

2
i (1− ti) = 0

The values of B2 and B3 are determined by solving this set of equa-
tions.

4 Curve Drawing and Editing

To actually draw the spline, the t-values, t1 . . . tn, which are found
as an approximation of the chord length between each pair of data
points, are substituted in Equation 1. This results in a series of data
points which lie on the Bézier spline. Tracing out these data points
using hardware accelerated graphics primitives (i.e. line-segments)
yields a visually smooth curve.

Regarding the editing, a suitable model for interaction in a sketch-
ing metaphor is proposed by Di Fiore et al. [Di Fiore et al. 2004].
A basic principle of the interface is that it does not require a cur-
sor (whose presence would be quite un-paper-like), another prin-
ciple that explicit mode-change interactions should be minimised,
typically by making reversible inferences. Response to an action
appears immediately under the stylus as a mark. Accordingly if
controls or mode-changes are required the user can call these up by
making a stroke-based sketch which specifies the new mode. This
can be done anywhere in the drawing area. Since the nervous style
is not generally used for writing of any form nor for making iconic
drawings like arrows it is assumed the smooth stroke form is used
in these contexts. The interface requires the use of the concept of a
currently selected object and strokes will have associated with them
their recentness of selection (this is sometimes needed to recognise
sketch icons). The concepts of grouping, and the joining of sepa-
rated but nearby lines within tolerances, are also required.

4.1 Line Connectivity

Although this paper is not addressing anything above the lowest
level of curve editing we need to consider briefly the issue of line
connectivity modelling and its role in minimising the need for ex-
plicit mode changing. Even for single smooth strokes it is possible
to derive a non-simple connectivity model even before editing is
considered, e.g. simulating erasing and redrawing.

Our connectivity model may be described (here informally) in
terms of a directed graph whose edges represent the individual
strokes making up a portion of the drawing being worked on, and
whose nodes, which may have any in- or out-degree greater than
zero, represent stroke junction points. We will model such a graph

(a) (b)

Figure 5: a) Line AB and an edit. b) Connectivity graphs.

here diagrammatically although there are many well-known ways
of modelling directed graphs efficiently for computation. A node
or an edge may be decorated with various parameters and here we
need to specify a direction (not necessarily the original direction
in which the stroke is made), the degree of continuity associated
with the strokes modelled by the edges at their junction points (the
nodes), and a reference pointing to the stroke model itself. This
graph serves two purposes. It shows how individual strokes relate
to one another and any closed regions they might define, also it
shows how to reconstruct the drawing precisely. Transformations
to the drawing or to parts of it are applied directly to the connec-
tivity model from which all the relevant parameters can be found
and when the graph is subsequently interpreted to yield a draw-
ing the results of the transformation will be seen. The connectivity
graph is not however a semantic model as it is derived entirely from
the drawing process itself. Semantics can be imposed externally
by means beyond the scope of this paper. The graph is however a
working hypothesis of the line structure and connectivity which is
updated in the light of user-supplied evidence of an implicit or ex-
plicit kind. As can be seen from the interface discussion we want
to avoid explicit correction as much as possible but it is always al-
lowed as an option.

We consider as an example the drawing and editing of a smooth
line AB. The original drawn line is shown in Figure 5(a)(left). The
connectivity model for this stroke is shown in Figure 5(b)(top). If
a section (say section DE in Figure 5(a)(right)) was deleted from
AB and a new segment added then the connectivity graph would be
restructured into three sections, AD, DE and EB, with appropriate
annotations reflecting the continuity established between the sec-
tions in the edit. The curve model for AB also needs to be modified
to provide Bézier end-points at DE where the relevant continuities
to be enforced are associated with the connectivity graph.

If instead the loop DE was simply drawn over AB then, inferring
connectivity and continuity from proximity (spatial proximity for
connections and tangential alignment to a tolerance for continuity),
the outcome would be the drawing in Figure 5(a)(right) and the con-
nectivity graph in Figure 5(b)(bottom). Here the continuity inferred
(C1, C2) is shown as labels. Directions on the lines indicate how to
interpret the continuity conditions.

The point is these graphs are models for the local stroke structure
and that even inferred-mode edits with smooth lines can swiftly
affect the structure of these graphs. Structures of this kind can
arise even more easily with the nervous hand model, so connec-
tivity graphs are an essential part of the ‘line hypothesis’ used in
this model. The further management of these graphs is beyond the
scope of this paper.

The simplest control can be effected by a single stroke, and here
such single strokes are overloaded to allow a variety of mode
change operations without stepping too far away from the sketching
on paper metaphor. A smooth stroke consisting of a short straight
line (within tolerances) crossing a nervous stroke would normally

(a) (b) (c)

Figure 6: Screen shots from prototype showing the effect of a curve
crumpling when points are not removed. a) Original line. b) Artist
attempts to manipulate curve decreasing its size, crumpling effect
starts to show. c) Artist continues to shrink curve, crumpling effect
very apparent.

(a) (b)

Figure 7: Preserving line stability. a) Example shows how points
are pushed closer together as a curve is reduced in size; eventually
points will start to crumple and so must be removed. b) Shows how
points are separated as the radius of a curve is increased. Eventually
the line will become faceted and so new midpoints must be added
between existing points.

indicate selection of the nervous stroke. One attractive feature of
drawing icons directly is that their meaning can be modified with
specific modifiers so that a quite rich mode set can be build up from
a small number of primitives requiring few drawings to be learned.
Here a mode change can be retrospective (‘I forgot to do the mode
change before I started’) or prospective depending on a simple qual-
ifier (a single stroke through the icon would be enough). The risk of
confusion over mode changes can be avoided by showing the cur-
rent mode icon in a discreet part of the display. After invocation the
icon or stroke fades out after a short interval and thus disappears
from the main drawing area.

Alternative techniques for manipulating parametric curves are de-
scribed in [Fowler and Bartels 1993; Grimm and Ayers 1998; Zheng
et al. 1998; Raymaekers et al. 2002].

4.2 Line Stability

When the artist is editing a spline, the problem of line stability
needs to be addressed.

In the situation where the artist is reducing the size of a curve, the
number of points must be reduced to prevent a crumpling effect oc-
curring (see Figure 6). A validity check checks when points are too
close to each other (see Figure 7(a)), flagging a point for removal if
so. This prevents crumpling of the curve.

In the occurrence of the situation when the artist attempts to in-
crease the length of a curve by dragging it outwards, more points
must be added to the line hypothesis to prevent the curve losing
its shape and appearing faceted (see Figure 7(b)). This is done by
checking that the distance between the start point and newly found
middle point is less than a globally defined constant.

(a) (b) (c)

(d) (e) (f)

Figure 8: Example of editing a free-form stroke. a–c) Initial drawn
free-form stroke. Shown with data points, control points, and as
depicted to the user. d) New data points as indicated by the user
using the stylus. e) Refitting of the original free-form stroke, shown
with control points. f) Final result after editing the original stroke
as depicted to the user.

(a) (b) (c) (d) (e) (f)

Figure 9: Example of editing a free-form stroke. a–c) Initial drawn
free-form stroke. Shown with data points, control points, and as
depicted to the user. d) New data points as indicated by the user
using the stylus. e) Refitting of the original free-form stroke, shown
with control points. f) Final result after editing the original stroke
as depicted to the user.

4.3 The Smooth Hand Model

Our main concern here is free-form curve drawing and editing at
a level below general considerations of interfaces, although inter-
facing issues inevitably arise. A stroke is originally effected by
making a single gesture with the stylus in contact with the draw-
ing surface. Non-zero pressure indicates the stroke is being made
and its completion is indicated by pressure returning to zero. In the
drawing surface this results in the usual coordinate pairs being gen-
erated from samples taken at regular short intervals of 5 ms (200
samples/sec), as in Figures 8(a) and 9(a). While the stroke is being
made the least-squares process discussed in the previous section is
run continuously on the generated points to derive the curve control
descriptors, as shown in Figures 8(b) and 9(b). This is a real-time
process which results in pleasant smooth-looking lines (e.g. Figures
8(c) and 9(c).

Our models so far cater exclusively for smooth strokes but there is
no recognised or clearly identified sketch-based method for editing
them. In a pencil-and-paper world one might imagine erasing a
line and amending it. Accordingly here we can perform the erasing
function by delimiting a segment of the drawn curve with single
strokes (since two are required this disambiguates selection) and
re-draw the curve using the greyed-out portion of the line as a sight
guide (e.g. Figures 8(d) and 9(d)). Ends close enough to the edit
points can be snapped after the stroke is completed (e.g. Figures
8(e) and 9(e). Completion of the editing stroke is again signalled
by zero pressure (within a tolerance) on the stylus tip.

One problem with a drawing-based approach to defining the de-
scriptors of a free-form curve model is that of continuity. In a
Bézier chain there is an opportunity to enforce varying degrees of
continuity at each joint or knot in the chain but the model leaves

it up to the application as to what degree of continuity is enforced
or how it is specified. Typically first-degree geometric continuity
would be enforced and higher degrees (up to second degree para-
metric) promoted if the resulting curve smoothness justified it (e.g.
by comparing tangents and matching to a tolerance limit). The real
problem is C0 continuity, which appears as a corner. In practice it is
impossible to draw a corner without stopping the pencil moving. It
may be still in contact with the drawing surface but it needs also to
be stationary for at least two sample periods, which will yield two
coordinate pairs which are identical within noise tolerance.

4.4 The Nervous Hand Model

The nervous hand model is handled somewhat differently, and is
more like painting albeit with a pencil-like ‘brush’. The intention
is to derive a curve, which here we refer to as the ‘line hypothesis’,
which matches the trajectory of the curve of which the combination
of marks infers to the artist. The order in which the artist makes
these marks is not taken into account directly, rather the line hy-
pothesis runs through the most intensely coloured1 region joining
the end-points and follows what is taken to be the appearance of
the line. The line is ‘edited’ by adding colour close to the currently
hypothesised trajectory so that the line ‘drifts’ into the region now
perceived to be the most intensely coloured. This is therefore a
model in which an artist can alter the lay of the line in terms of ma-
nipulating the accumulation of the intensity of the mark. What the
artist perceives as the core line is the core line and this core can be
manipulated by adding pigment alongside it.

The brush footprint of the pencil consists of a disc defining the ini-
tial colours. Pressure determines the disc radius (discs are precal-
culated). This disc is swept along the polyline trajectory defined
by the sample points interpolating pressure values to make the right
selection. When a disc footprint overlaps with another the affected
pixel values are altered additively. Once painted each pixel pro-
ceeds to fade to background at a specified globally-defined rate. A
polyline is continuously fitted to the darkest part of the line and does
not attempt to follow stroke trajectories but instead finds the mini-
mum energy state as instantaneously determined by the isochromic
surface defined by the local pixel values. The polyline acts as a
precursor to a Bézier chain by providing points to which the chain
is fitted and it is this chain which provides the actual core line hy-
pothesis. For reasons of feedback pixels on the core line are con-
stantly refreshed and the polyline precursor is not suitable for this
purpose as it can cause an untended curve to drift towards its local
centre of curvature. So it is the Bézier chain which provides the tra-
jectory which is refreshed by redrawing the stroke over its current
path frequently enough to avoid fading being seen. The effect of
this redrawing is to reinforce the currently defined trajectory which
can now be changed by resetting fading pixels near to it with an-
other stroke or another part of the same stroke action. The effect is
to drag the trajectory into the most recently reinforced region, also
reinforcing the rest of the trajectory.

Painting is carried out in the usual way placing a foreground colour
f on top of a background b. The resulting colour c(p) is determined
by the linear interpolation formula:

c(p) = f · p+b · (1− p) (8)

so sketching with a black pencil (f = 0) on a white background
(b = 255, say) shows a mark which gets blacker for larger values of

1We will describe this as ‘colour’ or ‘pigment’ because our model allows
for any foreground or background colour but the e-ink surface only shows
grey pigment (16 levels) on a light background (or vice-versa).

p. New pixel values determined by pnew are painted into the frame-
store conventionally with a circular ‘brush’ or pencil footprint, but
each pixel value c(p) in the footprint increments the current value
c(pold) according to the formulæ

pnew = pold + p (9)
c(pnew) = c(min(pnew,1)) (10)

The pencil footprint is usually modelled in terms of fixed-point val-
ues of the parameter p of which, while it can exceed 1, the associ-
ated colour value c(p) is clamped to c(1). Typically this is of the
form of a disc of values with a maximum value in the centre ta-
pering to 0 at the edge. While it might be possible to select these
values stochastically or otherwise simulate pencil behaviour realis-
tically there is a risk of confusing the trajectory finder so the model
of a truncated cone of uniformly tapering values is used.

The ‘nervous’ hand algorithm is described by the following pseu-
docode:

No Function Thread
1 Initialise search structures 1
2 repeat 1
2a Paint in new pixel values 1
2b Update line hypothesis 2
2c Refresh framestore with stroke 3

along line
2d Fade pixels 1

until smooth line state 1

Pixels are faded at a constant rate k which causes them to fade
according to d p

dt = −k i.e. a pixel fades according to pnew =
max(pold − k · t,0). This constant k allows for global adjustment
of the fade rate.

The line hypothesis is the currently assumed trajectory for the
stroke. This corresponds to a single segment of the line connectiv-
ity diagram referred to earlier and consists of a Bézier chain model
for the stroke and highlights the end points and any continuity con-
ditions which exist in respect of other lines which share the end-
points. As can be seen from the example in Figure 5, a single line
initially drawn as a (quasi-)continuous entity may have end-points
inserted in it because of a later edit. Although the connectivity dia-
gram will now show the line as consisting of several segments each
with their own end-points these points are in fact interior points and
the continuity of the original line is noted and retained for enforce-
ment in any refreshing process.

The polyline approximation (and the chain itself) are managed by
the update line hypothesis process described in the following pseu-
docode:

No Function
1 Confirm end-points
2a if new end-point then
2b Position new line segment (polyline)
2c else
2d Find local maximum (polyline)
3 Fit Bézier chain

The Find local maximum process is the one which is usually in-
voked. This assumes the existence of a previous solution and the
delimiting of the sub-region of the brush footprint which has been
updated by user action since the previous line hypothesis trajectory
was refreshed. The boundaries of this sub-region are extended to in-
clude the nearby elements of the line hypothesis. Each control point
in the line hypothesis falling within the update region is moved in
succession as closely along the line normal as pixellation allows
until it encounters a local maximum. This starts with the control

point nearest the centre of the update region and propagates out-
wards until no further point movements are required, i.e. the next
points are already at their maxima and are outside the update re-
gion. If a control point is moved the mid points between the points
may themselves move off local maxima and if so they become con-
trol points themselves and are moved accordingly. This splitting
process is carried out after all the pre-defined control points have
been moved and may involve control point removal if three or more
control points form a straight line within pixellation error.

The Position new segment process extends a line hypothesis,
taking the previous end-point as a start point, so it also initialises a
line hypothesis. This is a recursive process which makes an initial
hypothesis that the line is a straight line between its end-points, then
tests to see if the mid-point lies on the maximum value traversed by
the normal at the mid-point. If not the line is split, the mid-point
repositioned on the maximum and the process repeated for each half
of the split line.

The behaviour of this algorithm is to refine the nervous hand into
a curve in a way which allows the artist to control the refinement
process. To an artist the control process is just like the process
of refining the lay of a line by repeated overdrawing, a familiar
and standard technique which in this case needs the accuracy of
the electronic ink drawing surface to make it work properly. An
example of a simulation of the algorithm on a LCD backed-tablet of
approximately half the spatial resolution of an e-ink panel is shown
in Figures 10–12. The final step refines to a polyline with integer
control points, rather than a Bézier chain, so the resulting line looks
less smooth than it could do.

(a) (b) (c) (d)

Figure 10: An example of a simulation of the algorithm on an LCD
backed-tablet of approximately half the spatial resolution of an e-
ink panel. a) Initial ‘nervous’ line. b) Redraw reinforcing top part
of the line. c) Line partly faded. d) Final lie of the line as reinforced.

(a) (b) (c) (d)

Figure 11: An example of a simulation of the algorithm on an LCD
backed-tablet of approximately half the spatial resolution of an e-
ink panel. a) Initial ‘nervous’ line. b) Line after initial fading. c)
Redraw reinforcing top part of line. d) Final lie of the line.

A nervous stroke evolves into a smooth stroke, so any combination
which is allowed for smooth strokes is also allowable with nervous
strokes or nervous and smooth stroke combinations, e.g. using ner-
vous strokes to edit smooth strokes. The initial assumption is that
a smooth stroke is being drawn but the nervous stroke model is in-
voked as soon as the line trajectory executes a close to 180o turn
or the user makes a new stroke (lift-move-press) along the direc-
tion of a curve provisionally modelled as smooth. (An 180o turn
is a potential indicator of an end-point except in close proximity

(a) (b) (c) (d)

Figure 12: An example of a simulation of the algorithm on an LCD
backed-tablet of approximately half the spatial resolution of an e-
ink panel. a) Initial ‘nervous’ line. b) Line after initial fading. c)
Redraw reinforcing middle of line. d) Final lie of the line.

of a previously existing part of the current line being drawn.) Some
precautionary initialisation assists the model reconstruction process
and any curve data already available can be used as previous iter-
ation data. The situation in which the user draws a smooth curve,
then starts to draw over it, is ambiguous as what might be intended
in a drawing in the style of Figure 8(b). This will only become
clear if the new line trajectory moves sufficiently far away from the
overdrawn line to trigger a change in the connectivity model rather
than the line model (or both). This is detected in terms of the inter-
section of the footprint of successive brush updates with previously
set pixels. If this footprint intersection is identical to the footprint
of successive brush updates in the absence of other set pixels then
the trajectory has become disconnected. If the intersection con-
tains additional set pixels then it is still connected. Conditions such
as connected (as here), end-point hypothesis (as above) and corner
hypothesis (where the stylus is stationary for at least two samples)
are used to manage the line connectivity graph continuously during
the nervous hand interaction.

The nervous stroke can thus be seen to be a form of a smooth stroke
which allows for interactive editing in a manner intended to suit
animators. Although complicated to implement and awkward to
fit into a curve interaction model which relies on making simple
inferences to avoid explicit mode changes the nervous hand model
gives closure to the range of curve management techniques we are
presenting here for sketching.

5 Results

The results section contains screen shots of the nervous hand pro-
gram as drawn by the developer and frames taken from a video
made of the developer sketching with the tool, it should be noted
that the developer is not an artist by trade and hence the curves
shown are not those of a professional.

Long sweeping curves such as those in Figures 10–12 were drawn
using the nervous hand tool. The curve found is a fairly smooth
representation of the original curve drawn.

Smaller curves can be drawn as in the example shown in Figure
13. The curve is first sketched and the line core is found; the artist
then redraws the top left corner dragging it outwards and the top
right corner dragging it inwards to demonstrate the flexibility of the
curve. The tighter curve still appears smooth and as can be seen, is
easily modified.

The examples shown in Figures 14 and 15 show the nervous hand
tool in action.

(a) (b) (c)

(d) (e) (f)

Figure 13: Shows a tighter curve drawn using the nervous hand
technique. a) Shows the line as originally drawn by the artist with
fading beginning to take place with (b) showing the curve as found
by the tool. Shot (c) shows the corner of the curve edited, moving
it outwards and shots (d–e) show the right corner dragged inwards.
Shot (f) shows the final lie of the curve.

5.1 Testing

Testing was an ongoing process in the development of the nervous
hand system. Testing was carried out by the developer throughout
implementation using the Electronic Ink Drawing Tablet as well as
a WACOM CintiQ 15x graphics tablet with stylus. By testing in this
way the developer was able to see how accurately the hypothesised
line followed a line drawn by an artist and also the smoothness and
stability of the line.

Various shapes were drawn throughout testing to test various as-
pects of the code. Long sweeping curves were sketched using the
nervous hand style to test the accuracy and smoothness of the cores
found, these were then edited making the curves smaller and big-
ger to test to what extent the algorithm allowed the curve to be
moulded. Corners of different angles were also drawn to see how
sharp an angle the system would find, and sinusoidal lines of vary-
ing sharpness were drawn also checking how tight a curve could be.
Spirals were drawn and other similar shapes concatenated together
testing the flexibility of the tool.

Extremely long curves and lines were used to test that the imple-
mentation of the algorithm could cope with finding large numbers
of points in a fast time ensuring the speed of the tool. Lines were
also drawn using a smooth hand style of drawing to see how ac-
curately the system would find these lines. Shapes drawn using
the system were compared to similar sketches on paper confirming
or disproving the accuracy of the algorithm as these are ultimately
what the system would replace.

5.2 Evaluation

Results for all large and medium curves demonstrated that the tool
works very well for curves of this size, showing that the correct core
of the line could be found and that curves could be manipulated to
any extent the artist needed. The curves were shown to be smooth.

Results for small curves and sharp corners however showed that
a corner hypothesis is required that would detect the shape of a
curve, modifying the distance between points found according to

the curves severity. If a corner hypothesis was implemented, it
would be possible to draw small curves and corners with the system
finding points close together in these regions, but also draw larger
curves with points found at a greater distance so that they appear
smooth.

When drawing circles, the model only allows a circle to be drawn
if its endpoints are set after drawing the circle only once. This
does not fit with methods used by some artists who often repeatedly
draw round a circle to get the most circular shape. Because of this
an endpoint hypothesis should be included in the model to allow
endpoints to change as the artist draws. This endpoint hypothesis
should also deal with the problem of endpoints on a line so that they
can be modified as the artist modifies the line.

Other points noted during the testing phase were that it is difficult
to draw perfectly straight lines with the tool. It is expected that this
problem would be greatly reduced with a higher definition graphics
tablet; however, if a perfectly straight line is required by the artist
then existing tools for drawing straight lines could be used in such
a situation.

Tests were also undertaken to prove the speed of the system. This
was done by drawing very long curves and lines that filled the en-
tire drawing space to check that the system could continue to func-
tion as required under strain. These tests however were run without
trouble and the system functioned as normal despite the high loads.

We refer the reader to [Foss 2005] for more details about the testing,
evaluation and future extensions.

6 Conclusions

Electronic ink pads have the potential to be able to simulate the
experience of drawing on paper to an unprecedented degree and
certainly in ways which would be inappropriate for other reactive
gesture capture devices. In a sketching role they pose subtle prob-
lems for interaction management while facilitating solutions which
are novel to managing curve drawing. The intention has been to
try to fit as closely as possible with animators’ traditional drawing
skills, to retain for them as much of the experience of drawing on
paper as is possible, and to retain in automation those aspects of
their traditional work environment that appeal to them the most.

What artists will make of this is the subject of current evaluations
being conducted with professional animators within the IST project
CUSTODIEV, which provides the means to carry out this work.
CUSTODIEV is researching new models for animation and its de-
ployment which best engage with traditional animation skills, of
which the reported work is a part.

Acknowledgements

We are grateful to the European Commission for their funding of
IST 37116 CUSTODIEV. Part of the research at the Expertise Cen-
tre for Digital Media is funded by the ERDF (European Regional
Development Fund), the Flemish Government and the Flemish In-
terdisciplinary institute for Broadband Technology (IBBT).

We would also like to thank Andrew Foss for helping us implement-
ing the nervous hand tool.

References

BAUDEL, T. 1994. A mark-based interaction paradigm for free-
hand drawing. In Proceedings of User Interface Software &
Technology (UIST), 185–193.

DI FIORE, F., VANDOREN, P., AND VAN REETH, F. 2004. Mul-
timodal interaction in a collaborative virtual brainstorming envi-
ronment. Lecture Notes in Computer Science LNCS series. First
International Conference on Cooperative Design, Visualization
and Engineering (CDVE2004) LNCS3190 (September), 47–60.

FOSS, A. 2005. The Nervous Hand. Bachelor’s thesis, Department
of Computer Sciences. University of Glasgow.

FOWLER, B., AND BARTELS, R. 1993. Constraint based curve
manipulation. IEEE Computer Graphics and Applications 13,
43–49.

GRIMM, C., AND AYERS, M. 1998. A framework for synchro-
nized editing of multiple curve representations. In Proceedings
of EUROGRAPHICS, 31–40.

HENZEN, A., PITT, M., YASUI, M., DIJKMAN, W., AMUNDSON,
K., ZEHNER, R. W., AND GATES, H. 2002. Development of
active matrix electronic ink displays for smart handheld applica-
tions. In Proceedings of International Displays Workshop (IDW),
227–230.

HENZEN, A., AILENEI, N., VANSICHEM, G., VAN REETH, F.,
AMUNDSON, K., AND ZEHNER, R. 2004. An electronic ink low
latency drawing tablet. Society of Information Display (SID):
digest of technical papers XXXV , 1070–1073.

PATTERSON, J. W., AND WILLIS, P. J. 1994. Computer assisted
animation: 2D or not 2D? The Computer Journal 37, 10, 829–
839.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1995. Numerical Recipes in C. Cambridge
University Press, ISBN: 0-521-43108-5.

RAYMAEKERS, C., VANSICHEM, G., AND VAN REETH, F. 2002.
Improving sketching by utilizing haptic feedback. In Sketch Un-
derstanding: Papers from the 2002 American Association for
Artificial Intelligence (AAAI2002) Spring Symposium. Technical
Report SS–02–08, 113–117.

SCHNEIDER, P. 1990. Graphics Gems I. Academic Press Inc.,
ch. An algorithm for automatically fitting digitized curves, 612–
627.

VANSICHEM, G., WAUTERS, E., AND VAN REETH, F. 2001.
Real-time modeled drawing and manipulation of stylized cartoon
characters. In Proceedings of the IASTED International Confer-
ence on Computer Graphics and Imaging, IASTED, 44–49.

WHITESIDES, T. H., WALLS, M., PAOLINI, R., SOHN,
S., GATES, H., MCCREARY, M., AND JACOBSON, J.
2004. Towards video-rate microencapsulated dual-particle elec-
trophoretic displays. Society of Information Display (SID): di-
gest of technical papers XXXV , 133–135.

ZEHNER, R. W., AMUNDSON, K., KNAIAN, A., ZION, B.,
JOHNSON, M., AND ZHOU, G. 2003. Drive waveforms for
active matrix electrophoretic displays. Society of Information
Display (SID): digest of technical papers XXXIV , 842–845.

ZHENG, J. M., CHAN, K. W., AND GIBSON, I. 1998. A new
approach for direct manipulation of free-form curves. In Pro-
ceedings of EUROGRAPHICS, 327–334.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 14: Shows a curve as drawn by the nervous hand tool. Shots (a–c) show the artist sketching the curve, shot (d) shows the line core
with outer pixels starting to fade. Shots (e–i) show the artist as s/he begins to tidy the line up making minor changes. Shots (j–l) show the
artist as s/he starts to manipulate a corner of the curve by dragging it outwards with shot (m) showing the slightly modified curve. Shots (n–p)
show the artist modifying another corner of the curve, dragging this corner inwards whilst also smoothing it out. Shot (q) shows the curve as
the old curve begins to fade with shot (r) showing the final lie of the curve.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 15: Shows a curve as drawn by the nervous hand tool. Shot (a) shows the curve as first drawn with shot (b) showing the curve with all
but the core line faded. Shots (c–g) show the artist dragging the top right part of the curve outwards with shot (h) showing the core line found
after dragging had finished. The artist then demonstrates the curve being dragged back inwards in shots (i–k) and shot (l) shows the final lie
of the curve.

