
Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 1

Rendering Artistic and Believable Trees for Cartoon Animation

Fabian Di Fiore William Van Haevre Frank Van Reeth

Limburgs Universitair Centrum
Expertise Center for Digital Media

Universitaire Campus
B-3590 Diepenbeek, Belgium

E-mail:{fabian.difiore, william.vanhaevre, frank.vanreeth }@luc.ac.be

Abstract

We present a novel approach to design artistic and be-
lievable trees in a cartoon-like style, which can be rendered
by an animated camera to produce a convincing 3D-like ex-
perience. While computer assisted traditional animation is
able to generate the desired effects, this approach still de-
pends too much on the creation of many hand drawn im-
ages. Existing approaches fully depending on 3D geome-
tries, on the other hand, give little artistic freedom and
have difficulties to avoid artifacts popping up in successive
frames.

In order to provide good solutions to these difficulties, we
present a hybrid (2.5D) framework, combining the advan-
tages of both 2D and 3D approaches. From an underlying
3D geometry we get the necessary information to obtain an
acceptable level of 3D behavior and a good frame-to-frame
coherence. In the same framework, 2D artistic input is em-
ployed to obtain any desired ‘look’, both of the rendering
and of the animation.

Keywords: natural phenomena, 2.5D animation, com-
puter animation, non–photorealistic rendering.

1. Introduction

During the last years, the use of CGI elements in the pro-
duction of cartoon animations has become a very common
thing. This paper deals with the category of CGI effects
which classifies the CGI standards: things that are too nu-
merous or tedious to draw. In our case, the animation of
cartoon-like trees. Figure 1 shows some snapshots of the
kind of animations we are striving after.

Consider for example figure 1. From an animator’s point
of view two technical issues arise. The first issue concerns
the animator’s ability to picture in mind the objects he is

(a) (b)

Figure 1. Some snapshots of an animated
tree. a) Regular view. b) View from below.

about to draw. For characters this is relatively easy, since
he can rely on his ready knowledge. However this is not
the case for trees, due to their complex, recursive struc-
ture (what does a tree look like viewed from aside or be-
hind?). The second issue deals with the numerous branches
and leaves that a tree consists of. For example, when walk-
ing around a tree, the branches and leaves may not suddenly
appear and disappear. Without such coherence, the tempo-
ral aliasing makes the final animation hard to enjoy.

Therefore, within the boundaries of our study, we aim
at tackling these issues. Furthermore, it is also our goal
to give the animator the same freedom of expressing the
artistic style he is bearing in mind as if drawing on paper.

To establish these goals, we present a hybrid (2.5D) ap-
proach that benefits from existing 2D and 3D approaches.
On the one hand, 3D geometrical models are exploited to
extract 3D information from, which is necessary to provide
for frame-to-frame coherence, while in order to preserve the
animator’s freedom of creativity 2.5D modeling and anima-
tion techniques are used.

This paper is organized as follows. Section 2 gives an
overview of related work in the field and indicates the differ-
ences with our philosophy. Section 3 first elucidates mod-
eling and animation in 2.5D. Then, the central theme of our

mailto:fabian.difiore@luc.ac.be
mailto:william.vanhaevre@luc.ac.be
mailto:frank.vanreeth@luc.ac.be
http://www.luc.ac.be/
http://www.edm.luc.ac.be

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 2

paper, rendering and animating cartoon-like trees, is elabo-
rated, while Section 4 provides clarifying results. We end
with our conclusions and topics for future research (Section
5).

2. Related Work

In this section we dwell on techniques starting from
pure 2D drawings and some approaches found in the non-
photorealistic domain in which 3D geometrical models are
used.

2.1. Pure 2D Approaches

In this section we enlarge on research conducted in the
field of pure 2D animation where both the modeling and
animation stage integrally take place in 2D.

For Walt Disney’s feature animation‘Mulan’ [7], CGI
was used to animate Bamboo plants. Each plant is com-
posed of several 2D layers and this for certain camera an-
gles. The advantage of this approach lies in the fact that the
animator has full control over the final style. However, a
major drawback is that the artist still has to paint the plant
manually for all camera angles. As a result, it is up to the
animator to know how the plants look like from different
views, and consequently to provide for frame-to-frame co-
herence.

In 2000, Cohen et al. [2] described an interactive system,
‘Harold’ , that enables animators to create 3D-like anima-
tions starting from drawing only 2D objects on billboards.
In order to create a convincing 3D-like animation all planar
strokes are reoriented in a view-dependent way as the cam-
era moves through the world. Therefore,‘Harold’ is very
suitable for rapidly creating expressive and visually rich 3D
worlds. However, as the authors state, all billboards are al-
ways rotated to face the viewer as much as possible. As a
result it is not suitable for asymmetric objects, such as trees,
because their look has to change with every new camera an-
gle.

We can conclude that 2D systems are easy to use and
deliver good-looking results. However the drawbacks are
that they either still involve a lot of work or suffer from too
many constraints.

2.2. Starting from 3D: Non-photorealistic Render-
ing Techniques

Recently popular, ‘Toon Rendering’ (a subcategory in
the non-photorealistic rendering (NPR) domain [6]) is
used to (automatically) generate stylized cartoon renderings
starting from 3D geometrical models.

In 1996, Barbara Meier [11] presented a painterly ren-
dering algorithm in which particles attached to the 3D

model are used to eliminate the temporal aliasing effect that
disturbs many other NPR approaches. This approach leads
to very impressive results for rigid objects, but requires ex-
tensive modeling and animation if it were applied to fully
animated trees.

Kowalski et al. [8] presented a method exploiting proce-
dural stroke based textures,graftals, to render a 3D scene in
a stylized manner. Thesegraftalsplace geometric elements
procedurally into the scene and so produce effects includ-
ing fur, grass and trees. Because thesegraftalsstick to the
3D surfaces, this approach is suitable for preventing tempo-
ral aliasing. However, the drawbacks include that for each
frame thegraftalsare regenerated and that each newgraftal
texture requires an additional procedural implementation.

Lee Markosian [10] extended the work of Kowalski and
presented a new framework that addressed some of the is-
sues. The framework also introduced the concept oftufts
managing the multiresolution behavior ofgraftals. This
new framework addresses many of the problems encoun-
tered with the previous one but it is considerably slower for
complex scenes and animators still have to create script files
manually to define looks and behaviors forgraftals.

Recently, Deussen [3] presented a method of rendering
pen-and-ink illustrations of trees automatically. He starts
with detailed 3D tree models consisting of a tree skeleton
and leaves. Then, a computer-generated pen-and-ink illus-
tration is achieved by applying existing NPR-techniques to
the tree skeleton and by drawing the leaves using abstract
drawing primitives. This approach enables us to generate
illustrations with different drawing styles and levels of ab-
straction. Yet, with respect to the creation of cartoon anima-
tions, two important issues arise. In the first, the animator’s
contribution to the rendering of the tree skeleton is limited
since standard NPR-techniques have to be used. Secondly,
the used 3D models already contain foliage data and that
way the artist’s creativity is constrained by the overall shape
of the 3D model.

In a nutshell, a major issue in these systems based so
much on 3D, is that they alsogeneratea very 3D look which
we especially want to avoid. Furthermore, many details are
extremely hard to construct in 3D, while it is much simpler
to design very convincing look-alikes in 2D.

3. Our Approach

As will be clear from the subsequent subsections, we opt
for a 2.5D methodology which clearly distinguishes a mod-
eling phase and an animation phase. This methodology [4]
has been proven to be very useful for the purpose of cre-
ating convincing 3D-like animations starting from pure 2D
information.

Considering traditional hand-drawn animation [1] from
an artist’s standpoint; preserving shapes, getting perspec-

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 3

tive right and ensuring frame-to-frame coherence are a ma-
jor problem. Existing software to assist traditional anima-
tion either lacks the 3D representation needed to tackle this
kind of shortcomings, or imposes constraints hampering the
animation artists’ creativity.

Consequently we identify two parts in the modeling
phase. For the first part, which narrows down to rectify-
ing the lack of 3D representation, we discuss incorporating
3D information by means of realistic underlying 3D mod-
els. For the second part, preserving the artist’s style, we
explain the animator’s role of providing explicit modeling
information.

Some technical issues of the animation phase (e.g. in-
betweening process) and the modeling phase (e.g. basic
drawing primitives) have already been handled by our pre-
vious work [4]. This is briefly discussed in Section 3.1. The
two parts of the modeling phase are elaborated in Sections
3.2.1 and 3.2.2.

3.1. Modeling and Animation in 2.5D

The modeling and animation context of this paper is sit-
uated in our prior work [4, 5] in which we defined a 2.5D
method for automatic in-betweening, which clearly distin-
guishes a modeling phase and an animation phase.

This is implemented as a multi-layered system start-
ing with basic 2D drawing primitives (in our case sets of
attributed 2D curves) at level 0. Level 1 manages and
processes explicit 2.5D modeling information and is fun-
damental in the realization of transformations outside the
drawing plane. Objects are modeled as sets of depth or-
dered primitives with respect to theX-axis andY -axis ro-
tations. For each set of ‘important’ x-y-rotations of the ob-
ject relative to the virtual camera, the animator draws a set
of ordered curve primitives, functionally comparable to the
extreme frames in traditional animation [1]. Level 2 incor-
porates 3D information by means of 3D skeletons or ap-
proximate 3D objects [5] and level 3 offers the opportunity
to include high-level tools (for example a deformation tool
or a sketching tool).

Multi-level 2D strokes, interpolation techniques and on-
the-fly resorting are used to create convincing 3D-like ani-
mations starting from pure 2D information. Unlike purely
3D based approaches, our animation still has many lively
aspects akin to 2D animation. A rigid 3D look is avoided
through varying line thickness and the ability to have subtle
outline changes that are either impossible or hard to achieve
utilizing 3D models.

3.2. Modeling Cartoon Trees

In this section we elaborate on the two different parts of
the modeling phase. First, we discuss how to incorporate

3D information by means of realistic 3D models. For the
second part, we’ll explain the animator’s role of providing
explicit modeling information.

3.2.1. Incorporating 3D Information. When creating an-
imated characters, it makes sense to let an animator hand-
draw the extreme views of the whole character from scratch.
That is because an animator relies on his ready knowledge
of the 3D character he is about to draw. The same idea
counts when one is animating more complex characters
(e.g. a walking dog) where the difficulty lies in retaining
the proportions and overall volume of the character. Here
the animator can be guided by means of rapidly createdap-
proximate 3D models(starting from 2D rounded forms) [5]
which main task is assisting the animator.

Since trees are far more complex than everyday charac-
ters theseapproximate 3D modelsare unsuitable. This is
due to the complex, recursive structure of trees which is ex-
tremely hard to model starting from only 2D rounded forms.
Moreover, since trees are composed of numerous branches
and leaves one also has to deal with temporal coherence
between successive frames of an animation. Without such
coherence, the temporal aliasing (branches and leaves sud-
denly pop up and disappear) makes the final animation hard
to enjoy.

For those reasons, instead of usingapproximate 3D mod-
els the underlying models in our approach are realistic 3D
geometries of trees. That way we can incorporate necessary
3D information in order to preserve the overall shape and
to ensure frame-to-frame coherence. This is explained in
Section 3.3.1.

As regards traditional animation [1], an artist always
draws the outlines of the tree skeleton but never draws indi-
vidual leaves. Instead, the leaves are grouped together per
branch or per tree. As a result, we use simple tree models
consisting only of a tree skeleton. As will be clear from
Section 3.3.3 this information is also sufficient to draw the
foliage.

For research purposes, the underlying models are realis-
tic 3D geometries generated by L-systems [12, 13], however
other approaches (for example [9]) generating the necessary
3D information can be used as well. Figures 2(a–c) show
some input models that we use.

3.2.2. Explicit 2.5D Modeling Information. In this sec-
tion we show how we preserve the animator’s freedom to
express the artistic style he is bearing in mind.

One of the purposes of theapproximate 3D modelsin
[5] is to ink the outlines of the desired object rapidly by
tracing silhouette lines and marker lines of the approximate
object. This works well when animating characters since
these can usually be built from multipleapproximate 3D
objects[1]. That way, tracing all outlines of all approximate

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 4

(a) (b) (c)

Figure 2. 3D rendered images of our input
models.

objects soon results in a 2D layered model which perfectly
fits in our 2.5D methodology.

Nevertheless, as explained in the previous section, we
do only have one underlying 3D model. Consequently, let-
ting the animator create a layered model is nearly impos-
sible (which of all the branches comes first or last or in-
between?).

Therefore, instead of modeling the whole tree at once,
we have the basic parts of a tree (branches and foliage)
drawn by the animator independent of the input model. In
this way, the animator creates a kind of repository which
does not depend on the underlying model and as a result is
highly reusable.

To resume, in order to achieve convincing 3D-like ani-
mations, our system [4] requires the object to be modeled
as seen from different viewpoints. These different view-
points can be seen as the extreme frames of [1] and will be
used by our in-betweening method in the animation phase.
This is elucidated into detail in Section 3.3.

Figures 3 and 4 show some extreme frames of a branch
and foliage as the animator bears them in mind. Notice
that both the branch and foliage are geometrically incor-
rect when compared to real life. However, it is exemplified
clearly that it is entirely up to the animator to choose the
artistic style for every component of the final animation.

(a) (b) (c) (d) (e)

Figure 3. Some extreme frames of foliage.

(a) (b) (c) (d) (e)

Figure 4. Some extreme frames of a branch.

To recapitulate, the separate modeling of branches and
foliage, independent of the underlying 3D model, enables
the animator to easily create a repository of tree parts that
is reusable with any other tree model. In addition, the an-
imator is entirely free in expressing the artistic style he is
bearing in mind.

3.3. Animating Cartoon Trees

In this section we show how animated cartoon trees can
be created starting with a realistic 3D model and a reposi-
tory of extreme frames of branches and foliage.

3.3.1. Overview of the Animation Process.In the previous
section we introduced the incorporation of 3D information
by means of geometric tree models, and the separate mod-
eling of branches and foliage.

This section gives an overview of the rendering process
for which the pseudocode is depicted in listing 1.

Preprocess(modelm) Draw(framef)
build hierarchy tree of branches for each branch,b3D , do

for each encountered branch,b3D , do calculate average depth
assign random 2D branch,b2D end // for
if (level l >= FOLIAGE) then sort branches

assign random 2D foliage,f2D for each sorted branch,b3D , do
end // if drawb2D on top

end // for drawf2D on top, if present
end // build end // for

Listing 1. The drawing process of a tree.

The pre-processing step, which is executed only once per
session, parses the geometry model and builds a hierarchy
tree of branches. During the reading process, the anima-
tor’s repository is searched for a random 2D branch,b2D,
and random 2D foliage,f2D. From now on, the 2D branch
is attributed to its 3D counterpart. This is fundamental in
providing frame-to-frame coherence. The same happens for
f2D if the current level in the hierarchy tree is eligible for
having foliage. This is controlled by a user defined parame-
ter that defines the lowest level in the tree on which foliage
is present.

For each frame of the actual animation, we first of all
determine the current drawing order of all branches and fo-
liage since we are working with 2D objects which contain
no depth information. This drawing order can directly be
derived from the 3D positional data of eachb3D. Finally,
the branches and foliage are drawn one after another, to be-
gin with the back ones.

The artist can configure a level of detail, depending on
the particular effect he wants, to achieve a specific anima-
tion. At the lowest level, only the outlines of the global fo-
liage are shown while at the highest level outlines are shown
for the most prominent parts of the tree. The different re-

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 5

sults are discussed in Section 4. The drawing of branches
and foliage itself is explained in Sections 3.3.2 and 3.3.3.

We conclude this section by stating that the incorporation
of 3D information is an effective means to ensure a correct
drawing order and to provide for frame-to-frame coherence.

3.3.2. Drawing the Branches.Tree skeletons are hierar-
chical structures by nature and as a result we implemented
a drawing procedure which is recursively called. Therefore,
it suffices to explain the algorithm on the basis of drawing a
single branch corresponding to one execution of the draw-
ing procedure (listing 2).

DrawBranch(branchb3D)
calculate orientation of current 3D branch,b3D

generate in-between 2D branch,b2D

alignb2D parallel to upstanding axis
scale width ofb2D according to age
scale height ofb2D to screen length ofb3D

positionb2D in screen space
connectb2D to its parent

Listing 2. The drawing process of a branch.

Consider an arbitrary branch,b3D of our 3D tree model
at framef of the animation.

Given the coordinates of its position and orientation
relative to its parent, we first calculate its orientation in
world space. This information is then streamed to our in-
betweening algorithm [4] which creates a 2D branch,b2D

(e.g. figure 5(a)).
At this stage, our system demands that the generated

branch is aligned with the upstanding axis. The top and the
bottom of the branch need to be flattened as well. That way,
the remainder of the algorithm can be fulfilled in a more
simple way and guarantees better preservation of the ani-
mator’s style. In order to align a branch with the upstanding
axis, the first step is carried out by the animator during the
modeling stage. As can be seen in figure 4, branches are
modeled vertically. However, animators can make mistakes
and consequently the in-betweening process can introduce
some deviations. So, as a final step, our system refines the
alignment by rotatingb2D around theZ-axis so that the vir-
tual line, which connects the upper and the lower midpoints
of the branch, is parallel to the upstanding axis. To flatten
the branch, a simple operation suffices which involves only
translations of the control points along the curve they be-
long to. Figure 5 shows a generated in-between branchb2D

(a) and its aligned version (b). Note that aligning the branch
does not hamper the animator’s style since it involves only
affine transformations.

When looking at real trees, one notices the different
widths of the branches: older branches are thicker than
younger ones. So in order to create a believable, attractive
tree, we scale the width of eachb2D according tob3D ’s level

(a) (b) (c) (d) (e)

Figure 5. a) A generated in-between branch.
b) After alignment. c–e) At different ages.

l in the hierarchy tree. This level corresponds to the ageal

of a real branch. We attribute ageal to the start ofb2D and
al−1 to its end. Since each ageal is associated with a fixed
width wl we are assured of creating a tree becoming nar-
rower when approaching the top. For the scaling itself we
can take advantage of the aligned branch since now we just
have to rotate the two vertical curves of the branch around
theZ-axis in order to fulfill following requirements:

Dx(lower left point, lower right point) = wl

Dx(upper left point, upper right point) = wl−1

Figures 5(c–e) show our branch at different ages. Note
that the animator’s style is preserved since only rotations
around theZ-axis are performed.

Next, we scaleb2D ’s height so it equals the length ofb3D

in screen space. After that, we give it the same direction as
b3D and position it into the right place. This again requires
only affine translations andZ-rotations.

Finally, in order to have a smooth transition from a parent
branch to its child branch, we have to connect them in a way
which is visually aesthetic. For parent branches with only
one child it suffices to connect the lower outer points of the
child branch to the upper outer points of its parent. For
parent branches with two (or more) children, we first search
the outermost children in screen space. Then, the lower left
point of the most left child is connected to the upper left
point of the parent and the lower right point of the most
right child to the upper right point of the parent.

In this section we explained the drawing of a branch.
In order to get a visually appealing skeleton, each branch
undergoes someaesthetictransformations which are affine
and so preserve the animator’s artistic style.

3.3.3. Drawing the Foliage.The drawing process of foliage
(listing 3) is a simplified version of the previous algorithm.

DrawFoliage(branchb3D)
calculate orientation of current 3D branch,b3D

generate in-between foliage,f2D

scalef2D according to screen length ofb3D

positionf2D in screen space

Listing 3. The drawing process of foliage.

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 6

4. Results

Figure 6 shows some snapshots of an animation of a bare
tree. In figures 7, 8 and 10 the same tree is shown, this
time with foliage. In figures 7 and 10 we rendered only the
outlines of the global foliage which results in a traditional
‘cartoon-ish’ tree whereas drawing the outlines of the fo-
liage per branch causes the tree to look completely different
(figure 8).

We used the oak model (figure 2(c)) to render the images
of figure 9.

Figure 11 consists of images depicting different stylized
renderings of the tree in figure 2(b). In (a) a less detailed fo-
liage object is used compared to (b). As a consequence, the
first image resembles much more a pine whereas the second
one portrays a spruce. The effect of the animator’s artis-
tic input is even more apparent when looking at (c). Here
the animator drew a detailed foliage object while letting the
system render the outlines of each foliage object.

The current performance (Pentium III 600 MHz,
GeForce 256 DDR) of the rendering process is shown in
figure 12. The frame rate is significantly lower when render-
ing the foliage. This is due to the use of subdivision curves
to represent every foliage object. This subdivision process
occurs per frame for each in-between object and results in
concave polygons, consisting of many vertices. These poly-
gons, in turn, then have to be tesselated to ensure correct
coloring.

Each example took an unexperienced user only few min-
utes to model the branches and foliage.

5. Conclusions and Future Work

In this paper, we presented a novel approach to cre-
ate artistic and believable cartoon-tree animations. Ex-
isting computer animation software either employs full
3D models or uses purely 2D approaches. In the first,
highly detailed 3D models are rendered in traditional non-
photorealistic styles and leave no room for the animator to
express his artistic feelings. On the other hand, purely 2D
approaches require many repeated drawings which is very
time-consuming. Furthermore, the numerous branches and
leaves often cause the final animation to suffer from tempo-
ral aliasing.

We showed how a hybrid (2.5D) technique that takes ad-
vantage of the benefits of both 2D and 3D approaches, can
be employed to overcome these problems. We successively
described how to provide for frame-to-frame coherence by
using 3D objects and how to retain the artist’s freedom of
drawing by exploiting 2.5D modeling and animation tech-
niques.

In the future we want to explore the suitability of this
technique to other natural sceneries. Furthermore, we want

to extend the framework to also incorporate non-rigid ani-
mation, like movements influenced by the wind.

Acknowledgements

We gratefully express our gratitude to the European Fund
for Regional Development, the Flemish Government and
the European IST research project IST-2001-37116 ‘CUS-
TODIEV’ which are kindly funding part of the research re-
ported in this paper.

References

[1] P. Blair. Cartoon Animation. Walter Foster Publishing Inc.,
ISBN: 1–56010–084–2, 1994.

[2] J. M. Cohen, J. F. Hughes, and R. C. Zeleznik. Harold: A
world made of drawings.NPAR 2000: Symposium on Non-
Photorealistic Animation and Rendering, pages 83–90, June
2000.

[3] O. Deussen and T. Strothotte. Computer-generated pen-and-
ink illustration of trees. InProceedings of SIGGRAPH 2000,
pages 13–18. ACM, 2000.

[4] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth. Auto-
matic in-betweening in computer assisted animation by ex-
ploiting 2.5D modelling techniques. InProceedings of Com-
puter Animation 2001, pages 192–200, November 2001.

[5] F. Di Fiore and F. Van Reeth. Employing approximate 3D
models to enrich traditional computer assisted animation. In
Proceedings of Computer Animation 2002, pages 183–190,
June 2002.

[6] B. Gooch and A. A. Gooch.Non-Photorealistic Rendering.
A. K. Peters Ltd., ISBN: 1568811330, 2001.

[7] E. Guaglione. The art of Disney’s Mulan.SIGGRAPH 1998
Course notes 39, July 1998.

[8] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. F. Hughes. Art-based render-
ing of fur, grass, and trees. InProceedings of SIGGRAPH
1999, pages 433–438. ACM, August 1999.

[9] B. Lintermann and O. Deussen. Interactive modeling of
plants. IEEE Computer Graphics and Applications, pages
2–11, 1999.

[10] L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden,
J. D. Northrup, and J. F. Hughes. Art-based render-
ing with continuous levels of detail. Symposium on
Non-Photorealistic Animation and Rendering (NPAR2000),
pages 59–66, June 2000.

[11] B. J. Meier. Painterly rendering for animation. InProceed-
ings of SIGGRAPH 1996, volume 25(4), pages 477–484.
ACM, 1996.

[12] P. Prusinkiewicz and A. Lindenmayer.The Algorithmic
Beauty of Plants. Springer-Verlag New York Inc., ISBN:
0–387–97297–8, 1990.

[13] W. Van Haevre and P. Bekaert. A simple but effective algo-
rithm to model the competition of virtual plants for light and
space. InProceedings of the 11-th International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG 2003), pages 464–471, February
2003.

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 7

(a) (b) (c)

Figure 6. Snapshots of an animation of the bare tree depicted in figure 2(a). a) Regular view. b) Side
view. c) View from above.

(a) (b) (c)

Figure 7. These images show the tree in figure 6 full of leaves. Only the silhouette of the global
foliage is drawn. a) Regular view. b) View from above. c) View from below.

(a) (b) (c)

Figure 8. The same tree as in figure 7. The silhouette of each local foliage is drawn which results in
a savannah tree. a) Regular view. b) View from above. c) View from below.

Copyright c©2003 Institute of Electrical and Electronics Engineers, inc. All rights reserved. 8

(a) (b)

Figure 9. An old oak tree. a) Regular view. b) Side view.

(a) (b) (c)

Figure 10. A deciduous tree covered with many little leaves. a) Regular view. b) Side view. c) View
from behind.

(a) (b) (c)

Figure 11. These pictures depict different stylized render-
ings of the tree in figure 2(b). a) A pine (less detailed
foliage). b) A spruce (detailed foliage). c) Highly detailed
spruce (foliage with pine-needles, all outlines drawn).

Figure 12. Performance
overview.

	. Introduction
	. Related Work
	. Pure 2D Approaches
	. Starting from 3D: Non-photorealistic Rendering Techniques

	. Our Approach
	. Modeling and Animation in 2.5D
	. Modeling Cartoon Trees
	. Incorporating 3D Information.
	. Explicit 2.5D Modeling Information.

	. Animating Cartoon Trees
	. Overview of the Animation Process.
	. Drawing the Branches.
	. Drawing the Foliage.

	. Results
	. Conclusions and Future Work

