
Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 1

Employing Approximate 3D Models to Enrich
Traditional Computer Assisted Animation

Fabian Di Fiore Frank Van Reeth

Expertise Centre for Digital Media - Limburg University Centre
Wetenschapspark 2, B-3590 Diepenbeek

Belgium
E-mail:{fabian.difiore, frank.vanreeth }@luc.ac.be

Abstract

Although computer assistance for traditional animation
is gaining a lot of attention during recent years, it still
has to cope with many limitations. Part of the current re-
search focuses on employing full 3D input models, which
are rendered and even animated in many different non–
photorealistic (NPR) styles. Disadvantages are the need to
create complicated 3D models and the many difficulties to
achieve lively movements. Purely 2D approaches, on the
other hand, need many elaborated single drawings. Get-
ting perspective right and retaining volumes are a major
problem in that approach to computer assisted traditional
animation, due to the complete lack of 3D information. Un-
fortunately, the employed software is ignorant about the ap-
proximate 3D representation in the animator’s mind. In this
paper, we present a novel tool for traditional animation,
based on an approximate 3D model. This tool helps retain-
ing volumes and proportions, and ensures frame–to–frame
coherence.

Keywords: animation, 2.5D animation, computer anima-
tion, traditional animation, computer assisted animation,
rendering, non–photorealistic rendering.

1. Introduction

A very important factor in the art of bringing hand–
drawn characters to life happens in the animator’s mind.
The animator relies on his ready knowledge of the 3D ob-
ject he is about to draw. Without that — often partial or
approximate — knowledge, creating a satisfactory anima-
tion would be a nearly impossible task.

For example, when animating a walking dog, the rela-
tive sizes between the pieces which make up the animal
should be retained (see figures 1(a–b)). More difficulties

arise when the animator chooses to replace the simpler car-
toon style of figure 1(a) to the more painterly style of figure
1(c). To retain the frame–to–frame coherence, the applied
painted strokes may not suddenly appear and disappear, nor
move or deform with respect to the object. Without such
coherence, thetemporal aliasingwould make the final ani-
mation hard to enjoy.

(a) (b)

(c) (d)

Figure 1. Copyright c©1994 Preston Blair. a–
b) Two different key poses of a dog. In both
versions the volume is the same. c–d) Two
different poses of a cat. The stripes of the
cat in figure (d) have to correspond with the
stripes in figure (c) in order to avoid a “noisy”
animation.

Existing software to assist traditional animation lacks the
3D representation needed to tackle this kind of shortcom-
ings. Therefore, we introduce a novel approach in which
approximate 3D modelsare used to guide the animator
throughout various stages of the animation process.

mailto:fabian.difiore@luc.ac.be
mailto:frank.vanreeth@luc.ac.be
http://www.edm.luc.ac.be/
http://www.luc.ac.be


Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 2

We focus on its use as a tool for (i) depicting and retain-
ing the volume and overall shape of the objects which make
up the scene, (ii) rapidly inking the outlines by tracing sil-
houettes and marker lines of the objects, and (iii) providing
frame–to–frame coherence.

This paper is organized as follows. Section 2 gives an
overview of related work and indicates the differences with
our new approach. Section 3 elucidates modelling and an-
imation in 2.5D. The central theme of our paper, creation
and use of approximate 3D, is elaborated in Section 4, while
Section 5 illustrates the obtained results. We end with our
conclusions and topics for our ongoing future research (Sec-
tion 6).

2. Related Work

Our approach is based on 2.5D modelling and animation
techniques: at various stages of the animation process, we
enrich the traditional computer assisted animation with ap-
proximate 3D representations. This section elaborates on
computer assisted traditional animation, techniques to cre-
ate simple 3D objects and some approaches found in the
non-photorealistic domain.

2.1. Computer Assisted Traditional Animation

In the late seventies, Ed Catmull [3] was among the first
to discuss important issues underlying computer–assisted
animation. He indicated that the lack of explicit 3D in-
formation constitutes a major problem in 2D hand–drawn
cartoon pictures. In particular, a 2D picture does not con-
tain the 3D information present in the animator’s mind, but
still everybody expects the 2D representations to behave in
similar ways as our 3D mental models do.

Recently, we introduced an automatic in–betweening
method based on novel 2.5D modelling and animation tech-
niques [5]. Multi–level 2D strokes, interpolation techniques
and on–the–fly resorting are used to create convincing 3D–
alike animations starting from pure 2D information. Unlike
purely 3D based approaches, our animation still has many
lively aspects akin to 2D animation. A rigid 3D look is
avoided through varying line thickness and the ability to
have subtle outline changes that are either impossible or
hard to achieve utilizing 3D models. For example, an ani-
mator could draw the ears of a rabbit anatomically incorrect
just in order to focus the attention on them.

Our current paper builds further on this 2.5 approach and
consequently we will make use of the functionality pro-
vided in that system, such as explicit 2.5D modelling and
powerful automatic in–betweening.

Over the last few years various commercial software
packages have been developed for assisting the animator in
the production of traditional cartoon animation. Griffin [8]

provides a good overview on the available systems, includ-
ing practical case studies and step–by–step descriptions of
how to create many astonishing animations.

2.2. Techniques to Rapidly Create Simple 3D Ob-
jects

As simple 3D objects are utilized in our efforts to enrich
computer assisted animation, we briefly highlight some re-
lated work for rapidly creating such objects.

Igarashi et al. [9] present a gesture–based sketching in-
terface (TEDDY) to quickly and easily design freeform
models. In their system, the user first interactively draws
a 2D silhouette consisting of several 2D freeform strokes.
A 3D polygonal object is automatically constructed by in-
flating the region surrounding the silhouette, making wide
areas fat and narrow areas thin.

Bimber [1] extends this sketching interface with support
for dynamic gesture recognition. A particular grammar en-
ables on–the–fly extraction of the required information.

Our work shares parts of their core ideas, such as the use
of freeform strokes to draw the outlines and working with
simplified 3D models (cf. Section 4.1).

2.3. Painterly Rendering and Similar NPR Tech-
niques

Barbara Meier [12] presented an interesting solution to
retain the overall volume of objects and to render anima-
tions in a specific artistic style without the need to draw each
frame by hand and without loosing frame–to–frame coher-
ence. She introduced methods to obtain a painterly render
style starting from 3D geometrical objects. 2D brush stroke
attributes are obtained from reference pictures and particles
attached to the 3D model define the brush stroke locations.
Barbara Meier managed to eliminate the “shower door” ef-
fect that disturbs many other NPR approaches to obtain a
good frame–to–frame coherence.

This approach leads to very impressive results for rigid
objects, but requires extensive modelling and animation if
it should be applied to fully animated characters. In prac-
tice, also for rigid objects, a lot of hard work is involved to
build up the models and to obtain and properly assign all
necessary brushes. Semi–transparency is hard to avoid.

Kowalski et al. [10] presented a method to render a
3D scene in a stylized manner. They did this to suggest
the complexity of the scene without explicitly representing
it. Their method exploits procedural stroke based textures,
graftals, to render the scene. Thesegraftalsplace geomet-
ric elements procedurally into the scene to produce effects
including fur, grass and trees. By using a difference image
algorithm, thegraftalsare distributed over the 3D surfaces
to achieve a desired screen–space density. Because these



Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 3

graftals stick to the 3D surfaces, this approach is suitable
for interframe (frame–to–frame) coherence. However, the
drawbacks include that for each frame thegraftals are re-
generated and that each newgraftal texture requires an ad-
ditional procedural implementation.

Lee Markosian [11] extended the work of Kowalski and
presented a new framework that addressed some of the is-
sues. The framework also introduced the concept oftufts
which manage the multiresolution behavior ofgraftals ac-
cording to specifications of the scene designer. This new
framework addresses many of the problems encountered
with the previous one but it is considerably slower for com-
plex scenes and animators still have to create textual files
manually to define looks and behaviors forgraftals.

A major issue in these systems based so much on 3D, is
that they generate a very 3D look, which we want to avoid.
We want to allow the animator to change outlines in specific
key frames and adapt them to the feeling and effects to help
him reach his artistic goals. Furthermore, many details are
extremely hard to construct in 3D, while it is much simpler
to design very convincing look–alikes in 2D. For example,
ask a designer to construct a fancy staircase in 3D or make
an animation of a walking dinosaur and watch another artist
draw a much more fancy 2D version during the time needed
to start up the designer’s favorite 3D software. This differ-
ence between 2D and 3D modelling is even more apparent
when subtle animation effects (artistic expressions, carica-
tures, . . . ) are involved.

We refer the interested reader to [14], providing an ex-
tensive overview of published work, covering these and
many other techniques employed in the fascinating world
of non-photorealistic rendering.

3. Modelling and Animation in 2.5D

In traditional 2D animation [2, 13] the modelling and
drawing processes are combined into a single drawing pro-
cess, which can be broken down into three sub-stages: (i)
main animators draw the most significant images, which are
referred to asextreme framesor poses, containing the major
features of the action; (ii) assistant animators producekey
framesbetween the extreme frames, hence detailing the de-
sired animation action; while (iii) less experienced anima-
tors are responsible for creating the remainingin–between
framesof the animation.

In prior work [5] we defined a 2.5D method for auto-
matic in–betweening, which clearly distinguishes a mod-
elling phase and an animation phase. This is implemented
as a multi–layered system starting with basic 2D drawing
primitives (curves) at level 0, over explicit 2.5D modelling
structures at level 1. Level 2 includes hierarchical informa-
tion by means of skeletons and level 3 offers the opportunity
to include high–level tools (for example a deformation tool

or a sketching tool).
In the next section we elaborate on how to aid the ani-

mator in the creation of theextreme frames, which lay the
foundation of the animation, thereby making use of the ex-
isting functionality of the system.

4. Approximate 3D Models

In this section, we introduce approximate 3D models as a
helpful tool assisting the animator throughout various stages
of the drawing process. We successively show how these 3D
objects can be used to (i) depict the volume of the objects for
each extreme frame, (ii) form an idea of where the outlines
should be drawn and how they look like, and (iii) providing
for frame–to–frame coherence when rendering the anima-
tion in for example a painterly style.

4.1. Basic Shape Development

When animating, one of the very tedious factors to
consider is to maintain the proportions of all the objects
throughout the entire animation process. That is, at the very
beginning the animator has to start with the development of
the basic shape of the objects before going on with the de-
velopment of features and other details (such as movement
expressions).

In traditional animation [2, 13], when drawing the ob-
jects in different poses and actions (i.e. drawing the extreme
frames), animators first make reference drawings, which
contain proportion guidelines, of the separate objects. In a
second step, the animator refers to these proportion guide-
lines to create very rough “sketches” of the extreme poses
of the objects. In fact, the sketched objects are only con-
structed from circular and rounded “3D–ish” base forms
(see figure 2(a). The reason for using rounded forms in-
stead of other shaped forms is because of their simplicity
and they are well understood when several animators work
together on the same project.

It is clear that this traditional procedure is a cumbersome
task and that any mistake causes major consequences for
the whole animation. Only very experienced animators are
natural at performing this task.

Therefore, we introduce the use of approximate 3D mod-
els to easily and rapidly create basic shapes of objects with-
out the need to refer to reference drawings.

First, the user sketches (and possibly modifies) 2D circu-
lar and rounded forms as if drawing on paper. We use “free
form stroke techniques” [6, 15] to create and alter these 2D
objects.

Our system then interprets these circular and rounded
forms to automatically construct a 3D polygonal object of
revolution. This approach enables the easy and rapid con-



Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 4

(a) (b)

Figure 2. a) Copyright c©1994 Preston Blair.
b) The same extreme frame as shown in (a)
by using approximate 3D objects.

struction of the plain approximate shapes that traditional an-
imators tend to use.

For example, drawing an ellipse generates an elliptical
3D object. As you can see in figure 2(b), we only show the
silhouettes [4] of the 3D objects as they are much more sim-
ilar to the 2D rounded and circular forms than, for example,
a shaded version of the 3D object.

We also added support for modifying the 3D objects and
performing affine transformations upon them. That way,
whenever the animator wants to create new extreme poses
(extreme frames), he just has to perform basic transforma-
tions on a copy of the 3D objects without having to con-
struct them again.

As one can see, the animator does not have to worry
about retaining the volume of the objects. Also, the time
spent on creating extreme frames is reduced drastically as
the animator does not have to start over again every time he
creates a new extreme frame.

To summarize, in this section we explained the cre-
ation of approximate 3D models starting from 2D freeform
strokes and showed how they effectively can be used to cre-
ate different extreme poses of the basic shape of an object
while retaining the proportions of the object.

4.2. Inking the Outlines

Once the basic shapes of the extreme frames are created,
features and other details can be added. Typically, cartoon
characters can be characterized by putting emphasis on the
outlines (silhouette of the character).

As we already only render the silhouettes of the approx-
imate 3D objects, these are very helpful to the animator.

First, the animator orients the approximate 3D model to
a desired orientation and then draws the outlines (based on
the silhouette of the 3D objects) by hand for a particular
extreme frame. We implemented this as a “silhouette copy
and re–edit tool”. In a following step, the inking of the other
extreme frames is done. This is very easy for the reason that

the animator only has to reposition the 3D object and alter
the copied outlines, instead of creating them from scratch.

Because the animator refers to the silhouette outlines of
the approximate 3D models he is assured that the shapes of
the characters are preserved.

(a) (b)

Figure 3. a) Copyright c©1994 Preston Blair.
b) The same extreme frame as shown in (a)
by using our system.

Figure 3(a) shows the version an animator is likely to
draw the outlines compared to our results (figure 3(b)).

4.3. Rendering the Animation

In the previous sections we showed how approximate 3D
models provide a very effective means to assist the anima-
tor throughout the modelling stage (i.e. modelling extreme
frames) when creating an animation.

In this section we explain the use of the same 3D ob-
jects as a underlying aid to render objects in for example a
painterly style while ensuring a smooth animation that does
not suffer from temporal aliasing.

It is not our intention to introduce a new render style but
to indicate that these 3D models play a significant role in
the painting stage of an animation.

When looking at the traditional animation process, ani-
mators have to paint by hand every single frame of the ani-
mation [8, 13]. Here we can identify two problems: (i) it is
a very time intensive process, for example to create an ani-
mation which lasts 25 minutes using 15 frames per second
requires 22,500 frames to be drawn, and (ii) coloring the ob-
jects in a non–uniform way, such as painterly rendering by
using brush strokes, soon results in an animation that suffers
from temporal aliasingbecause it is too hard to avoid that
the brush strokes randomly change with each frame. This
lack of frame–to–frame coherence is due to the difficulty to
estimate the position of the same brush stroke in different
extreme frames.

For research purposes we implemented a painterly ren-
dering style, although other rendering styles are possible as
well.

Once the extreme frames are created (basic shapes and
outlines) the animator can start the drawing process. We



Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 5

provided the option to choose between displaying only the
currently selected extreme frame or displaying (and work-
ing on) all extreme frames in a multi–window approach. If
the user chooses the second option, all extreme frames are
shown in separate windows and any modifications (such as
painting strokes) made to one of the these are immediately
reflected in the other frames.

The painting process itself is as described in listing 1.

While modelling:

select underlying curve primitive
adjust brush stroke parameters
for each stroke gestured by the animator

collect 2D screen positions
for each 2D screen position

transform screen position to 3D object space
create particle
for all extreme frames

calculate 3D position of particle
transform 3D position to screen space
store position

end (for all extreme frames)
end (for each 2D screen position)

end (for each stroke gestured by the animator)

During animation (at run-time):

for each frame in time
generate in-between frame
for each sorted primitive

draw primitive
for each associated particle

orient particle orthogonal to view vector
draw brush stroke into paint buffer

end (for each associated particle)
end (for each sorted primitive)

end (for each frame in time)

Listing 1. The painting process of our system.

In our application, brush strokes are polygons textured
with RGBA which we created using an external drawing
program. That way, the animator has full control over the
shape, size, density, texture, . . . that make up the brush.

Regarding the painting process, first of all, the anima-
tor has to select one of the underlying curve primitives to
which brush strokes are attributed. That way the underlying
drawing order of the curve primitives specified in the ex-
treme frames is utilized to determine the drawing order of
brush strokes. As a result, this solves the problem of self–
occlusions (this is not a topic of this paper and is described
in detail in prior work [5]).

Painting itself occurs by gesturing strokes [5] upon the
currently selected curve primitive. At this moment, the an-
imator does not see the underlying 3D models but only the
silhouettes he has drawn. This is done to keep the painting
process similar to the traditional painting procedure.

At the same time (when gesturing the strokes), our sys-
tem transforms the current position in 2D screen space to
the object space of the underlying 3D surface at that mo-
ment. This is done at discrete moments in time and delivers
us a set of 3D points (which lie on the surface of the under-
lying 3D object).

(a) (d)

(b) (e)

(c) (f)

Figure 4. a–c) Three extreme positions of a
person’s head constructed with circular and
rounded forms. d–f) The same three extreme
frames, after inking the outlines, filling the
primitives and painting some brush strokes.

Then, with each of the points we associate a particle
which stores the current selected brush, its position and ori-
entation. Finally, for each extreme frame we calculate the
3D position of the particles by exploiting the underlying 3D
surfaces. These 3D positions are then transformed to 2D
screen space: that way, our system can handle the brush
strokes in the same way as the underlying drawing prim-
itives (curves) and so we can exploit the provided power-
ful automatic in–betweening method (The generation of in–
between frames is a completely different problem, which
is outside the scope of this paper. The reader interested in
how we implemented the in–betweening stage is referred to
[5]). Note that, by inspecting the normal of the underlying
surface, particles that should be occluded in 3D can easily
be detected and thus marked as invisible for a particular ex-



Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 6

treme frame.
The advantages of this method are: (i) for the extreme

frames, the particles are positioned automatically by ex-
ploiting the underlying 3D surface and thus whenever the
animator switches to another extreme frame the same par-
ticles are shown, of course transformed according to the
transformation of the underlying 3D object, which guaran-
tees frame–to–frame coherence, and (ii) for the in–between
frames, we can turn to 2D, thereby fully utilizing automatic
in–betweening.

Upon drawing, the particles are always oriented to lie
in the plane orthogonal to the view vector. That way we
prevent the animation to suffer from perspective distortions
which we want to avoid in 2D animation. Finally, we uti-
lize the drawing order of the underlying curve primitives to
determine the drawing order of the brush strokes.

Figures 4(d–f) show three painted extreme frames of a
person’s head. These are based on the 3D representations in
figures 4(a–c). We only applied some brush strokes to figure
4(d), depicting the hairs of an untidy beard and moustache.
As you can see in figures 4(e–f), the same brush strokes are
displayed automatically at where we would expect them to
appear: the moustache is still displayed under the nose and
above the mouth. Notice that the character’s hat in figures
4(d–f) is not geometrically correct with respect to 3D and
that some of the brush strokes (hairs) may appear outside
the inked outlines. This is intentionally done by the anima-
tor to express the careless style of the character.

We conclude this section by stating that the use of ap-
proximate 3D models is an effective means to provide for
frame–to–frame coherence because objects are painted just
once and the corresponding brush strokes are positioned au-
tomatically for all frames.

5. Results

In this section we show some results of our presented
method.

Figure 5 shows some snapshots of an animation exploit-
ing the extreme frames presented in figure 4.

In figure 7 we show some animation snapshots of an air-
plane. We used the extreme frames shown in figure 6.

The extreme frames (without the outlines drawn) of an
exotic bird are shown in figure 8. Note that we did not use
curves to draw the wing of the bird. Instead it is completely
painted upon the body. Figure 9 shows some snapshots of
an animation of the bird.

Figure 10 consists of images depicting some extreme
frames of an animated moon which is painted in a
pointillism–like painting style. Snapshots of an animation
sequence exploiting these extreme frames are shown in fig-
ure 11.

The current implementation is written in C++ (MFC)
with the use of OpenGL [7]. It offers real-time displaying
and editing of the results, maximizing the comfort of the
animator who wishes to adapt the animation to his artistic
needs.

6. Conclusions and Future Work

In this paper, we presented the use of approximate 3D
models as a powerful tool to assist the animator through-
out various stages of the drawing process when creating an
animation.

Existing computer animation software either employs
full 3D input models or uses purely 2D approaches. In
the first, 3D models are rendered and animated in non–
photorealistic styles but require extensive 3D modelling and
it is difficult to achieve lively or subtle movements. The
latter lacks the 3D representation which is present in the
animator’s mind and therefore only a very experienced ani-
mator easily succeeds in retaining the volume of objects and
preventing temporal aliasing.

We showed how approximate 3D objects can be used to
overcome these problems. We successively described how
to retain proportions, how to rapidly ink silhouettes and how
to provide for frame–to–frame coherence when rendering in
a painterly style.

In the future we want to explore more ways and tech-
niques to persuade animators to make the shift from tradi-
tional hand–drawn to computer assisted animation.

Acknowledgements

We gratefully express our gratitude to the European Fund
for Regional Development and the Flemish Government,
which are kindly funding part of the research reported in
this paper.

Part of the work is funded by the European IST research
project IST–1999–56412 ‘3DINCTRAP’. In this context,
we would like to express our thanks to the various people
in the project providing ideas and for helping with the im-
plementation.

Many thanks to Johan Claes for the valuable paper re-
views and to Joan Cabot and “Xemi” Morales for their artis-
tic contributions.

Furthermore we would like to acknowledge ANDROME
NV for freely putting available to us their CreaToon plugin
SDK.

References

[1] O. Bimber. Rudiments for a 3D freehand sketch based
human–computer interface for immersive virtual environ-



Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 7

ments. InProceedings of VRST 1999, pages 182–183. ACM,
December 20–22 1999.

[2] P. Blair. Cartoon Animation. Walter Foster Publishing Inc.,
ISBN: 1–56010–084–2, 1994.

[3] E. Catmull. The problems of computer–assisted animation.
In Proceedings of SIGGRAPH 1978, volume 12, pages 348–
353, August 1978.

[4] J. Claes, F. Di Fiore, G. Vansichem, and F. Van Reeth.
Fast 3D cartoon rendering with improved quality by exploit-
ing graphics hardware. InProceedings of Image and Vi-
sion Computing New Zealand (IVCNZ) 2001, pages 13–18.
IVCNZ, November 2001.

[5] F. Di Fiore, P. Schaeken, K. Elens, and F. Van Reeth. Auto-
matic in–betweening in computer assisted animation by ex-
ploiting 2.5D modelling techniques. InProceedings of Com-
puter Animation 2001, pages 192–200, November 2001.

[6] F. Di Fiore and F. Van Reeth. A multi–level sketching tool
for pencil–and–paper animation. InSketch Understanding:
Papers from the 2002 American Association for artificial In-
telligence (AAAI 2002) Spring Symposium. Technical Report
SS–02–08, pages 32–36, March 2002.

[7] R. Fosner.OpenGL Programming for Windows 95 and Win-
dows NT. Addison–Wesley Developers Press, ISBN: 0–
20140–709–4, 1996.

[8] H. Griffin. The Animator’s Guide to 2D Computer Anima-
tion. Focal Press, ISBN: 0–240–51579–X, 2001.

[9] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketch-
ing interface for 3D freeform design. InProceedings of SIG-
GRAPH 1999, pages 409–416. ACM, August 1999.

[10] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. F. Hughes. Art–based render-
ing of fur, grass, and trees. InProceedings of SIGGRAPH
1999, pages 433–438, August 1999.

[11] L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden,
J. D. Northrup, and J. F. Hughes. Art–based render-
ing with continuous levels of detail. Symposium on
Non–Photorealistic Animation and Rendering (NPAR2000),
pages 59–66, June 2000.

[12] B. J. Meier. Painterly rendering for animation. InProceed-
ings of SIGGRAPH 1996, volume 25, pages 477–484, 1996.

[13] J. W. Patterson and P. J. Willis. Computer assisted anima-
tion: 2D or not 2D? The Computer Journal, 37(10):829–
839, 1994.

[14] C. Reynolds. Stylized depiction in computer graph-
ics. World Wide Web,http://www.red3d.com/cwr/
npr/ .

[15] G. Vansichem, E. Wauters, and F. Van Reeth. Real–time
modeled drawing and manipulation of stylized cartoon char-
acters. InProceedings of the IASTED International Con-
ference on Computer Graphics and Imaging, pages 44–49,
Honolulu, HI, USA, August 13–16 2001. IASTED.

(a) (b)

(c) (d)

(e) (f)

Figure 5. a–f) Some snapshots of an anima-
tion sequence generated from the extreme
frames in figure 4.

(a) (b)

(c) (d)

Figure 6. a–b) Some extreme frames, with
inked outlines and filled primitives, of an air-
plane. c–d) The same extreme frames after
having painted the object with brush strokes.

http://www.red3d.com/cwr/npr/
http://www.red3d.com/cwr/npr/


Copyright c©2002 Institute of Electrical and Electronics Engineers, Inc. All rights reserved. 8

Figure 7. a–d) Snapshots of an animation of
the plane shown in figure 6.

Figure 8. Painted extreme frames, without
inked outlines, of an exotic bird.

Figure 9. Some snapshots of an animation of
the exotic bird depicted in figure 8.

(a) (b)

(c) (d)

Figure 10. a–b) Some extreme frames, with
inked outlines, of a moon. c–d) The same ex-
treme frames after having painted the moon
with colored brush strokes to achieve a
pointillism–like painting style.

(a) (b) (c)

(c) (d) (f)

Figure 11. a–f) These pictures show some
snapshots of an animation sequence gener-
ated from the extreme frames in figure 10.


	. Introduction
	. Related Work
	. Computer Assisted Traditional Animation
	. Techniques to Rapidly Create Simple 3D Objects
	. Painterly Rendering and Similar NPR Techniques

	. Modelling and Animation in 2.5D
	. Approximate 3D Models
	. Basic Shape Development
	. Inking the Outlines
	. Rendering the Animation

	. Results
	. Conclusions and Future Work

