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Abstract

A pharmaceutical company needs to invest in the costly and tightly regulated
multi-year drug development process early on. While many compounds are
considered initially, only a few make it to the final phase where the newly
developed drug is made available to the wide population. Time and effort is lost
on the majority of candidate compounds as these turn out to not be efficacious
and no return on investment is made. For this reason, pharmaceutical companies
are interested in methodologies and approaches to better detect the ones that have
more promise as soon as possible. In addition, the exclusivity granted by a patent
is limited in time, and speeding up the process translates into material financial
gains. Model Based Drug Development, a quantitative approach where gathered
data is leveraged in an online fashion to improve decision making, has been
suggested as one way to optimize the process. The domain of Pharmacometrics,
a key component of Model Based Drug Development, is concerned with modeling
human-compound interactions. One of the challenges in Pharmacometrics is that
the computational requirements of the models preclude agility and timeliness.
Currently, modelers switch between different projects to avoid stalls as typical
computational runs can take up to weeks, but arguably this hampers swift
modeling due to the long feedback cycle.

Recent computing systems have seen a surge in the number of explicitly
exposed parallel resources due to the limits being reached in single processor
systems. Leveraging the computational resources of these systems is far from
trivial. Pharmacometrics, like other branches of computational science, is a mul-
tidisciplinary field. Scientists that specialize in the models are rarely equipped
with the right Computer Science background to write efficient computational
codes. Therefore, the common approach is to rely on software packages that pro-
vide a toolbox of mathematical and statistical methods. However, contemporary
packages lack in efficiency when deployed on a parallel system. This motivates
the need for new approaches like those explored in this thesis.
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In the context of computational modeling, there are two prominent strategies
for parallelization. First, computations on models are fit using an iterative
optimization routine where multiple processors can be kept busy within each
iteration by evaluating multiple candidate parameters concurrently. This part
of the computation is referred to as the back-end. While this approach can
hide the parallel constructs within the routine improving the usability of these
routines for scientists from other domains, it requires the optimization routine
to be designed to run in parallel. However, this might not always be feasible.

Second, in the front-end a single candidate parameter can be evaluated in
parallel if permitted by the dependency structure of the model, a strategy suitable
both for more sequential optimization routines as well as parallel optimization
routines where it further improves performance. Even if a task can be decomposed
into smaller concurrently executable tasks, doing so manually is tedious, error-
prone and requires the right parallel computing background. Arguably, the
scientist concerned with building these models is in an even worse position; their
expertise is probably not in parallel computing and more automated approaches
are preferable.

This thesis proposes novel ways to leverage parallelism in both the front-end
and the back-end. In the former, two approaches are presented to parallelize
evaluations without any input from the user. In the latter, changes to two
existing state-of-the-art Markov Chain Monte Carlo samplers are presented that
allow to better deal with large parallel systems in the message passing paradigm.
Improvements for samplers running with data-bound models are explored as
well.

One of the main properties of Pharmacometrics models is that computation
time required for parts of the model depends highly on the choice of model
parameters. For this reason, common approaches fail to perform well in this
regard as they assume a more uniform execution time across evaluations. By
neglecting this property, idle times are introduced resulting in poor use of
available resources.

Performance gains observed by the presented techniques vary greatly from 10%
all the way to many hundred fold reductions in execution time. It is important
to note that these improvements depend not only on the targeted algorithms,
but also on the computation models and on the platform. Nevertheless, the
ideas are presented at a reasonably abstract level to support generalizations to
other domains and computational models.
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Chapter 1

Introduction

1.1 Motivation

Drug development is a costly multi-phase process that spans multiple years. It is
strictly regulated by government agencies like the Food and Drug Administration
(FDA). A pharmaceutical company that develops a new drug needs to invest
billions to adhere to regulations. Figure 1.1 provides a rough estimate of the
timing and scale of this process. On average, the process takes around 10
years [Cio+14]. Initially, thousands of candidate compounds are considered
most of which do not reach the final fourth phase [Hay+14]. A study in the
years 2013-2015 noted that the majority of failures is attributed to the lack of
efficacy [Har16] resulting in loss of time and money.

Even with a patent application filed early on in the drug development process,
the protection offered by the patent starts to end at the beginning of the final
phase when the return on investment is made. Some time extensions to the patent
are possible to increase exclusivity up to 25 years, but coverage in the fourth
phase remains limited. It is therefore of great financial importance that the
process proceeds as swiftly as possible. Recently, Model-Based Drug Development
(MBDD) was touted as a way to increase agility in this process [Mil+13]. The
goal is to feed data gathered earlier in the development process to steer and
adapt later phases. The faster the computations can finish on these models, the
more agile the process becomes and the less time and effort is wasted.

Pharmacometrics (PMX) is a key component of MBDD. It is a field where
mathematical and statistical methods are applied to pharmacology to develop an

15
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Figure 1.1: An overview of the drug development process that typically spans
multiple years. Progressively less compounds make it to each subsequent phase
while the number of subjects ramps up. More time spent in the early phases
reduces the patent protection coverage in the fourth phase when the compound
is made available to a wider population and the return on investment is made.

understanding of Pharmacokinetics (PK), the study of how an organism affects a
compound, and Pharmacodynamics (PD) which focuses on the converse. In PMX,
modelers often resort to pooling data from subjects into a single hierarchical
model [OF14]. Finding parameters of these models is compute intensive; the
PK and PD model that describe the interaction between each subject and a
compound requires numerical integration. In addition, these models are often
evaluated in a Bayesian context where samples from the posterior distribution
are collected. Compared to the more classical approach of finding a single set
of parameters, this drastically increases the number of model evaluations and
hence the total computational requirements. This dissertation considers some of
the computational aspects of PMX, required at different stages of the process
given in Figure 1.1.

Famously, Moore’s law predicted an exponential increase in transistor count
in processors, but this increase is only loosely coupled with computational
speed [Cha20]. The well-known memory wall [WM95; Dre07], i.e. the growing
discrepancy between memory and processor speeds, together with the dimin-
ishing returns of Instruction Level Parallelism (ILP) [Gra+03], and the power
wall [EGC16] hinders this relationship. To keep up with the predicted perfor-

16



1.2. Problem Statement and Research Goals 17

mance trend, recent computing systems have seen a surge in parallel resources
as a means to avoid these limits. In contrast to parallelism implicitly exploited
by a compiler like ILP, parallelism is explicitly exposed in systems moving the
burden to the software designers or even the users.

1.2 Problem Statement and Research Goals

Efficient use of parallel resources is a daunting task. Without the right expertise,
resource utilization tends to be low. In distributed memory systems, this is
further aggravated by the need to keep not a few, but hundreds or thousands of
processors busy to maintain high utilization. Scientists are rarely equipped with
the right Computer Science background, a situation not only specific to PMX,
but to other scientific computing domains as well. Therefore, the contemporary
approach is to turn to software packages. Currently, the prominent tools in
use for PMX are NONMEM [Erm+19] and more recently, Stan [Car+17] and
nlmixr [Fid+19]. These implement powerful methods in the mathematical and
statistical sense, but often lack in terms of parallel resource utilization and
are therefore unsuited when results are either to be fed back into the drug
development process in due time or rapid feedback in the modeling process is
desired. Hence, novel approaches, where the details of large and complex parallel
systems are abstracted away, are required.

This thesis assumes that scientific computing software, like software for PMX,
can be structured into two components. The first component, referred to as
the front-end, consists of the scientific model. In one interpretation, it is a
standalone classical computer program that takes as input a set of parameters θ,
and outputs a score that represents the quality of θ. This score is typically
obtained by performing scientific simulations. The second component, referred
to as the back-end, implements iterative methods [Mur10] and samplers. It takes
as one of its inputs a scientific model and it either searches for good parameter
choices or tries to assess the uncertainty in the parameters. Since the Bayesian
approach is prominent in PMX, only samplers are considered here. While the
focus is on PMX models, it is important to note that most of the explored
approaches generalize to other scientific domains as well where observations are
uncertain or incomplete requiring probabilistic techniques such as econometrics
and astrophysics. For example, a model from epidemiology is used to evaluate
performance improvements in Chapter 6.

The goal is to design methods leveraging parallelism in both components
that perform well in a distributed setting without requiring any further input

17



18 Introduction

from the scientists. This avoids distracting the scientists from their goals, while
at the same time, maintaining high system utilization. The relatively high
communication latency and the number of resources that need to be coordinated
make this a challenging task. Two interesting properties of models in PMX
are taken into account transparently where possible by the parallel methods.
First, the amount of computation required for simulation varies with model
parameters and second, the typical approach of scaling up work to reduce the
overhead introduced by parallelism in relative terms is not viable since the
models, including the data, are fixed.

Note that the computational aspect of PMX is targeted as a whole; the
distinction between the front-end and back-end is mainly useful to structure
the software. Depending on the specifics of the PMX models, the number of
participants in the drug trail and the parallel system characteristics, some of the
presented methodologies could result in more performance improvements than
others. Throughout the drug development process, the models can change as more
knowledge is gathered. For these reasons, methodologies do not target specific
parts of the process. Instead, they are presented as standalone improvements
instead while combining them into a single system that combines their strengths
is itself a research challenge that is left as future work.

1.3 Contributions

Depending on the problem at hand, it might be better to allocate parallel
resources in the front-end, in the back-end or in both. Therefore, the dissertation
contributes methodologies for both components. Contribution C1 considers
PK and PD models specifically. Contributions C2-C4 target the back-end and
contributions C5 and C6 target the front-end.

C1 PK and PD dynamics need to be simulated for the length of the drug trails.
When a drug is administered repeatedly, simulation time increases. The
first contribution shows that by detecting the repetitive structure of the
dynamics, these requirements are radically reduced while only sacrificing
a small amount of accuracy. Methods to automatically determine the
detection sensitivity to strike the best balance between accuracy and
speed are included as well. While this technique does not directly target
distributed systems, parallelism can still be used to correct for inaccuracies.

C2 Due to the amount of data to which models are fit, the front-end can become
data-bound leading to low operational intensity. The second contribution

18



1.3. Contributions 19

considers how to reduce wait-time by performing useful computations
during otherwise stalled cycles. PMX models are mostly compute bound,
but the presented work can also be extended to hide latency in a distributed
setting.

C3 An important aspect that hinders usability of samplers is that convergence
properties depend on the choice of proposal distribution. A typical setup
is to draw proposals from a normal distribution. With this setup, a d
dimensional problem requires tuning O(d2) parameters to specify the shape
of the proposal distribution, a daunting task without knowledge of the
shape of the target distribution. This has led to the development of an
affine invariant sampler that performs equally well regardless of any affine
transformation of the target density, but this sampler performs poorly in
a distributed system. Therefore, the third contribution shows that the
dependencies in this sampler are more loose than might initially seem by
exploiting the deterministic nature of Pseudorandom Number Generator
(PRNG) streams. Building on this observation, a distributed version of
the sampler is introduced where both the wait time and the number of
messages exchanged are reduced.

C4 In PMX, the posterior density often has multiple modes due to non-linearity.
The Sequential Monte Carlo (SMC) sampler can be configured to initially
smooth out the posterior for easier exploration. It is a state of the art
sampler that explores the target at multiple positions simultaneously al-
lowing some parallelism while still preserving the density. However, with
load imbalance, the collection of information after each step introduces
wait-time. The fourth contribution is a speculative sampler that relaxes
scalability limits caused by load imbalance. By observing that the decision
taken based on the collected information is easy to predict well, compu-
tation can continue tentatively. If the tentative results turn out to be
wrong, computation is rolled back to ensure that results are unaffected by
speculation.

C5 One way to leverage parallelism in the front-end is to require scientists to
specify the models with predefined parallel building blocks, but this limits
expressiveness. The fifth contribution introduces a mapping between parts
of the computation Directed Acyclic Graph (DAG) and the graphical model
representation of a model. This mapping enables applying a parallelization
of the graphical model to the computational tasks in the DAG. In double-
blind placebo-controlled clinical trials where some subjects receive a placebo
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20 Introduction

while others receive the actual treatment, load imbalance is exacerbated
further. Since the graphical model expresses the hierarchical structure of
these models, this approach lends itself well to deal with differing simulation
time of subjects. The goal is to deal with larger models prominent in later
stages of drug development as each subject is modeled separately, while,
at the same time, taking into account load imbalance.

C6 The downside of applying parallelism from graphical models to a task graph
is that it might not be fine-grained enough. Therefore, the final contribution
targets the front-end on a much finer level. By measuring the execution
time of tasks in this model, a scheduling heuristic can be employed to reduce
overall execution time. This however, leads to suboptimal performance as
execution time changes. Therefore, by combining multiple schedules with
an Evolutionary Algorithm (EA), a more robust schedule can be produced
that performs well even as different model parameters are explored.

1.4 Dissertation Overview

This dissertation is organized in three parts. The first part provides preliminaries
while the second and third parts consider back-end and front-end parallelization
respectively. Each contribution from Section 1.3 has been published in one of six
conference papers as the principal author. The references to these publications
are included in Appendix B. Chapters 3 to 8 are based on these, although not in
a verbatim manner. Some alterations have been made to support readability,
to streamline notation and to avoid repetitive parts. Due to page limits, some
results and figures had to be omitted from the publications. While these parts do
not change the contributions of the papers, they have been included here as they
provide a more complete exposition of the presented ideas. It is important to
note that the parts that have been omitted from the publications have originally
been peer-reviewed as well.

The first part starts with Chapter 2 introducing concepts and providing the
necessary background including an introduction to hierarchical models and the
Bayesian inference framework, both important when dealing with PMX models.
This chapter ends with a straightforward parallelization of both a hierarchical
model and a classical sampler that, at least in theory, would yield the correct
results. However, the flaws are listed to motivate the work presented in the
second and third part. The first part also includes Chapter 3 describing how to
exploit the nearly periodic nature of repeated administration models by numerical
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application of the method of averaging on the one hand and reusing previous
computational effort on the other hand, resulting in an approximation of repeated
administration models. Parallel computing is only of limited importance for this
approximation, but it is nevertheless included to exemplify the models in use in
PMX.

In the second part, Chapter 4 considers how to deal with data-bound front-
ends, caused by the discrepancy between DRAM bandwidth and microprocessor
speed that hinders reaching peak performance. As the proposed methodology
requires factorization of the model, it cannot be considered to be confined to the
back-end. However, it is included here as the main idea, improving operational
intensity by performing useful computation during otherwise stalled cycles,
relies mainly on the back-end. The concepts are demonstrated in the machine
learning context with multi-threading, but it is applicable to a wide variety
of parallel algorithms, and at different scales, including to PMX computations
running on larger systems where a relatively high latency is observed for messages
exchanged between remote processors. Second, Chapter 5 introduces a fully
decentralized version of an affine invariant sampler. Two cases with differing
communication-to-computation ratios are used during evaluation against the
original master-slave solution, where a more than tenfold reduction in execution
time is measured. Third, Chapter 6 introduces speculative computation into
SMC samplers. Multiple test scenarios, each with different computational
characteristics, are studied empirically on a compute cluster. Tests show that
when decisions are predicted correctly, execution time is reduced drastically for
use cases with high load imbalance. Furthermore, the maximum theoretical
gain, derived from execution characteristics, is compared with the measured
improvement to verify that most speculative evaluations are actually useful. If
predictions are incorrect, or load is balanced, speculation has no measurable
negative impact. Performance is also evaluated in a weak scaling setting on a
cluster with 36 cores in each system.

The third part consists of Chapters 7 and 8. Chapter 7 proposes a method-
ology in which parallel parts are automatically identified by leveraging the
conditional independence property in the graphical model extracted from the
dataflow graph of a model specification. Finally, Chapter 8 studies how to find
well-performing schedules by simulating their execution time and combining
schedules produced by a heuristic through an evolutionary approach.

Chapter 9 provides conclusions and outlines some promising research ideas
for future work. The dissertation ends with a Dutch summary in Appendix A.
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Chapter 2

Preliminaries

As noted in Chapter 1, drug development is a costly multi-phase process that
spans over multiple years. To maximize the bottom line, a pharmaceutical
company involved with the development wants to maximize the time covered
by the exclusivity protection of the patent in the final phase. For this, the
computations need to be sped up as much as possible. To better understand
the context of the computations that this dissertation focuses on, this chapter
starts by introducing hierarchical models in Section 2.1 and Bayesian inference
in Section 2.2. Next, Markov Chain Monte Carlo (MCMC) samplers and
some general diagnostics are discussed in Section 2.3 to illustrate how Bayesian
inference can be tackled in practice. After introducing terminology in Section 2.4,
simple parallelizations for both hierarchical models and samplers are presented
in Section 2.5 and Section 2.6 respectively and motivations are given why these
are far from optimal. Next, the more general framework separating the front-end
from the back-end is given in Section 2.7. Finally, the chapter concludes with
Section 2.8.

2.1 Hierarchical Models

As data for PK and PD models consists of measurements taken from human
subjects, e.g. the concentration of a compound in the body at a specific time
requiring blood to be taken for each data point, only a limited number of
measurements are available. By pooling data from multiple subjects or even
multiple trials, the predictive power of the model increases. Here, PK and PD
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24 Preliminaries

models for each subject are combined into a larger hierarchical model. The top
level describes the population as a whole, while lower layers add increasingly more
details. In more classical models where all data is “independent and identically
distributed”, a single type of noise is modeled to account for the deviation of
the fit to the data. In contrast, in hierarchical models, noise is separated out
into different types by introducing more noise terms, each capturing noise at
different places in the hierarchy. To accomplish this, the data needs to include
an identifier that specifies to which patient each measurement belongs.

An example model from Pinheiro et al. [PB00] demonstrates why separating
the data into experiment units is important. The example studies the time it takes
for ultra-sonic waves to travel across rails. The data consists of measurements of
the travel time across M = 5 different rails. It can be grouped into M sets, since
for each measurement, the data also specifies from which rail the measurement
was taken. The number of measurements for each rail ni can vary across rails.

Consider the model that ignores the grouping given by Equation (2.1), where
N (µ, σ) is a normal distribution with mean µ and variance σ2, β expresses the
mean travel time and for each measurement the normally distributed error term
εi,j captures the deviation from this mean. The goal for such a model would be
to estimate the parameters β and σ. The concatenation of the parameters is
referred to as θ throughout this dissertation. In this example, θ = [β, σ].

yi,j = β + εi,j , i = 1, . . . ,M, j = 1, . . . , ni

εi,j ∼ N (0, σ)
(2.1)

The model from Equation (2.1) is flawed since it assumes that all rails are
identical. The difference between rails will be partly captured by β and partly
by the error term. To better account for this difference, the model can be
refined using the labels in the data by introducing another term bi, as shown in
Equation (2.2).

yi,j = β + bi + εi,j , i = 1, . . . ,M, j = 1, . . . , ni

bi ∼ N (0, σb)

εi,j ∼ N (0, σ)

(2.2)

The term bi expresses how rail i deviates from some mean rail. Note that
the distribution of bi also needs to be specified. The goal is now to also find σb.
The remaining nuisance variables bi can also be optimized. Note that the second
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2.2. Model Parameter Distribution Estimation 25

model could be rewritten into a classical linear model since the convolution
of normally distributed random variables again gives a normally distributed
random variable, but for more complex models like those in PMX, this is not
always possible.

2.2 Model Parameter Distribution Estimation

A common method to find the parameters given some data is to maximize the
likelihood p(D|θ), where D refers to the data, i.e. yi,j ∈ D. The likelihood for
the model from Equation (2.1) is given by Equation (2.3).

p(D|θ) =
∏
i,j

1

σ
√

2π
e
− 1

2

(
yi,j−β
σ

)2

(2.3)

With Maximum Likelihood Estimation (MLE), the goal is to find the θ that
maximizes the likelihood, denoted by θMLE. To improve numerical stability, the
log of the likelihood is often maximized instead. This is especially important
when |D| is large.

One key issue with this approach is that θMLE does not encode the shape
of the likelihood, which is important to assess the quality of the result. For
example, there might be other choices for θ that have the same likelihood value.
One way around this is to compute the Hessian at θMLE, but this is only a crude
approximation of the overall shape of the likelihood. It is especially important
to note this for non-linear problems since such an approximation ignores the
presence of many local maxima.

Another way to see this is to note that θMLE is a single vector that does not
account for the uncertainty in the problem. In reality, there should be a way
to differentiate between fitting the same model to more data even if the same
θMLE maximizes the likelihood since the certainty of the estimates increases with
more evidence. The Bayesian framework allows to account for the uncertainty
in the problem. In addition, prior beliefs, i.e. knowledge from an expert or a
previous experiment, can be encoded as well. The central idea in the Bayesian
framework rests on Bayes’ theorem applied in the context of modeling and data.
Equation (2.4) provides the Bayesian framework. It shows how the posterior
p(θ|D), the likelihood p(D|θ) and the prior p(θ) relate. Note that the posterior
is determined by the likelihood and the prior only up to a normalizing constant.
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26 Preliminaries

p(θ|D) ∝ p(D|θ)× p(θ) (2.4)

Starting from a prior belief of possible values for θ, the likelihood expresses
how this prior belief should be altered when taking into account the data. This
leads to the posterior which expresses how well each choice of θ explains the
data.

The difficulty of Bayesian inference stems from the normalizing constant
in Equation (2.4). Since p(θ|D) is a probability density in θ, the normalizing
constant is given by Equation (2.5). Here, Ω denotes the part of the space where
θ has support, i.e. p(θ|D) 6= 0. Note that the dimensionality of this integral
depends on θ and the larger the model, the more demanding computation
becomes.

∫
Ω

p(D|θ)× p(θ)dθ (2.5)

Nevertheless, due to the non-linear nature of the models used in PMX,
modelers often resort to the Bayesian framework. Besides taking prior beliefs
into account to quantify the uncertainty in the estimates, this approach is also
more robust when models exhibit practical or structural identifiability [Rau+09],
an issue that commonly arises when data is either limited, noisy or both.

2.3 Markov Chain Monte Carlo Samplers

It might seem that the complete posterior could be obtained through discretiza-
tion of the space and evaluation of the likelihood and the prior at each discretiza-
tion point, but this quickly becomes prohibitively expensive due to the curse of
dimensionality. While it is a feasible approach for the model from Equation (2.1)
since θ is a two-dimensional vector, for higher dimensional problems like those
of hierarchical models where the dimensionality of θ depends on the number
of experimental units, this is not practical. For example, the dimensionality of
θ = [β, σb, σ, b1:5] in Equation (2.2) is eight. It is not uncommon to have on the
order of thousands of parameters in PMX when thousands participate in the
drug trial.

Many real world problems in the Bayesian setting can only be approximated
with MCMC Samplers [Sol+12], popularized by the fact that they suffer much less
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2.3. Markov Chain Monte Carlo Samplers 27

procedure MH(π̃, q, θ1,m, ρ) . π̃ proportional to π
for t = 1, . . . ,m do

θ̃ ∼ q(.|θt)
if u ∼ U(0, 1) < π̃(θ̃)

π̃(θt)
q(θt|θ̃)
q(θ̃|θt) then

θt+1 = θ̃
else

θt+1 = θt

end if
end for
return θρm+1, . . . , θm . Discard θ1, . . . , θρm samples as burn in

end procedure

Figure 2.1: The classical Metropolis Hastings algorithm. Starting at a position
θ1, this sampler takes m samples from a target density π̃ ∝ π using a proposal
distribution q(.|θt) centered around the current position θt. To avoid dependency
on the starting position θ1, a fraction ρ of the samples is discarded.

from the curse of dimensionality as only the part of the space that has as support
is explored. For this reason, recent research has focused on developing a wide
variety of samplers [Mur10; Mur+16; Fen+07; And+03; For+13]. Unfortunately,
there is currently no panacea that will provide satisfactory results for all use-cases
as each sampler has different statistical properties. It is therefore useful to have
a complete toolbox of samplers [Hab+18] available to choose from when faced
with a given problem.

In their essence, all MCMC samplers perform a random walk, mathematically
referred to as a Markov Chain. The transition kernel of the chain is constructed
in a way that ensures that the stationary distribution of the Markov Chain
obeys an arbitrary target π. As an introduction to MCMC samplers, consider
the classic Metropolis-Hastings (MH) sampler [RC99; CC00] given in Figure 2.1.
Like all samplers, an arbitrary target density π determined up to a constant,
denoted by π̃, is given as input along with a desired number of samples. For the
MH sampler, a proposal density q, a starting position θ1 and a fraction ρ is also
provided.

The sampler explores the target space by performing a random walk. For
example, if a normal distribution with unit variance and mean θt is used as a
proposal distribution q(.|θt), drawing from this normal will create a candidate
position θ̃ around the current position θt. This candidate is either accepted or
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28 Preliminaries

rejected with a probability given by the MH accept-reject ratio. This step is
accomplished by drawing a uniform distributed random number between 0 and
1, denoted by u ∼ U(0, 1), and comparing it with the accept-reject ratio. If the
proposal is symmetric, the ratio simplifies to Metropolis ratio π̃(θ̃)/π̃(θt). Note
that since the target density only appears in the ratio, it need not be normalized.
For the remainder of this thesis π̃ and π are used interchangeably, but it is
important to note that the normalization constant is typically not known.

While the samplers exhibit the Markov property, an important property of
the MCMC samplers is that within the produced samples, the choice of the
starting θ1 still plays a limited, although important, role. The effect of the choice
of the initial position diminishes gradually. Therefore, enough samples need to
be taken and a fraction ρ needs to be discarded as burn-in.

The convergence rate of Monte Carlo methods is
√
n where n is the number of

independent samples. However, with MCMC, the convergence rate is slower due
to dependency between the samples. One way to make the samples independent
is by keeping every kth sample, a process referred to as thinning. The higher the
thinning factor k, the more independent the samples. This also provides intuition
for approximating the real convergence rate of MCMC. Instead of expressing it
in terms of n, the convergence rate depends on the effective number of samples
neff, referred to as Effective Sample Size (ESS). In general, it is impossible to
compute neff exactly for arbitrary problems, but approximations exist.

For Bayesian inference, π(θ) is set to p(θ|D) and samplers are collected to
characterize the posterior. Note that p(θ|D) needs to be evaluated for each
sample, a computationally demanding task in PMX as it requires simulation of
PK and PD models of each subject.

For illustrative purposes, suppose that the MH sampler from Figure 2.1
is run on the target given in Equation (2.6) with θ = [x, y], based on Rosen-
brock, a test function commonly used to assess the performance of optimization
methods [JY13]. The resulting two dimensional samples with a tuned proposal
distribution q are shown by Figure 2.2 with θ1 = (0, 8) and k = 100. Assuming
that enough samples are taken, the shape of π(θ1, θ2) is characterized by the
samples. Note how the first samples depend on the initial position θ1. These
samples are not invalid, but are an artifact caused by taking only a finite number
of samples. A typical practical approach around this is to set ρ = 50%.

log π(x, y) = (1− x)2 + 100(y − x2)2 (2.6)

While theoretically, with an infinite number of samples, the whole distribution
is explored, note that in practice, a sampler can “get stuck” in a region of
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Figure 2.2: Samples from the Rosenbrock target density started at θ1 = (0, 8).
Note that the first samples, shown in red, depend on θ1 and do not approximate
the target density well.

high density. Consequently, the resulting samples do not describe the target
distribution well and inference based on these samples will be inaccurate. This
is an important issue to consider when the target density has multiple modes.

For that reason, it is advisable to run the sampler multiple times and to
ensure that samples overlap. Another issue is that of a low ESS. It typically
means that the chain did not take enough steps to properly “mix” and the
resulting samples are not reliable. A diagnostic to assess proper mixing is a
trace-plot constructed by plotting one dimension of the samples based on their
index. As long as there is not enough mixing, another proposal distribution
needs to be used, more samples need to be taken with a higher thinning factor,
or other MCMC samplers with different convergence properties are required.
The back-end parallelization part of this thesis focuses on parallelism in some of
the more robust and prominent samplers in use at the time of writing.

The trace-plot for five different runs with progressively larger k is shown in
Figure 2.3 for the first component of θ. With a d dimensional target π, a similar
plot should be created for each of the d components. In the example shown, the
total number of samples n increases with k to ensure that 500 samples remained
after thinning, i.e. n = 500k/ρ. Note how the sampler “gets stuck” around
the 250th sample with k set to 50 or 100, but with k set to 500 or more, this
problem is resolved. However, while increasing k results in more reliable samples,
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it also directly increases computation time, hence motivating the need for more
advanced samplers with different mixing properties.

2.4 Parallel Computing

In parallel computing, many independent processors are simultaneously employed
to solve a single problem with the goal to reduce the time required to produce a
result. The flip-side of this is that it puts more of the burden on the software
developers, or even the users, as they need to determine how to best utilize
resources. It is far from straightforward to leverage all the compute power
available in parallel systems, and it requires rethinking algorithms with explicit
parallelism in mind [EGC16; Gra+03].

Many models and implementations of parallel computing exists [Ski91], but
this dissertation focuses mainly on the message passing model of parallel comput-
ing due to its generality, relative ease of reasoning, and practical applicability to
large parallel systems. In this model, sequential processes communicate through
first-in first-out queues. The ease of reasoning stems from the deterministic exe-
cution of each process given the reception order of its messages. Each sequential
process is referred to as a processor throughout this dissertation. It is mostly
encountered through implementations of the Message Passing Interface (MPI)
standard [Gra+06]. From the perspective of the programmer, a set of processes
are running on one or more multi-core systems and each is treated identically.
These processes communicate through send/receive primitives or through collec-
tive operations built on top of these primitives. By default, hardware details
like CPU topology [Bro+10] and interconnect technology are hidden from the
programmer. If MPI is used in practice, some overhead is introduced for each
message exchanged between processes due to (de)serialization.

Contemporary parallel systems are typically organized in a hierarchical
fashion; some processors are “closer” to each other than to other processors.
The larger system is comprised of smaller physical systems, that in turn contain
multiple multi-core CPUs. Co-located processes typically have a link with lower
delay and higher bandwidth, compared to links between processes that are further
apart. Note that overhead is introduced even when running MPI processes on
the same physical system where communication passes through shared memory,
since at least one copy of the message contents is made.

In Linux, there is a subtle distinction between threads and processes [Ker10;
BC05] while with MPI, the communicating entities are referred to as processes.
Even though most implementations rely on MPI to evaluate the ideas proposed
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Figure 2.3: The first component x of the samples from the Rosenbrock target
density with k set to 1, 50, 100, 500 and 1000 from top to bottom, illustrating
the difference between poor and good mixing.
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in this dissertation, the term processor is used for the sake of generality and to
signify that the same ideas are also applicable to threads, processes and other
future technologies or a combination of these.

Productivity, not only in general but also in parallel computing, can be defined
as the ratio of work to time. Increasing productivity is either accomplished by
reducing time or increasing work. To study the quality of parallel approaches
to problems, the amount of work needs to be quantified first. For this, the
sequential execution time is taken as a baseline, denoted by Ts. The speedup
with p processors on the same problem, denoted by Sp, is then given by the
ratio of Ts/Tp. Intuitively, the best possible speedup is limited by p, although
in some cases, speedup exceeds p referred to as super-linear speedup. As an
example of this, suppose that computation is decomposed into a set of tasks
and each task can cancel and abort overall computation. When these tasks are
executed in parallel, the task that aborts computation could be executed earlier
by one of the processors than when these tasks are executed sequentially. If such
a task aborts computation, less work is performed and speedup will be above p.
Nevertheless, it is common practice to consider the parallel efficiency Ep, given
by Sp/p, to put performance into perspective with respect to this limit. While
all the presented parallelizations in this thesis have an efficiency below 100%, it
is important to note that the results should be considered in the context they are
reported. For example, a parallel algorithm that reaches 60% efficiency with a
hundred processors is still highly desirable as it will yield results 60 times faster
than a sequential algorithm. In any case, it is important to understand what
limits efficiency to avoid needlessly wasting computing power.

Note that Sp is given by the ratio of the sequential version of the algorithm
to the parallel version with p processors. One common way to parallelize an
algorithm is to insert constructs that assign work to processors and constructs
to collect and combine the results from each processor. This typically adds
overhead even if the parallel version is run with one processor. More complex
parallelizations have a similar effect. This distinction between the sequential
and parallel version results in a more optimistic speedup when the baseline is
the parallel version of the algorithm. Regardless, whenever parallel speedup is
reported in this thesis, the baseline is the running time of the parallel version
with a single processor since there was little to no difference when the other
baseline was used.

Amdahl’s famous law [Amd67] gives an upper bound on the achievable
speedup if the amount of work is fixed. More formally, if ρ denotes the fraction
of the work that can only be executed on a single processor, with any amount of
processors, execution time will at least be ρTs.
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Note that due to the inherent overhead introduced by communicating pro-
cessors, reaching acceptable performance becomes harder. A message exchanged
between processors needs to be prepared by the sending processor, placed on the
communication link and read by the receiving processor. Each communication
step adds additional computational requirements. In general, as more processors
are employed, more messages are required to keep these processors busy. The
overhead To,p, given by pTp − Ts, needs to be considered with respect to the
total amount of work required to solve the problem at hand, i.e. To,p/Ts. If
there a relatively large amount of work, To,p will be small and performance will
not degrade much due to the overhead.

For these reasons, the common approach in High-Performance Computing
(HPC) to circumvent limits imposed by overhead and the sequential fraction
is to scale up work essentially reducing ρ and forcing To,p/Ts to be as small as
possible. However, in PMX this is only possible to a small degree. For example,
the number of patients cannot be scaled up arbitrarily. Approaches, like those
explored in this thesis, that have a smaller ρ or where To,p/Ts is minimized by
other means are required instead.

2.5 Parallelization with Multiple Chains

An embarrassingly parallel approach, applicable to any MCMC sampler, is to
run multiple chains with differing PRNG seeds. This sampler is referred to as
the Multiple Chain (MC) sampler. Suppose that n samples are to be taken
without thinning. It turns out that by running p independent instantiations on
p processors, only a limited speedup can be achieved.

To see this, consider the computational DAG of this approach shown in
Figure 2.4. Edges depict information flow between tasks, shown by nodes. At
the top, the tth iteration of the first chains is shown in detail. Each iteration
starts with the last sample θt,1 and the target density evaluated at that sample
π(θt,1). Each iteration produces a new sample θt+1,1 with the accompanying
density π(θt+1,1).

Figure 2.5 illustrates the problem of this approach with eight independent
chains sampled in parallel on eight processors. The trace-plots show that with
ρ = 0.5, a common setting in practice, already around 89% of the samples from
each chain are discarded as burn-in, limiting speedup to approximately 1.7x.
When more parallel chains are employed, speedup converges to 2x and efficiency
drops towards 0%. In reality, speedup will be even lower since additional overhead
will be introduced by setting up sampling and collecting samples at the end.
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θ̃ ∼ q(.|θt,1) π(θ̃) accept/reject

π(θt,1)
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Figure 2.4: The dependency structure of the multiple chain parallelization. One
iteration in the first chain has been detailed above. To avoid overloading the
illustration, the inputs θt,1 and θ̃ to the accept/reject step have been omitted.
Each chain can be evaluated in parallel without exchanging information.

In general, the total number of samples that needs to be taken per chain is
nρ+ n/p. In the extreme, p = n and one sample is collected from each chain.
From this observation, it becomes clear that the burn-in can be seen as the
sequential fraction in Amdahl’s law. Subsequently, the speedup with p processors
Sp wont exceed 1/ρ.

To avoid this, samplers where information between chains is exchanged during
a run are required to improve mixing speed under a given computational budget
with parallel computing. Three such samplers, with information exchanged
between chains during a run, are considered in the first part of the dissertation.
Nevertheless, due to the stochastic nature of samplers, multiple runs are still
advisable. It is outlined here for that reason and since it is still common in
practice due to its simplicity [Car+17].

2.6 Parallel Hierarchical Models

PMX deals with models where the amount of available data is limited [PB00].
In contrast to more classical models where all data is “independent and identi-
cally distributed”, it is known from which patient each measurement is taken.
Hierarchical models exploit this information to improve predictive accuracy. The
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Figure 2.5: Samples taken from eight independent chains, run in parallel. Note
that samples from each chain need to be discarded as burn-in. These are shown
in red. Computational effort spent in the burn-in phase can be seen as the
sequential fraction of execution time in Amdahl’s law.

typical structure of these model is:

φi ∼ N (µ,Ω)

yij ∼ N (s(xij , φi), σ), i = 1, . . . ,M, j = 1, . . . , ni
(2.7)

Here, θ = [µ,Ω, σ, φ1:M ] and (xij , yij) ∈ D. On top of the structural com-
ponent s, describing the individual observations yij , the two statistical layers
characterize the within-subject variability (within each individual profile) and
the between-subject variability (on the individual parameters φi). The structural
models, often expressed with Ordinary Differential Equations (ODEs), describe
the biological process in terms of simple input-output equations. These systems
can generally not be expressed in a closed-forms solution and computationally
intensive time-stepping solvers need to be employed.

In hierarchical models, each level typically rely on the same models. For
example, the PK and PD characteristics of subjects are modeled with the same
equations and all subjects are placed in a single level. In Equation (2.7), these
are captured by the structural component s. The difference is in the data to
which each model needs to be fit.

As the model parameter θ is a concatenation of all the parameters from all the
levels, it is possible to separate out only the required parameters for each subject
and simulate the dynamics in parallel by assigning calls to s to different processors.
This is essentially a parallelization over i. The downside is that this requires
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altering the model to expose this parallelism either explicitly or by rewriting it
with some predefined and rigid parallel building blocks. However, depending on
the target parallel system, the models can be too small for parallelization. This
is not only due to idiosyncrasies like a short duration of participation in drug
trail, but also due to the simplicity of simulating some dynamics. Note also this
approach might not exploit all the available parallelism. It might be beneficial
to consider parallelizing over j or other computationally intensive transforms of
random variables that are specific to a model. For that reason, more automated
alternatives, like those explored in part two of this dissertation, are required.

2.7 A Computational Framework

Iterative methods and sampling algorithms, collectively referred to as optimiza-
tion methods in this thesis, require repeated evaluation of a model to assess the
quality of candidate parameters. As the complexity of scientific models increases,
the time to evaluate a candidate solution for these models also becomes pro-
hibitively long, and more evaluations are required to achieve acceptable solution
accuracy. Therefore, it is no surprise that model evaluations encompass the
majority of the computational time in optimization methods. Parallel computing
can reduce the time to find a satisfactory solution both in the front-end and the
back-end.

In the back-end, parallel versions of optimization routines [Pre+07] or sam-
pling methods [Cal14; For+13; MDJ06; Ang+14] evaluate multiple candidate
parameters concurrently and perform iterative updates based on their combined
objective values. This approach follows the Bulk Synchronous Parallel (BSP)
model of parallel computing [KK07]. The benefit is that the Application Pro-
gramming Interface (API) of the optimization method parallelized by an expert
need not change. Irrespective of what happens within the black box software
library, the scientist need only provide a function to evaluate the model f at a
set of parameters θ. The downside is that as systems with increasingly paral-
lel resources become available, maintaining high resource utilization becomes
difficult as the method itself constrains the amount of parallelization.

Figure 2.6 depicts the typical task graph of these optimization methods
and samplers. For example, particle swarm optimization [Zeu+11] concurrently
evaluates the model at multiple parameter choices, referred to as particles. The
number of particles chosen limits the amount of parallelism, and using more
particles does not necessarily improve convergence time.

Even if multiple evaluations of f can run in parallel, since each iteration
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Figure 2.6: The general dependency structure of the first two iterations of
parallel optimization methods depicted as a task graph. Nodes depict tasks, and
edges depict inter-task information flow. Iteratively, n tasks evaluate a different
candidate solution each on up to n processors in parallel. The label f(θi,j)
depicts the jth candidate in the ith step.

ends by collecting the results of these evaluations, depicted by the node with
label u in Figure 2.6, some time will be lost unless all evaluations take the same
amount of time. However, an important property of PMX models, not expressed
by Amdahl’s law, is that the computational time required to evaluate the model
depends on the choice of θ. This is referred to as load imbalance and needs to
be handled explicitly to avoid degraded parallel performance.

2.8 Conclusion

This chapter introduced the concepts required for the remainder of this disserta-
tion. It has also demonstrated why naive parallelization will only yield limited
results in samplers and why more advanced samplers are required. Discussion has
also touched upon why explicitly parallelizing compute intensive PMX models is
discouraged. A framework for computations has been introduced to show how the
computational aspects of samplers and model evaluations interact. The notion
of load imbalance, common in PMX models, was described in this framework.
The next chapter will look at the PMX models in more detail.
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Chapter 3

Approximate Repeated
Administration Models

3.1 Introduction

One of the key questions of drug development, which PMX is concerned with, is
what dosage regimen is safe and effective for individuals within a population.
In this field, models from PK and PD characterize the interactions between
a drug and an organism. Here, PK describes how a drug is affected by the
organism, and PD describes the effect of the compound on the organism. The
use of tools in this field requires both theoretical knowledge of biological systems
and statistical expertise [OF14]. Therefore, methods that are easy to use, like
the one described here, are of great interest.

Due to the complexity of these models, sufficient data is required to derive
meaningful conclusions, but clinical data is typically sparse. Therefore, the
common approach is to pool data from multiple drug trails and subjects within
those trials. In this context, it is imprecise to merely consider the data as an
unstructured collection of observations. Rather, with each observation, additional
valuable information is available. This includes from which subject an observation
is taken, his or her weight and height.

Mixed effect models incorporate this information in a statistically sound
manner. Since PK and PD models typically rely on ODEs, simulation requires
computationally intensive numerical methods. An integrator is configured to
ensure some level of accuracy in the result. Depending on the ODEs, the size
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40 Approximate Repeated Administration Models

of the steps that are taken is limited. More importantly, models with repeated
administration hamper performance further. In these models, the simulation of
dosing events causes the integrator to invalidate any gathered knowledge about
the ODEs and take small steps. In addition, after a dosing event, computational
time is spent on determining what step size to use.

Estimating parameters for these models in a reasonable amount of time
requires not only the right mathematical tools, but also techniques from computer
science. For example, within a drug trial, a compound is tested on multiple
subjects and to determine the model parameter quality, each subject can be
simulated in parallel. After parallelization, the most computationally intensive
part is the numerical integration. Although parallel numerical integration has
been studied [LMT01], only limited improvements are possible [Min10].

Instead, the method outlined in this chapter exploits the periodic behavior
of models in PMX by reusing previous computations and employing the method
of averaging to form an approximation of the model. It is applicable on top of
any numerical integrator and besides a single parameter, no additional input
from the user is required. To de-emphasize the existence of the parameter, it is
important to note that it can be tuned automatically in a use-case dependent
manner. Two examples are discussed to demonstrate this.

The remainder of this chapter is structured as follows. Section 3.2 lists
related work. Two examples of repeated administration models are discussed
in Section 3.3. The approximation method is presented in Section 3.4. Next,
experimental results are shown in Section 3.5, and Section 3.6 concludes and
provides directions for future work.

3.2 Related Work

Dunne et al. [Dun+15] studied the application of the method of averaging in
PMX, but their approach consisted of transforming the model by hand followed
by solving it symbolically. The automated method presented in Section 3.4
partially relies on the same observations but differs in two ways. First, it does
not require the user to manually alter the model. Second, for models that
combine both PK and PD, all portions of the model are handled while the
approach outlined by Dunne et al. focuses mainly on dealing with the PD
portion where no periodicity is observed.

Conrad et al. [Con+18] tackle computationally expensive models by con-
structing and gradually refining approximations of the posterior for Bayesian
inference during MCMC sampling. Their approximation method uses previous
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evaluations in a shrinking region to interpolate the posterior function. Similarly,
Gong et al. [GD17] propose an adaptive refinement strategy that builds a sur-
rogate model to explore a target distribution. Compared to these approaches
where no knowledge of the underlying model is used, the approximation outlined
below works at the level of the model itself. As such, the two approaches are
complementary.

Rasmussen [Ras03] considers Hybrid Monte Carlo (HMC) on Bayesian inte-
grals. In his work, gradients of the posterior are approximated using a Gaussian
Process. He notes that to guarantee that the samples generated by HMC are
unbiased, accurate posterior evaluations are only required at the end of a set of
leapfrog iterations. Similarly, in Section 3.5, gradients are computed from the
approximation and the final accept-reject step relies on the real model.

3.3 Repeated Administration Models

The two models in Sections 3.3.1 and 3.3.2 exemplify what is seen in drug
development when patients are administered a compound periodically. While
the details of the models are less important, they are listed here to describe their
structure. Each model, denoted by f , consists of a set of ODEs parametrized by
a vector φ. The set of q equations in f is denoted by S = {Si(t)}q1.

Data to which these models are fit consists of a dosage regimen D and a
sequence of observations (yj , xj). Each dosing event (a, c, t) in D adds some
amount a of a compound to any state identified by c in model f at time t. Without
loss of generality, the first dose is administered at t = 0, and all observations
and dosing events are sorted by increasing time t. To fit φ, prediction ŷj need
only be made at xj and Figure 3.1 outlines how to obtain predictions. It relies
on a subroutine that implements an integrator of which the state is stored in I.

The execution time of the integrator is mainly determined by the range
spanned by xj and the number of dosing events falling in that range since.
Repeatedly stopping the integrator to simulate dosing events is the main cause
for slowdown; as noted in Section 3.1, the integrator cannot take large steps
when the internal state is changed. The method presented in Section 3.4 avoids
this.

3.3.1 Nimotuzumab Model

The first model characterizes PK behavior of Nimotuzumab, a humanized mono-
clonal antibody mAb, in patients with advanced breast cancer [Rod+15]. The
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procedure Integrate(x1, . . . , xn, D, S)
k = 1
I = InitializeIntegrator(S)
(a, c, t) = GetDose(D, k)
for j = 1, . . . , n do

while t ≤ xj do
IntegrateTo(I, t)
AddToState(I, c, a)
k = k + 1;
(a, c, t) = GetDose(D, k)

end while
IntegrateTo(I, xj)
ŷj = GetState(I)

end for
return ŷ1, . . . , ŷn

end procedure

Figure 3.1: Collecting predictions ŷj using an integrator at time points xj with
a dosing regimen D. The ODE equations of the model are stored in S.

system of coupled differential equations in Equation (3.1) describes the dynamics
of this model.



dCtot(t)
dt = −(ke + kpt) · C(t) + ktp ·At(t)−

(
kint·Rtot·C(t)
kss+C(t)

)
dAt(t)

dt = kpt · C(t) · v1 − ktp ·At(t)
dRtot(t)

dt = ksyn − kdeg ·Rtot(t)−
(

(kint−kdeg)·C(t)·Rtot(t)
kss+C(t)

)
C(t) = 0.5 ·

[
Ctot(t)−Rtot(t)− kss

+
√

(Ctot(t)−Rtot(t)− kss)2 + 4 · kss · Ctot(t)
]

(3.1)

Observations to which this model is fit consist of measured free concentrations
of the mAb compound C(t), at a particular time t, determined by the total mAb
concentrations Ctot(t), the total target concentration Rtot(t) and the steady state
rate constant kss. The change in the amount of free mAb in tissue compartments
A(t) depends on C(t) and kpt and ktp which denote tissue-serum and serum-tissue
rate constants respectively. The other constants that need to be estimated are
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Figure 3.2: The ODE states from the Nimotuzumab three-compartment model
with ten dosing events. The state for Ctot(t), At(t) and Rtot(t) in function
of time is shown on the left and top right, and the projected value C(t) with
observations shown as red crosses on the bottom right. After the first few dosing
events, Ctot(t) and Rtot(t) exhibit close to periodic behavior. The plots were
created by supplying a dense sequence of time points for xj to Figure 3.1. The
inset on At(t) is discussed in Section 3.4.

the elimination rate kel, the degradation rate kdeg, zero-order kinetic synthesis
ksyn and irreversible internalization rate kint. Note that there is a bidirectional
influence between the compartments and C(t) since it also appears on the right
hand side. The model parameter vector φ is [cl, v1, Q, v2, kss, kint, ksyn, kdeg],
where ke = cl/v1, kpt = Q/v1 and ktp = Q/v2.

Figure 3.2 shows an example of the evolution of ODE states in time for the
Nimotuzumab model from Equation (3.1) with parameters cl = 9.93 × 10−4,
v1 = 1.38, Q = 4.00 × 10−3, v2 = 44, kss = 12.71, kint = 3, ksyn = 1 and
kdeg = 7. There are ten dosing events, each adding 50 milliliters intravenously.
Programmatically, this is done by adding the same amount to Ctot(t) at each
dosing event. During the first few dosing intervals, the concentration of the
compound increases until the rate at which it is eliminated balances the rate at
which the compound is added to the system. While At(t) increases perpetually
due to the bidirectional interplay between it and the compartments, nearly
periodic behavior is observed in Ctot(t) and Rtot(t). Note that measurements
are also taken after the final dosing event as C(t) drops.
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44 Approximate Repeated Administration Models

3.3.2 Canagliflozin Model

Canagliflozin is a drug for type-2 diabetes treatment. The model in Equation (3.2)
for this drug consists of both a PK and a PD portion. The former is modeled
by a two-compartment model [Hoe+15] denoted by the gut compartment AG(t),
the central compartment AC(t) and the peripheral AP (t). Following Dunne et
al. [Win+17], the latter is captured by glycated haemoglobin (HbA1c) denoted
by H(t).



dAG(t)
dt = −ka ·AG(t)

dAC(t)
dt = ka ·AG(t)− k23 ·AC(t) + k32 ·AP(t)− ke ·AC(t)

dAP(t)
dt = k23 ·AC(t)− k32 ·AP(t)

dH(t)
dt = kin + Ef − kout ·H(t)

C(t) = AC(t)/v

Ef = (Efc + Efp)H(0)−5
8−5

Efc(t) = Emax
C(t)

EC50+C(t)

(3.2)

For this model, φ = [kout, H(0), Efp, EC50, Emax], where Efp represents the
placebo effect, kin = H(0) · kout, EC50 is the exposure that gives half-maximal
effect and Emax is the maximal effect of the drug. The remaining parameters
are fixed. A simulation with kout = 10.24× 10−4, H(0) = 7.72, Efp = −0.482,
EC50 = 60.34 and Emax = −0.736 is shown in Figure 3.3. The remaining
parameters are ka = 3.86, k23 = 0.101, k32 = 0.0928, ke = 0.174 and v = 92.2260.
Similarly to Nimotuzumab, periodic behavior is observed for the PK portion.

3.4 Approximating Models

In a model, states are classified either as periodic or non-periodic. Typically, the
PK portion is periodic and the PD portion is non-periodic, but this need not be
the case. In the integrated states, three phases are distinguished. The first phase
spans over all dosing events for which the system has not yet entered periodicity.
The second phase is the periodic phase typically taking up the majority of time
in repeated dosing models as noted in Section 3.3. The start of this phase is
detected based on a threshold τ that defines when a state is classified as periodic.
The final phase starts at the last dosing event and ends at the last observation.
In Figure 3.2, depending on τ , the second phase could start at 500 hours.
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Figure 3.3: Canagliflozin PK/PD model for the first 21 dosing events. Periodic
behavior is observed after a few dosing events for the PK portion of the model
shown at the top. The PD portion, shown at the bottom, does not stabilize.

The goal is to avoid stopping and altering the state of the integrator to
simulate dosing events since this increases execution time substantially. During
the first interval of the second phase, all periodic states for the remaining
observations are collected. The value of all non-periodic states is collected
during the full length of the second phase by applying the method of averaging
numerically.

In clinical trials, it is common to have dosage regimens where all dosing
events add the same amount of a compound in the same way, i.e. ai = aj and
ci = cj for any pair of dosing events i and j in Figure 3.1. However, it is possible
to generalize the presented method where multiple runs of periodic behavior are
observed. Since the models considered here only use dosage regimens with a
fixed dosing amount, such extensions are left as future work. As will be shown
in Section 3.5, the efficacy of the presented method depends on the time spent
in periodic phases.

In reality, doses will never be spaced exactly uniformly throughout time. For
example, one of the individuals in the Nimotuzumab data set with 10 dosing
events, has the last dose administered at 1512.2 hours after the start of the trial.
The average dosing interval is thus approximately 168.02, but the dosing intervals
for this individual are between 167.33 and 170.07. In case varying intervals
are captured by the model, noise is added complicating periodicity detection.
Therefore, a preprocessing step ensures that the events are spaced equally at the
cost of potentially introducing some error in the final approximation.

If the mean time between doses is ∆t = t|D|/(|D| − 1), then the time for
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Figure 3.4: Dosing events are shifted to ensure that each dosing interval is the
same. All observations, shown as red crosses, associated with each dosing interval
are shifted accordingly. The 7th observation is an example of an observation
that, without capping, would be shifted to the next interval.

dosing event k is set to t′k = (k − 1) ·∆t. Next, each observation j is shifted
according to the offset to the dosing event before it. Concisely, xj is shifted
to x′j = t′k + zj , where zj is computed as follows. If tk denotes the time of the
dosing event before it, then zj = min(xj − tk,∆t− ε). Here, capping the offset
at ∆t− ε ensures that the observation is not shifted to the next interval when
it is close to the end since doing so introduces a large error due to the rapid
rise in compound concentration after a dose. Figure 3.4 illustrates this process
for an exaggerated example; as for the Nimotuzumab example shown above,
the variance in dosing intervals for real use cases is typically much smaller. For
models in which the dosing intervals are fixed, like for the Canagliflozin model,
data need not be preprocessed.

After preprocessing, integration can start. For any model f , three different
sets of equations S, S′ and S̃ are used. Here, S is the original unaltered set of
equations used during the first and third phase. During the first interval of the
second phase, S′ is used and the method of averaging is applied numerically
during the remaining intervals in the second phase using S̃. The details of these
sets of equations will be introduced next.

Integration commences on the set of equations S = {Si(t)}q1 in f . At each
dosing event k, all states in S are partitioned into r periodic states P = {Pi(t)}r1
and q− r non-periodic states N = {Ni(t)}qr+1 by using some threshold τ and the
criteria |(Si(t′k)− Si(t′k−1))/Si(t

′
k)| < τ . If |P | > 0, the state of the integrator
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Ireal is copied to Iapprox. At this time, denoted by tα below, the second phase is
entered and integration continues using Iapprox.

During the first interval of the second phase, integration continues with S′,
a set of equations constructed by adding the equations dP ′i (t)/dt = Pi(t) to
those in S for a total of 2|P | + |N | equations. The value of P ′i (tα) is set to
0. These additional equations will be used to compute the average of the
periodic states for use in the remaining intervals of the second phase. After
one dosing interval, integration continues using S̃, constructed by taking the
equations P̃ = {dP̃i(t)/dt = 0}r1 together with the states in N . The initial
value for the states in P̃ is P ′i (tα + ∆t)/∆t. In other words, the states in P are
replaced by a constant equal to the mean value during a dosing interval. This is
how the method of averaging is applied numerically. The values of the states
in N are then collected during the second phase at each x′j . Finally, at the last
dose, integration continues using S restoring the states in P to those saved in
Ireal. The top left of Figure 3.5 demonstrates when each of these sets is used.

The states of P during the second phase are collected at times tα + zj for
all observations j for which x′j > tα. Note that if integration can only continue
forward in time, all zj need to be sorted. This can be seen as moving observations
to the first interval of the second phase. Figure 3.5 shows the output for the
Nimotuzumab model from Figure 3.2. Note that except for a different value of
the integrated states, preprocessing and shifting of observations and events is
not reflected in the output.

Let c(t0, t1, S) denote the computational cost of using an integrator between
time t0 and t1 on a set of equations S. The total cost of integration can be broken
down into c(0, tα, S), c(tα, tα+∆t, S

′), c(tα+∆t, t|D|, S̃) and c(t|D|, tni , S). Since

doses need not be simulated in S̃, c(tα+∆t, t|D|, S̃) � c(tα+∆t, t|D|, S). Some
overhead is introduced by preprocessing the data and using S′ for one interval,
but this is typically much smaller than the reduction in execution time obtained
by avoiding simulation of doses between tα+∆t and t|D|.

Note that states in P are distinguished from those in N by τ . If τ is set too
low, all states remain non-periodic and there is no second and third phase. In
this case, no cost reduction will be made while some error will still be introduced
by the preprocessing step. On the other hand, if all states are marked as periodic,
then c(tα + ∆t, t|D|, S̃) = 0 since it can be skipped completely and larger cost
reductions are expected. Note also that if all measurements after the last dose
fall within a span of ∆t, integration does not need to switch back to S from S̃.

A useful aspect of the outlined approach is that S′ and S̃ can be constructed
from S without symbolic manipulation. Integrator implementations require
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Figure 3.5: Approximation of the Nimotuzumab three-compartment model with
ten dosing events. Different sets of equations are used at different times. The
sets are S = P ∪ N , S′ = P ′ ∪ N and S̃ = P̃ ∪ N . These are only shown in
the top left, but the change in equations effects all states. The choice for τ
defines the phases. Here, the first phase spans [0, 504], the second phase spans
[504, 1512.2] of which the first interval is [504, 672] and the third phase starts at
1512.2. Compare all results with Figure 3.2 and note how At(t) is smoothed out
due to applying the method of averaging numerically. However, preprocessing
and event shifting happens transparently. The effect of approximation on the
other states is barely visible.
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the user to provide a function that, given Si(t), returns a vector of which
the ith component represents dSi(t)/dt . Multiplying this vector with the bit
vector where all the components corresponding to states in N are set to 1 is a
straightforward way to transform S into S̃.

3.5 Performance Evaluation

Test data is taken from an online resource [Tra18] for the Nimotuzumab model
and is generated synthetically for the Canagliflozin model using the parameter
estimates from Dunne et al.[Win+17]. The Stochastic Approximation Expecta-
tion Maximization (SAEM) algorithm from Kuhn et al. [KL04] is used to fit a
complete hierarchical model, described in Section 7.3. It is difficult to obtain
a clear understanding of how well the presented approximation performs by
comparing SAEM directly. Instead, the SAEM algorithm is run on the real
model and the parameters at which the likelihood is evaluated are logged. The
CVODE solver from the SUite of Nonlinear and DIfferential/ALgebraic Equa-
tion Solvers (SUNDIALS) software package [Hin+05] is used as the integrator
implementation.

The evaluation time together with the log-likelihood value of the classical
approach from Figure 3.1 is measured for the collected parameters. The same
is measured for the approximate model with different choices for τ . Figure 3.6
illustrate the influence of τ on both the relative error of the log-likelihood and
the speedup between the real and the approximate model. For τ = 0, no speedup
is expected since no states will be classified as periodic. Since doses are shifted
for the Nimotuzumab model, some error is still introduced. This is not the
case for the Canagliflozin model as it does not take into account varying dosing
intervals. In both models, the slowdown with τ = 0 is due to computing and
sorting zj , and the additional bookkeeping that is needed to compare the value
of each state with τ . Note the difference in speedup between the two models.
The Canagliflozin data contains individuals with a much larger number of dosing
events than those in the data for the Nimotuzumab model.

Next, data is generated synthetically with an increasing number of doses to
show that the total time spent by the integrator in the second phase determines
the improvements that can be obtained by using the approximate model. In
Figure 3.7, τ increases from 0 to 0.008, showing that with more dosing events,
and hence more periodic behavior, a larger increase in performance is observed.

Recall from Section 7.3 that φi = µ+ηi. In algorithms like SAEM, one of the
steps involves integrating out random effects ηi for a given individual. Due to
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Figure 3.6: Violin plots showing relative error and speedup as the threshold τ
increases for the Nimotuzumab model at the top and for the Canagliflozin model
at the bottom. A larger τ increases the probability of introducing a larger error.
At the same time, a higher speedup factor is obtained. While both models show
the same behavior as τ increases, there is a difference in scale of the error and τ
due to a different number of dosing events in the data and structural differences
between the models.
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Figure 3.7: Speedup for varying τ and varying number of observations for the
Canagliflozin model. With more observations, the second phase makes up a
larger fraction of the total execution time. Hence, there is a more opportunity
to reduce execution time. Although not clearly visible, with τ = 0, a slowdown
of up to 25% is seen.
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Figure 3.8: ESS per unit time while varying τ for the Canagliflozin model. This
metric can be used to tune τ automatically.

the complexity of the models, MCMC samplers are used. Using the approximate
model directly in this step results in biased estimates as the introduced errors
change the distribution of random effects. As shown above, through the choice
of τ , accuracy is sacrificed for performance. Two ways are discussed to use
the approximation without introducing bias. A function that weights both the
accuracy and the performance aspects is given for each. The same function
can then be used to tune τ automatically. While tuning brings with it some
computational costs, estimating parameters of hierarchical models takes orders
of magnitude longer so it is worth spending some time on the tuning process.
The objective is to find a sufficiently good value for τ and not necessarily the
optimum. Therefore, tuning can be done on a subset of individuals.

One way to use the approximation is with HMC. Here, new positions are
proposed by following the gradient L times and performing an accept-reject step
at the final position. If gradients are computed from the approximate model
and the accept-reject relies on the real model, the samples obtained remain
unbiased [Ras03]. Note that in scenarios where L is large, larger reductions in
execution time are possible. Since the gradients are only approximate, proposals
will be of lower quality. For example, if the real and the approximate gradients
differ too much, the proposed positions will have low mass and many points will
be rejected. In turn, this lowers the ESS metric used to evaluate the information
content of dependent samples. Tuning τ is accomplished by maximizing ESS
per unit time. Figure 3.8 shows this metric for Canagliflozin using L = 4 while
varying τ . Clearly, the optimal value for τ depends on the choice of L.

As noted above, generating samples directly with any MCMC sampler from
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Figure 3.9: The value of log|Σ̂τ | in function of τ for the importance sampling
estimator. By setting τ to 0.7, an appropriate trade-off between approximation
accuracy and computational cost is made.

the random effects distribution built with the approximate model will introduce
bias due to the errors. Another way to use the approximation is through
importance sampling, where bias is corrected by weighting each sample [Mac03].
These weights, obtained by taking the ratio between the density of the real
and the approximate model, can be computed in parallel. If there is too much
difference between the importance distribution and the target distribution,
expectations computed from samples will exhibit more variance, denoted by στ .
An estimator σ̂τ is built by repeated sampling. A value for τ that trades off
between computational efficiency and quality is chosen by minimizing σ̂τ while
keeping time fixed. With multiple random effects, the covariance estimator Σ̂τ
is used instead. Figure 3.9 shows this for the Nimotuzumab example. In this
case, τ is tuned by minimizing |Σ̂τ |, the determinant of the covariance matrix.

3.6 Conclusion and Future Work

This chapter introduces an approximation of repeated administration models
that exploits past computation efforts and employs the method of averaging
numerically. In case of models with varying dosing intervals, a preprocessing
step allows for detection of periodic behavior at the cost of adding some error
to the approximation. The actual improvements vary depending on the model
and the parameters of the model. On one of the test models, up to 70-fold
reductions in run-time were measured while introducing only on the order of
10−3 relative error. Since fitting a hierarchical model can take up to hours or
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even days depending on the configuration parameters of algorithms like SAEM,
these improvements have a tremendous impact on the end-users.

The approximation relies on setting the threshold τ to detect repetitive
behavior in ODE states. It determines both the error and speedup of using
the approximation instead of the real model. Incorporating a self-adjusting
mechanism to automatically set τ for an MCMC sampler was discussed. Different
objective functions can be devised depending on the use-case to tune τ , some of
which will be studied in future work.

Speculative parallelism is a method to parallelize sequentially dependent
tasks [Gra+03]. It has previously been applied to the classic Metropolis-Hastings
MCMC sampler [Ang+14] where the sequence of accept-reject choices are guessed
to predict the chain positions. Verification of these predictions then proceeds
in parallel. A benefit of the speculative approach is that the collected samples
are unaffected. Similarly, the approximation method presented here can be
applied to predict the chain, after which verification can occur in parallel. As
in Section 3.5, it is again possible to tune τ . Here, τ trades off between the
prediction accuracy and the time spent creating the prediction.

The choice of τ does not bound the error in the approximation. Tolerance
bounds are typically already provided as parameters for numerical integration
methods. Therefore, a promising direction of future work is to consider the
change in integration results by entering the second phase one interval later.
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Back-end parallelization
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Chapter 4

Improving Operational
Intensity

4.1 Introduction

It has been a long established fact that the memory subsystem in contemporary
systems plays a crucial role in determining performance. It was predicted that
performance of all algorithms would be dominated by the memory subsystem
[WM95], but this is only so for algorithms that neglect these system specifics.
The memory hierarchy of modern processors, for which bandwidth at different
levels is shown by the left of Figure 4.1, places particular importance on data
locality.

At the same time, the number of cores per processor has increased circum-
venting physical limits of driving up frequency and keeping costs low [EGC16].
This has led to development of parallel algorithms to leverage available compute
capacity.

While modern systems employ multi-channel memory architectures to in-
crease memory bandwidth available to the processor [Dre07], it still determines
performance for computations with low operational intensity. The situation
is worsened in multi-core systems as each core in the processor competes for
the same memory controller. Per core memory bandwidth diminishes, and
computation stalls more frequently. In addition, multiple cores are needed to
saturate memory bandwidth. Figure 4.2 illustrates this with data collected using
a tool based on lmbench [MS96]. Note that when two cores run the benchmark
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Memory type Size Bandwidth
CPU registers few 1 TB/s
CPU caches KBs 100 GB/s
Main memory GBs 10 GB/s
Disk storage TBs 100 MB/s
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Figure 4.1: Approximate performance
at each memory hierarchy level in a
modern system.

Figure 4.2: Memory bandwidth for
increasing number of cores on a single
processor.

in parallel, the per core memory bandwidth drops only slightly while if one core
could saturate the available bandwidth, a larger drop would be expected.

Operational intensity [WWP09] is a feature of a computation kernel that
measures the number of operations per unit of data. If this ratio is low, only a
few cycles are spent processing each data element placing more pressure on the
memory subsystem. If this subsystem becomes saturated, processing stalls. This
is especially relevant for many machine learning applications such as regression,
support vector machines and neural networks, as the training data set needs
to stream through the memory hierarchy multiple times to compute the cost
associated with the a candidate parameter θ. With Big Data, the hierarchy
depth increases since data is loaded from disk or networked storage.

Modern super-scalar processors implement various techniques including
prefetching, Simultaneous Multithreading (SMT) and ILP to avoid stalls caused
by memory latency. When the number of operations per unit of data is high,
the processor is less likely to stall from data starvation. Based on the opera-
tional intensity perspective, this chapter proposes to perform useful computation
during otherwise stalled cycles shifting the computation kernel in the roofline
model [WWP09] towards maximum compute performance and away from mem-
ory bandwidth limits. The two parallel MCMC samplers considered here are
the parallelization over multiple chains from Chapter 2 and the recently intro-
duced generalization, referred to as the Multiple Proposal (MP) sampler, from
Calderhead [Cal14].

The design of the MP sampler, that allows parallelization within a chain,
stems from the observation that a finite-state Markov chain constructed over a
set of proposals maintains the target density. Figure 4.3 illustrates the DAG of
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. . . θ̃1:n ∼ q(.|θt,1)

π(θ̃1)

π(θ̃2)

. . .

π(θ̃n)

Build I θt+1:t+k ∼ I . . .

Figure 4.3: An iteration of the MP sampler with proposals θ̃1:n, π(θ̃i) calculated
in parallel forming a stationary distribution I from which k samples are drawn.

an iteration emphasizing that the target π can be evaluated at the proposals
θ̃1:n in parallel.

The goal of this chapter is not to introduce a new type of parallel sampler,
but rather to introduce a methodology to restructure existing parallel samplers
improving their operational intensity. In other words, rather than focusing on
what should be executed, a central aspect tackled by other parallel samplers, the
emphases is on how to execute tasks. Therefore, it can also be applied to other
parallel samples like the parallel version of the Independent Metropolis-Hastings
(IMH) sampler presented by Jacob et al. [JRS11].

The remainder of this chapter is structured as follows. Section 4.2 provides
background on Bayesian Logistic Regression and the target density to be sam-
pled with MCMC. Section 4.3 references related work. Section 4.4 describes
the methodology applied to those samplers. Section 4.5 provides results and
Section 4.6 concludes the chapter.

4.2 Bayesian Logistic Regression

One benefit of using machine learning algorithms on increasingly larger quantities
of data is that more complex structures can be revealed. In addition, it is not
uncommon to deal with high-dimensional feature data sets in today’s Big Data
era. Machine learning on this scale has been a subject of research resulting in
methodologies to solve problems under certain constraints [Qiu+16].

As discussed in Equation (2.4), in the Bayesian framework, knowledge about
model parameters θ is combined with evidence D to form the posterior: π(θ) =
p(θ|D) ∝ p(D|θ)× p(θ). Bayesian logistic regression [P M12] is typically used
to model categorical data. Assume independent data entries (xi, yi), where xi
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are covariates and yi ∈ {−1, 1} are binary labels, the log likelihood is given
by
∑
i− log

(
1 + eyixi·θ

)
. All entries stream through the cache at least once to

evaluate this posterior.
The methodology outlined below is demonstrated in the context of Bayesian

inference using logistic regression on a data set larger than the last level cache
since it is both generally applicable, and has a low operational intensity by
default; execution becomes dominated by posterior evaluations as the amount of
data grows. However, the idea is generally applicable to any parallel algorithm.
The ratio of the bandwidth to the latency of successive caching layers will mostly
determine the performance improvement.

4.3 Related Work

Scott et al. [Sco+16] explores consensus Monte Carlo algorithms in the Big Data
context by proposing to shard data and to break up prior information among
workers and combining partial posterior distributions. However, performance is
not evaluated from the operational intensity perspective.

Chopin et al. [CR17] discuss to which extent it is sound to showcase a
Bayesian computational approach on a binary regression model. Based on
their results, instead of relying on sampling from the posterior directly, they
advocate to use Expectation Propagation to approximate the posterior although
they note dealing with data that has a high dimensionality could require other
approximation methods. The reason to use binary regression in this chapter
is two-fold. First, a fairly large dataset with 512 features has been selected
as it demonstrates the main idea, keeping processors busy during otherwise
stalled cycles, well. Second, binary regression generalizes to other levels of the
memory hierarchy where the same idea is applicable, an interesting aspect when
considering datasets with more features.

Balan et al. [BCW13] reformulate the accept/reject ratio as a statistical
hypothesis test. More biased samples can be gathered per unit time reducing
the variance of the estimator. The idea of improving results given the same
computation time is analogous, but since likelihood evaluations are factorized,
the outlined methodology is orthogonal since all data are still used.

Delayed Acceptance introduced by Banterle et al. [Ban+19] is similar in
that rejection is possible after partial computation at the expense of increased
variance.

Zhao et al. [ZQR16] propose caching middleware with a heuristic and a
design allowing explicitly caching control for distributed storage. Since the
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methodology below focuses on performance at the CPU level, the opposite
approach of restructuring the samplers is needed to leverage caching hardware.

4.4 Hiding latency with Useful Computation

As long as the target density evaluation dominates execution, it seems reasonable
to assume that the MC sampler with ρ = 0, and the MP sampler should scale
with the number of chains or proposals n set to some integer multiple of p.
Recall from Section 2.3 that a fraction ρ of the samples is discarded. For this
reason, the MP sampler is preferred since ρ > 0 in practice. However, assuming
a sufficiently large working set, cores compete for memory bandwidth in both
parallel samplers. Data fetched into the CPU cache by one of the cores will
potentially be reused by others. This happens by chance since there are no
synchronization points, and as the span of data entries accessed at a given time
exceeds cache capacity, performance degrades.

The target distribution for Bayesian logistic regression can be factorized,
denoted by π(θ) =

∏
i πi(θ). This leads to restructuring the samplers from

Figures 2.4 and 4.3 as shown by Figures 4.4 and 4.5 respectively. The restruc-
turing assures data entries are loaded exactly once from memory since each core
operates on a data partition. The main advantage of this is that n can be set
more freely. By increasing n while keeping p constant, useful computations can
be introduced during otherwise stalled cycles. Note that increased ILP further
reduces execution time.

An assumption made here is π(θ) can be factorized into many more terms
than p. This assumption is satisfied by many contemporary datasets. If this is
not the case, each core will need to perform a full likelihood evaluation. The
main idea of this chapter is still applicable in that each core could be assigned
multiple complete likelihood evaluations.

4.5 Results

To compare scalability, performance, expressed as the average number of samples
per second, in function of the number of cores was measured. The test system
had an Intel E5-2690v2 processor with 10 cores and 32 GB of memory. For
reproducibility and reduced variance across runs, operating frequency of the cores
was fixed, Operating System (OS) features to migrate memory were disabled,
and software threads were affinitized one-to-one with hardware threads.
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θ̃1 ∼ q(.|θt,1)

θ̃2 ∼ q(.|θt,2)

. . .

θ̃n ∼ q(.|θt,n)

π1(θ̃1), . . . , π1(θ̃n)

π2(θ̃1), . . . , π2(θ̃n)

. . .

πp(θ̃1), . . . , πp(θ̃n)

accept/reject

accept/reject

. . .

accept/reject

Figure 4.4: An iteration of the restructured MC sampler with n chains. The
target distribution π is factorized into π1, . . . , πp each of which is assigned to one
of p cores. Core i computes factor πi for all n chains. The resulting factors are
collected during a reduction phase followed by accepting or rejection to produce
n new samples.

. . . θ̃1:n ∼ q(.|θt,1)

π1(θ̃1), . . . , π1(θ̃n)

π2(θ̃1), . . . , π2(θ̃n)

. . .

πl(θ̃
1), . . . , πl(θ̃

n)

Build I θt+1:t+k ∼ I . . .

Figure 4.5: An iteration of the restructured MP sampler with n proposals and
p cores.

The results highlight improvements for each sampler separately, but, although
not the goal in chapter, a comparison shows that the MP sampler outperforms
the MC sampler since less samples are discarded.

On the left, Figure 4.6 shows performance of the basic and restructured MC
sampler in function of the number of cores. To distinguish from the definition
of Sp in Section 2.4, Sn,p denotes the speedup with n chains or proposals and
p cores. Since ρ is set to 0.5, Sn,p ≤ 2 for the same reason that Sp < 1/ρ as
discussed in Section 2.5. The basic sampler scales far less due to reduced per
core memory bandwidth while the restructured sampler performs better. First,
if p = n then Sn,p reaches 2. Second, the best configuration scales far beyond
this since n is reduced. The right of Figure 4.6 relates the performance of the
restructured sampler with both configurations. Results are expressed in terms of
improvement with respect to the basic sampler that suffers from low operational
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Figure 4.6: Performance of the MC samplers is shown on the left. The basic
sampler shows no scaling, while the restructured sampler with p = n is limited
by a speedup of 2 and the best configuration scales beyond that. The right
shows the improvement by restructuring the MC sampler with respect to the
basic sampler. A larger improvement is observed with more cores as the basic
sampler becomes more memory bound

intensity. Each data point therefore reflects performance improvements due to
restructuring while keeping p fixed and deriving the optimal value for n from
Figure 4.8.

Figure 4.7 compares the performance for the basic and restructured MP
sampler with and without SMT. The data reflects that the basic sampler is more
memory bound since, in relative terms, it benefits more from SMT than the
restructured sampler. The number of proposals calculated during each iteration
for the basic sampler was determined by the number of hardware threads. Again,
performance does not scale linearly with an increase in the number of cores. With
the restructured sampler, the number of proposals can be chosen arbitrarily and
the optimal configuration is shown in Figure 4.7. The bottom of Figure 4.8 shows
performance in function of the number of proposals from which the optimal
configuration is determined. The optimal number of proposals is higher than the
number of hardware threads, as this hides latency caused by data being loaded.

4.6 Conclusion and Future Work

It is well known that the memory subsystem in contemporary systems plays
a decisive role in performance. The presented method introduces useful com-
putations to hide stalls resulting in significant improvements. This has been
demonstrated in the case of Bayesian logistic regression with two MCMC sam-
plers. The optimal for the MC sampler and the MP sampler was a reduction
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Figure 4.7: Performance of the MP samplers. The restructured sampler scales
better than the basic sampler. SMT is relatively less beneficial for the restruc-
tured sampler due to an increase in operational intensity.
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Figure 4.8: Performance of the restructured MC (top) and MP (bottom) sampler
in function of n. The optimal n for the MC and MP sampler is between 2 and 5
and around 24 respectively.
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in the number of chains and using more than twice as many proposals as cores
respectively.

The effectiveness of restructuring with likelihoods that can not be factored is
left for future work. For this use-case, the amount of work assigned to each core
needs to be at least doubled.

Automatically finding the optimal configuration have been left out since
the focus has been on demonstrating the effectiveness of restructuring. Such
automatic parameter tuning with stochastic optimization during the initialization
phase is desirable for a general solution and is part of future work.

Since the computational kernel of Bayesian logistic regression can be rewritten
in terms of a matrix multiplication, another direction for future work is to leverage
highly optimized implementations, like those available in the Basic Linear Algebra
Subprograms (BLAS) package. The general trend with these implementations is
that a higher number of operations can be performed as the input size increases.

In addition to the example of parallel prefetching noted earlier, other samplers
where computation is interleaved with stalls while subsequent data elements
are fetched, include model selection and ensemble models. Exploring how
restructuring can be of benefit here is also part of future work.
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Chapter 5

Distributed Affine-Invariant
Sampling

5.1 Introduction

MCMC methods, like the Metropolis-Hastings sampler [And+03] and the Gibbs
sampler [CG92], can be parallelized by evolving one or more independent chains.
As noted in Section 2.5, the downside of this straight-forward approach is that
speedup is limited since samples from each chain are discarded as burn-in [Mur10].
Another important issue is that the need for parameter tuning complicates their
use.

Goodman & Weare [GW10] introduced a sampler with an affine invariant
property. Their sampler performs equally well in statistical terms, measured
for example by autocorrelation time [Tho10], on any affine transformation of
the target density. Consequently, little or no tuning is required from the user.
The sampler has been parallelized by Foreman-Mackey et al. [For+13], and has
become popular since it provides some speedup from parallelism. However,
it performs poorly in a distributed environment as the widened gap between
communication and computation cost is neglected.

This chapter improves the sampler of Foreman-Mackey et al. by removing
dependencies between computational steps. While these changes do not affect
the generated samples, consequently leaving the statistical properties of the
parallel sampler unchanged, the decrease in synchronicity makes the sampler
perform well in a distributed environment. The observation that allows this is
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that pseudorandom choices can be predicted.

The remainder of this chapter is structured as follows. Section 5.2 references
related work. Section 5.3 describes the parallel affine invariant algorithm currently
in use. Section 5.4 presents the fully decentralized version of the algorithm.
Section 5.5 provides and discusses results, Section 5.6 concludes the chapter and
proposes future work.

5.2 Related Work

Angelino et al. [Ang+14] speculatively evaluate future positions of a sampler in
parallel by relying on determinism in PRNG streams. This chapter builds on
the same determinism.

Murray [Mur10] also considers a distributed system by mixing proposals
from multiple distributed chains, but this requires global communication. In
the sampler outlined by this chapter, communication overhead is minimized by
exchanging messages between pairs of chains during each step.

Partitioning and analyzing data simultaneously across multiple machines is a
viable solution when data sets are large [NWX14; Sco+16]. These algorithms rely
on an expensive reduction step, during which machines are idle. This chapter
focuses mostly on compute bound problems. Note also that the presented
algorithm is fully decentralized and no reduction is performed at the end.

5.3 Parallel Stretch Move

The stretch move algorithm from Goodman & Weare evolves an ensemble of
walkers {Xi}. The position of each walker Xi is combined with the most
recent position of another randomly selected walker, Xj . Foreman-Mackey et
al. adjusted the stretch move to allow for parallelism. The version listed in
Figure 5.1 is a rewrite of the algorithm to highlight the dependency structure.
The parameter aw is set to 1.5 [CF10] and U{a, b} denotes the discrete uniform
distribution over all integers in [a, b]. The position of walker i in step s is denoted
by Xs

i . Walkers are initialized at random positions where the target has support.

This algorithm follows the fork-join model. The main loop is executed by
one thread. Walkers are split into two groups G1 and G2 and updates in each
group are executed in parallel. Hereafter, each inner loop will be referred to as a
partial step. An update involves pairing each walker in the current group with
a random walker Xj in the other group. The position of Xi from the previous
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step is used during the update. All threads are synchronized after each partial
step to ensure all walkers have been updated.

The MPI based implementation provided by Foreman-Mackey et al. translates
this into a master-slave model. Slaves listen for positions at which the target
density needs to be evaluated. After returning a result to the master, the master
replies with more work if not all walkers in the current group have been updated.
Execution progresses to the next partial step after all walkers in the current
partial step have been updated.

Three aspects of this master-slave approach limit performance. First, with
many workers, the master is too busy processing requests and workers starve.
Second, the time between assigning an update to a worker and receiving a response
includes the network latency. As it increases, overall performance degrades.
Third, it is unreasonable to assume that evaluating the target at any position
takes a constant amount of time. Not only is this caused by characteristics of the
target distribution itself, operating system level factors also play a role [Tsa+05].
While load balancing partially alleviates this, synchronization after each partial
step is bound to leave workers idle.

5.4 Distributed Sampler

Stochastic algorithms are almost always implemented using PRNGs for practical
reasons. Usually, the seed is fixed to make debugging easier and for reproducibility.
Building on this idea, if multiple processors execute the algorithm listed in
Figure 5.1 with the same seed, each processor will make the same “random”
choices. Put differently, any “random” choice can be predicted.

The two uniformly distributed random variables used during the update are
independent from the random variable used for pairing walkers. This makes it
possible to not only draw n/2 random numbers first and pair each walker, but
also to generate all the dependencies between all walker positions. The direction
of pairing walkers can then be reversed; for each walker, the walkers in the next
partial step that will select it are known. If random number sequences do not
overlap, each walker can use an independent PRNG state. This is the approach
taken here, but alternatives, including reserving blocks from a single random
stream or leap-frogging [BM07], are viable as well.

All dependencies can be summarized in a graph as shown by the top of
Figure 5.2 for n = 8. Nodes represent walker positions. Edges represent
dependencies between positions.

Each walker depends on exactly one walker in the previous partial step, while
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procedure ParallelStretchMove(π, n)
G1 = {1, . . . , n/2}, G2 = {n/2 + 1, . . . , n}
Initialize({X0

1 , . . . , X
0
n})

for s = 1, . . . do
for i ∈ G1 do

j ∼ U{n/2 + 1, n}
Xs
i = Update(π, Xs−1

i , Xs−1
j )

end for
for i ∈ G2 do

j ∼ U{1, n/2}
Xs
i = Update(π, Xs−1

i , Xs
j )

end for
end for

end procedure

procedure Update(π, Xi, Xj)
z = ((aw − 1)× U(0, 1) + 1)2/aw
X̃i = Xj + z(Xi −Xj)

if U(0, 1) < zn−1 × exp
(
π(X̃i)− π(Xi)

)
then

return X̃i

else
return Xi

end if
end procedure

Figure 5.1: The parallel stretch move algorithm [For+13] rewritten to highlight
the dependency structure. A target distribution π and the number of walkers n
are provided as input. Walkers in groups G1 and G2 are updated alternatingly.
Stop conditions are omitted.
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1 0 3 2

z z + 1 z + 2 z + 3

Figure 5.2: Walker positions are tracked and part of the dependency graph is
kept in memory. The active walker positions are filled in black. Red depicts
dependencies that have been removed from memory. The dependencies shown
in blue will be generated when a walker enters that step.

the walker itself can be used by up to n/2 walkers from the next partial step. A
walker update always involves the previous position of the same walker, shown
as a dashed edge. Every dependency graph will follow this structure, although
the solid edges might differ if another seed is chosen.

This dependency structure is loosely coupled. In theory, although unlikely,
it is even possible that the graph is disconnected. Since |G1| = |G2|, it is
almost certain that there will be walker positions that will not be used by other

walkers. The probability that a given walker is not selected is (1− 2/n)
n/2

which
approaches 1/e quickly as n→∞. With n = 20, the probability is already 0.35.
Hence removing global synchronization after each partial step is beneficial. If
dependency graph management overhead is kept to a minimum, wait time can
be reduced.

Increasing n makes the dependency structure more loosely coupled allowing
more communication delay to be hidden. At one extreme, if one sample is col-
lected from each walker, the problem becomes embarrassingly parallel. However,
to get independent samples, each walker needs to take enough steps. Statistical
effects of the choice for n is out of the scope of this work as the effects are the
same in both a shared and a distributed-memory system.

The graph can be used in a master-slave model to reduce wait time in
comparison to the fully synchronized version from Foreman-Mackey et al. More
importantly, in a fully decentralized system, assuming a homogeneous cluster,
an equal share of walkers can be assigned to each processor. Such an assignment

71



72 Distributed Affine-Invariant Sampling

can be computed directly and ensures that no communication is required for the
dashed lines from Figure 5.2. Other dependencies are not taken into account.

Even if n is too low to hide all communication, using the graph in a dis-
tributed system will outperform the master-slave samplers since only one-way
communication delay is paid. A two-way communication delay would need to
be paid if each position would be requested explicitly. The PRNG seed used to
create the dependency graph is a single number that encodes all these requests.

Figure 5.3 outlines the distributed sampler. Each processor runs a loop that
multiplexes two operations: receiving and buffering results, and executing tasks.
A task stores all the data required to update a walker. The scheduler matches
walkers with incoming dependencies using a hash table.

Each task is placed in the scheduler, which internally places the task in a
ready-queue if all dependencies are available. After a task is executed, its result
needs to be sent to each processor that runs tasks that depend on it. Note that if
a processor runs multiple tasks that depend on it, the result is sent only once to
that processor. This optimization is implemented with a lookup table to detect
to which processor the result has already been sent. It reduces communication
overhead if multiple walkers assigned to a processor depend on the same result.
At reception, results are stored in memory. A result is removed from memory
after all tasks that depend on it have moved to the ready-queue.

It is memory inefficient to store the whole graph in memory in each process.
Even if available memory is not a limiting factor, random access in the graph is
expensive since the data will likely be out of the CPU cache [Dre07]. By tracking
all current walker positions, it is enough to store only a part of the graph in
memory as shown by Figure 5.2. A double-ended queue that allows direct access
to its elements is maintained together with an offset, z. A slice of the graph is
generated when the queue is extended.

Since each processor collects samples from its assigned walkers, and walker
positions are only shared on a need-to-know basis, samples are spread across
processes. Samples can be aggregated at one process either during execution, or
by having each process store its samples on a distributed file system. The latter
approach has been taken in the implementation that is evaluated in Section 5.5.

The goal of any scheduler is to choose an order of execution to optimize some
metric without influencing the results. For the distributed sampler, the scheduler
chooses which of the executable tasks should be prioritized among those for which
the dependent position has been received. A First-Come-First-Serve (FCFS)
scheduler executes tasks in the order that they become executable. The benefit
of such a scheduler is that it requires minimal resources. In contrast to the FCFS
scheduler, the heuristic described in this section makes choices to reduce wait
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procedure DistibutedStretchMove()
W = {Xi | i mod p is the id of this processor}
T = {t | t initializes a walker in W}
add each t ∈ T to scheduler
loop

while receives pending do
receive position v
T = {d | task d depends on v}
mark each d ∈ T as executable

end while
if scheduler has executable tasks then

take a task t from scheduler and execute
T = {d | task d depends on t}
N = {n | process n runs task t ∈ T}
send result of t to each n ∈ N
add t to scheduler

end if
end loop

end procedure

Figure 5.3: The distributed stretch move on a processor. Each processor is
assigned an equal share of walkers. A scheduler takes care of matching received
results with tasks that require those results. Although not shown, execution is
halted after enough samples have been collected.
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time. While the samples remain the same, the order in which they are taken
changes depending on the choices of the scheduler. If required, the order can be
restored by keeping track of the index of each sample.

The ideal scenario is one where no time is lost waiting for new executable
tasks since it causes efficiency to drop as measured by the ratio between actual
speedup and theoretical linear speedup. As noted earlier, one parameter that
influences how much network latency can be hidden is n. If network latency is
at most l units of time, and a task takes u units of time to execute, each process
should be assigned at least dl/u + 1e walkers in each partial step to hide all
communication.

In practice, task execution time is not known precisely, so avoiding idle
times is hard or even impossible even if the whole dependency graph would
be considered upfront. However, executing some tasks before others can help
the system to progress faster. First, walkers that are in earlier steps should be
updated first. As noted in Section 5.4, the span of steps is limited. Hence, if
walkers in lagging steps are not updated, other walkers are expected to block.
Second, within a partial step, walkers that have not been selected should not be
executed first. By delaying execution of these walkers, the execution itself hides
communication at the end of the partial step. During this period, the process
would otherwise potentially wait for results for the next partial step.

A more intelligent scheduler that respects these aspects can be implemented
using a priority queue on each processor. Tasks within an earlier partial step
take priority over tasks in later partial steps and tasks within the same partial
step are prioritized by having dependent tasks or not. Since prioritization only
makes sense with many tasks, polling is required to receive all available results
in the first part of the loop in Figure 5.3 while a FCFS scheduler need only
receive positions until a tasks becomes executable. Therefore, prioritization is
not always beneficial as polling and maintaining the queue adds overhead. The
overhead is only justified if the penalty of the random choices made by the FCFS
scheduler is high enough.

5.5 Results

Two target distributions with differing communication to computation ratios are
considered for evaluation. The master-slave sampler with automatic load balanc-
ing is compared to the graph based master-slave sampler and the distributed
sampler. Care has been taken to minimize measurement noise by collecting
enough samples.
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The first target is a Rosenbrock density from Equation (2.6). Each evaluation
takes the same number of operations. On contemporary systems, this takes
approximately 250 nanoseconds. To put this into perspective, network latency
is on the order of microseconds on the cluster used for evaluation. This places
evaluations of the Rosenbrock function on the high end of the communication to
computation ratio spectrum. In the master-slave model, the time elapsed between
transmitting the position to a worker, computing the result, and receiving the
result will be dominated by the network latency.

The second target is the likelihood of a Fitzhugh model given by the two
coupled ordinary differential equations from Equation (5.1). It is used to model
relaxation oscillators.

v̇ = v − v3

3
− w

ẇ = φ(v + a− bw)

(5.1)

The target density is given by Equation (5.2) where Σ is a covariance matrix
ψ(t, a, b, φ) = [v(t, a, b, φ) w(t, a, b, φ)]T , p(a, b, φ,Σ) is a prior distribution, and
{(yi, ti)} are independent data elements. An important aspect of these problems
is that the execution time of numerical integration is variable depending on the
choice of θ = [a, b, φ,Σ]. A small change in θ can not only drastically change the
output, but also the time it takes to produce it.

π(a, b, φ,Σ|yi, ti) =
∏
i

N (yi|ψ(ti, a, b, φ),Σ)× p(a, b, φ,Σ) (5.2)

5.5.1 Performance Evaluation

Figure 5.4 compares the distributed sampler with the master-slave sampler with
and without the dependency graph. In each of the plots, the baseline for speedup
is the currently available master-slave version running on one node.

The per-node process count is 12 as each node has 12 cores. The parallel
system is arranged in a star topology and uses InfiniBand. Communication is
offloaded to the hardware through the Intel MPI library.

First, note that the master-slave setup is particularly unsuited for the Rosen-
brock target. Performance degrades with more nodes. As discussed earlier,
network overhead dominates the time between sending a position and receiving
the result. With more nodes, the average latency between processes increases
since they are separated by a longer distance. The probability that a walker
selects a position residing on the same processor drops. In addition, the master
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is unable to keep all workers busy. The same is true whether each partial step
is followed by global synchronization or when the dependency graph is used.
Consequently, performance drops with more nodes.

Next, consider the distributed sampler on the Rosenbrock target. Performance
scales not only because computation happens in parallel, but messages are also
exchanged in parallel. As expected, more computation can be used to hide
communication as n increases. The difference in performance for the master-
slave versions as n increases is negligible due to relatively high network latency.

Finally, compare sampler scalability with the Fitzhugh model. With a small
number of walkers, the master in the master-slave versions quickly becomes the
bottleneck due to communication and synchronization overhead; performance
is constant starting from 4 nodes. As the results show, a dependency graph is
beneficial even in this case. Again, the distributed version does not suffer from
the same bottleneck. Increasing the number of walkers improves performance
of all samplers due to more loosely coupled dependencies. This time, however,
the master-slave versions also show improved scaling since communication delay
is relatively small compared to the time required to integrate the system of
ordinary differential equations from Equation (5.1). With n = 1024 on the
Fitzhugh target, the master-slave approach with a graph slightly outperforms
the distributed sampler up to 10 nodes. The fixed assignment of walkers to
processes for these configurations is inferior to dynamically assigning walker
positions from a master to idle workers. Still, the difference in performance is
minimal and, in general, the distributed sampler is preferred.

5.5.2 Scheduling Heuristic Performance

To evaluate the benefit of the scheduling heuristic, running time with three nodes
is compared with the FCFS scheduler. The results in this section should be
treated separately. The parallel system here consists of three nodes each with
20 cores and the one-way network delay on this network was approximately 150
microseconds. Performance is measured while increasing per-node process count
from 1 to 20. The number of walkers n is kept constant. The baseline is the
FCFS scheduler performance with three nodes and one process per node.

As noted earlier, the Rosenbrock target has a high communication to com-
putation ratio. Speedup with this target is shown in Figure 5.5. To hide
communication delay, n is set to 2048. The per-process walker count drops from
2048/3 ≈ 682 walkers to 2048/60 ≈ 34 walkers. The overhead of maintaining the
priority queue, when compared with the evaluation of the target, is significant.
With many walkers per node, and relatively high network delays, the FCFS
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Figure 5.4: Comparison of sampler scalability for the Rosenbrock target (top)
and Fitzhugh target (bottom). The baseline for speedup in each plot is the
master-slave version with one node.

scheduler performs better. In the worst case, performance drops by 55%. With
a few walkers per process, there is no difference between the two schedulers.

Since the Fitzhugh target takes tens of milliseconds to evaluate on average, a
suboptimal scheduler choice causes nodes to wait. This is shown by Figure 5.6
with n = 512. Initially, the per-process walker count is high, in which case there
is little to no difference in execution time between the FCFS scheduler and the
heuristic. With only a few walkers per node, choosing the correct one to execute
first becomes more important. The net improvements of using the heuristic
instead of the FCFS scheduler are between 0% and 15%.

As expected, depending on the configuration, a heuristic further improves
performance. With targets that take even longer to execute than the Fitzhugh
target, the penalty of bad choices rises further and the improvements are expected
to be even higher.

5.6 Conclusion and Future Work

This chapter contributes a novel distributed affine invariant sampler. Two target
distributions are used to evaluate scalability. The results show that, in practically
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Figure 5.5: Speedup of using the scheduling heuristic with the Rosenbrock target.
The baseline for speedup is the FCFS scheduler. The benefits of the scheduling
heuristic do not outweigh the penalty of the FCFS scheduler for this target.
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Figure 5.6: Speedup of using the scheduling heuristic with the Fitzhugh target.
The baseline for speedup is the FCFS scheduler. Since n is fixed, the per-process
walker count is lower with more processes. With less walkers per process, the
penalty of suboptimal scheduling decisions is higher and the overhead of the
heuristic is lower.
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all configurations, the distributed sampler outperforms the master-slave sampler.
The speedup ranges from 10 to 20 depending on the target.

By observing that PRNGs are deterministic, “random” choices can be pre-
dicted. The dependency structure, conceptualized as a graph, is shown to be
loosely coupled providing motivation that global synchronization is excessive.

Through instrumentation, it was observed that a significant portion of time
was spent in MPI calls. Future work includes studying how tuning of MPI
parameters could be beneficial for the distributed sampler.

To avoid the overhead of tracking the task graph, threads within a system
could share a thread-safe task graph. This architecture would avoid some of the
MPI calls and load could be balancing dynamically within each node.

By prioritizing some tasks, wait-time is further reduced when the target
density requires a significant amount of computational effort. Alternative policies
could still improve performance.

In the presented sampler, processes communicate in a full-mesh topology,
although no broadcasts are used. In reality, some processes are closer to others
either because they reside on the same node or in the same rack. To further reduce
wait time, mapping the dependency graph to the structure of the underlying
system will be explored.
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Chapter 6

Relaxing Scalability Limits
with Speculative Parallelism

6.1 Introduction

Sampling for Bayesian inference with non-linear models requires tools that can
cope well with hard to navigate distributions. SMC Samplers are among the
currently best known methods as they tend to cope well with such distributions.
They inherently provide parallelism, but speedup is limited for models that
exhibit a high degree of imbalance across posterior distribution evaluations.

Dependencies between computational steps form the biggest obstruction for
parallelization. For example, a computational task consisting of two parts might
seem impossible to parallelize if the output of the first part forms the input to the
second part. Speculative execution is known to be a useful technique to leverage
more parallel compute resources in such scenarios [Gra+03]. By predicting the
output of the first part, the second part can tentatively be executed in parallel.
If it turns out that the output was predicted correctly, the tentative result will
be available sooner, resulting in a reduction of execution time. On the other
hand, when an erroneous prediction was made, the result is discarded.

It is important to note that almost certainly some compute resources will
be wasted when speculation is used, but the amount of resources wasted by
speculation is outweighed by the benefits for SMC samplers. It turns out that
it is easy to predict the result of the part of the algorithm that would cause
computation to stall. Furthermore, predictions can be improved by a simple
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renumbering scheme.
The remainder of this chapter is structured as follows. Section 6.2 references

related work. Section 6.3 discusses Sequential Monte Carlo Sampler algorithms.
Section 6.4 describes the effects of load imbalance. Section 6.5 details and moti-
vates implementation choices. Section 6.6 lists and discusses results. Section 6.7
concludes the chapter and Section 6.8 gives directions for future work.

6.2 Related Work

Angelino et al. [Ang+14] explore speculative execution in the context of the
basic Metropolis-Hastings sampler. This sampler is inherently sequential since
each step in the Markov Chain depends on the previous step. A proposal is
either accepted or rejected, with a bias towards being rejected. The authors
note that all possible decisions form a binary tree. They leverage parallelism
by speculatively evaluating potential future steps in this tree, prioritizing the
nodes that will most likely be used. The prioritization is based on an inexpensive
approximate distribution. Similarly to their work, the sampler presented here
speculatively evaluates potentially useful future steps. However, the goal is
different. Since SMC already provides parallelism, the goal here is to use
speculation in a sequential fashion to relax the limits imposed by load imbalance.
The speculative tasks introduced by Angelino et al. are orthogonal as they add
parallelism. Their approach could be added to the speculative SMC sampler to
further improve scalability.

Marendić et al. [Mar+12] also note how reductions degrade efficiency under
load imbalance. They consider use-cases where work and associated data is
partitioned across processors and reductions require communicating with the
appropriate neighbors. To alleviate the impact on efficiency, they dynamically
build a rebalanced reduction tree by finding neighbors that have already ter-
minated. This allows reductions to proceed between processors that would
otherwise wait on processors with more compute intensive tasks. The reduction
in SMC samplers is a simple summation over weights. This is computed in a
negligible amount of time when compared to the overall amount of work. Instead,
the focus is a synchronization barrier between steps that causes processors to
wait due to load imbalance.

Another approach taken by Proficz [Pro18] to tackle load imbalance with
reductions is to exchange information about the progress on the tasks. It is then
possible to predict when the tasks will finish, and which processors should work
together to complete the reduction. This technique is not applicable to the SMC
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sampler for the same reasons listed above.

6.3 Sequential Monte Carlo

Sequential Monte Carlo Samplers are a class of algorithms that iteratively move a
set of n weighted particles through a sequence of distributions [MDJ06; DFG01].
These algorithms are useful in the Bayesian setting since they can be set up
to smooth out modes in the target distribution during the initial iterations.
Consequently, particles do not get stuck quickly before the target distribution is
explored.

6.3.1 Moving Through a Sequence of Distributions

In SMC samplers, a sequence of distributions π1, . . . , πs is used sequentially. The
sequence starts with a distribution π1 from which samples can be generated
directly during the initialization step. All weights are initialized to 1. Next,
particles are moved and weights are updated while the underlying distribution is
changed to π2. The central idea is that as long as π1 and π2 are not too different,
particles will remain in regions of high density. The process is repeated while the
underlying distributions gradually approach some target distribution πs = π.

There are many possible choices for the sequence of distributions. For
Bayesian inference with non-linear models, a tempered sequence, given by
Equation (6.1), is used.

πi(θ|X) ∝ π(X|θ)γ(i) · π(θ) (6.1)

Here, X denotes evidence and θ denotes the model parameters. The posterior
πi(θ|X) is given by the product of the likelihood π(X|θ) with the prior π(θ) up
to a normalizing constant. The rate of tempering is controlled by a tempering
schedule γ. The initial distribution, obtained with temperature γ(1) = 0, is the
prior. For the final distribution, γ(s) is set to 1, resulting in the true Bayesian
posterior. Intermediary values for γ allow for further control.

The assumption made here is that likelihood evaluations dominate run-time.
This is a realistic assumption to make since for many problems, computation
intensive models are simulated as part of likelihood evaluations. Note that the
findings are still applicable if significant time is also spent on evaluating the
prior. In that case, evaluations can be scheduled as two separate concurrent
tasks.
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procedure SMC(π(X|θ), π(θ), γ, n, s, t)
for i = 1, . . . , n do

Initialize(θi) . Draw θi ∼ π(θ)
end for
for i = 2, . . . , s do

π̃i(θ|X) = π(X|θ)γ(i) · π(θ)
for j = 1, . . . , n do

Move(θj , π̃i(θ|X)) . Also update weight wj
end for
if (
∑
wj)

2/
∑
w2
j < tn then . ESS

Resample(θ1, . . . , θn;w1, . . . , wn)
end if

end for
end procedure

Figure 6.1: Algorithmic structure of Sequential Monte Carlo Samplers with
tempering to generate n samples from a Bayesian posterior using s steps. One
particle is used for each sample. A likelihood π(X|θ) and a prior π(θ) describe
the target distribution. In addition, a function γ sets the rate of tempering. A
threshold t ∈ [0, 1] specifies when particles are deemed degenerate. To counteract
degeneracy, particles are resampled.

6.3.2 Weights and Resampling

A weight wi is associated with each particle. The procedure to update weights
depends on the choice of kernel used during particle updates. For the purpose of
the discussion here, a Metropolis-Hastings MCMC kernel is chosen for the particle
moves [MDJ06]. After all particles have moved once, the ESS is approximated
to determine if the particles exhibit degeneracy. This approximation is given
by (

∑
wi)

2/
∑
w2
i . If the ESS falls below a threshold, particles are resampled.

Typically, this happens rarely, a property exploited throughout the speculative
SMC sampler. This process is similar to fitness proportionate selection in genetic
algorithms. The resampling process consists of drawing n samples where the
normalized weight of each particle determines the probability that the particle
will be selected. Next, the weights are reset and the whole process is repeated
iteratively s times [MDJ06]. The structure of this algorithm is outlined in
Figure 6.1. Within each iteration, particle moves can occur in parallel, but
calculating the ESS requires all moves to be finished.
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6.4 Load Imbalance

For the sake of brevity and clarity, all terms relating to overhead have been
omitted in this section. Only the time required to evaluate the likelihood for a
particle i in step s, denoted by δi,s, is considered. It is therefore important to keep
in mind that the limits are an estimate. Some time is spent on bookkeeping tasks
and an interconnect always introduces some delays. Since likelihood evaluations
dominate execution time in realistic use-cases, the derived limits should still be
representative.

6.4.1 Scalability Limit Due to Load Imbalance

Consider the ratio between the sequential execution time and the parallel execu-
tion time [Gra+03]. For a specific step s the speedup is limited by Equation (6.2).
Here, δmax,s = max {δi,s}i is the execution time with an infinite number of
processors or the minimum amount of time required for the step regardless of
how many processors are employed and ∆s is the sequential execution time.
More interestingly, the same equation can also serve to quantify load balance as
Ss is close to s only when δmax,s ≈ δi,s for all i.

Ss =
∆s

δmax,s
, where ∆s =

n∑
i=1

δi,s (6.2)

The maximum overall speedup S for a run is a weighted average over all
Ss, where the weight is given by δmax,s/

∑s
i=1 δmax,i. As expected, this can be

written as the ratio between the total sequential execution time
∑s
j=1 ∆j , and

the shortest possible parallel execution time given by the sum over the minimum
time required to execute each step

∑s
k=1 δmax,k.

Consider two consecutive steps s and s+ 1. The speedup is limited by the
left-hand side of Equation (6.3). The limit can be relaxed if the synchroniza-
tion barrier is removed. The relaxed limit is given by the right hand side of
Equation (6.3), where δmax,[s,s+1] = max {δi,s + δi,s+1}i.

∆s + ∆s+1

δmax,s + δmax,s+1
≤ ∆s + ∆s+1

δmax,[s,s+1]
(6.3)

This inequality clearly holds; the worst case occurs when both δmax,s and
δmax,s+1 are associated with the same particle. For all other cases, δmax,[s,s+1] >
δmax,s + δmax,s+1. Figure 6.2 illustrates a more favorable scenario where δmax is
associated with a different particle in each step.
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Figure 6.2: Effect of removing the synchronization barrier between two consecu-
tive steps. In the example shown, the minimum duration to update all particles
is determined by δmax,1 = δ3,1 and δmax,2 = δ2,2 for the first and the second
step respectively. Dashed lines represent barriers between steps. The dotted line
on the right represents the synchronization barrier that has been removed.

Note also that speedup is limited by the number of particles. Each particle
can be updated in parallel, but subsequent updates to the same particle need
to happen sequentially. As will be discussed in Section 6.5.5, it is possible to
skip some updates. This further introduces imbalance and limits speedup with
respect to sequential execution. However, both sequential and parallel runs will
take less time since there is less work to be executed.

6.4.2 Scalability Limit After Removing Barriers

It turns out that by continuing execution speculatively, most barriers can be
removed. To find the limit on scalability after these barriers are removed, consider
the total running time required to update a particle i from its initial position to
step s, denoted by D(i, s). This is given by Equation (6.4), where P (i, s) denotes
the particle from which particle i is moved in step s. Speculative updates are
performed under the assumption that P (i, s) = i. For the initialization step,
D(i, 0) = δi,0.

D(i, s) =

{
D(i, s− 1) + δi,s if P (i, s) = i

max{D(k, s− 1)}k + δi,s otherwise
(6.4)

For every update, the duration δi,s needs to be taken into account. When a
resampling step occurred, a particle is moved from a different particle only when
P (i, s) 6= i. At this point, it is known that the assumption was incorrect and
subsequent updates can only take place after all particles in the previous step
have been updated.
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This relaxes the scalability limit from the one given in Section 6.4.1 to∑s
j=1 ∆j/max{D(i, s)}i. Note that this ratio is always larger than the one

given in Section 6.4.1 and that the renumbering step described in Section 6.5.4
further raises the limit. This coincides with the intuition that removing barriers
never degrades performance. In practice, there is some overhead, associated with
speculation. This is especially true in a master-slave architecture such as the
one studied in this chapter. Here, the master spends cycles processing useless
speculative results or when speculative results are occupying network bandwidth,
slowing down transfer of non-speculative results. However, as will be shown in
Section 6.6, even when particles are resampled frequently, speculation accuracy
is high enough to outweigh these costs.

6.5 Speculative Sampler

The speculative sampler presented here employs a master-slave architecture
where one processor runs the algorithms and takes care of all the bookkeeping,
and other processors request work from the master. The ingredients for building
the speculative sampler are detailed in this section.

The use-cases considered for evaluation in this chapter exhibit a high degree
of imbalance. A master-slave architecture already tries to cope with this as it
provides dynamic load balancing; when a slave becomes idle by returning a result
to the master, the master sends the next piece of work.

6.5.1 Treating Steps With and Without Resampling Uni-
formly

To simplify implementation, no distinction is made between steps with and
without resampling. Each particle update consists of moving a particle from the
position of some other particle in the previous step to a new position. A table,
referred to as the “from table”, is maintained to keep track of the origin particle
to move from. If no resampling has occurred, this table maps each element to
itself. When resampling did occur, the selected samples are stored in the table.
Speculative execution consists of assuming that the index of the origin particle
is the same as the particle from which the move is to be executed. It should be
clear that even when particles have been resampled, the move can still correctly
be speculated if the ith selection happens to fall on the ith particle. The selection
procedure for multiple steps is shown in Figure 6.3.
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resampling

no resampling no resampling

Figure 6.3: Three particles moving through six steps. After the second update,
particles are resampled. One particle is selected twice. All steps are treated
uniformly, whether resampling occurred or not. The position of a particle in
each step depends on the position of a particle in the previous step.

6.5.2 Speculative Execution

An important ingredient for speculation is the ability to rollback execution. Up-
dates involve consuming random numbers from a PRNG stream. New positions
are proposed and accepted probabilistically. While not required, it is advisable
to use a PRNG that can quickly jump in its sequence [Sal+11] to minimize the
overhead of rolling back states. Alternatively, a standard PRNG can be used if
the sequence is pregenerated and stored in random access memory.

The goal is to continue evaluating particles in the next steps even when
not all particles in the current step have moved. To gain insight into how this
works, consider n particles of which one particle is moved to a position where
the likelihood takes an inordinate amount of time to evaluate. Updates on all
other particles will finish relatively quickly. Speculative evaluation will start for
the next steps of these particles. It might even be possible that all remaining
steps for these particles will be evaluated before the evaluation on the lagging
particle finishes.

If it turns out that resampling was required, results for the particles that
are not selected will be discarded. To allow rolling back to the correct state,
the sequence of positions, one for each step, needs to be kept for each particle.
Reverting to a previous state is then a matter of selecting the right index in
the sequence. For this part of the algorithm, space requirements increase by a
factor of at most s. This happens when, during the first step, all future steps
are speculatively executed. A more advanced memory management mechanism
would be required when this becomes the limiting factor, but such a mechanism
is beyond the scope of this chapter.
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6.5.3 Parallelism and Speculation

Let p denote the processor count. In comparison to the particle count n there
are three cases to consider: p� n, p ≈ n and p > n. Note that in general, each
processor will evaluate approximately n/p likelihoods per step.

In case p � n, each processor evaluates many particles in each step and
speculation only provides marginal benefits. This can be seen in two ways.
First, consider when the first speculative task is launched. Within a step,
this occurs when, out of n particles, n − p + 1 updates have finished. At this
time, p− 1 processors are still working on the last non-speculative evaluations.
In other words, speculation occurs only at the end of a step. Second, since
n/p� 1 likelihoods are evaluated at each processor, imbalance is automatically
reduced due to the Central Limit Theorem [Fil10]; all processors will finish at
approximately the same time and idle time will be minimal. Note that at one
extreme, where p = 1, load is balanced by definition. Another point worth
mentioning is that due to speculation, execution on the slaves can continue while
the master computes the ESS and potentially performs the resampling step. In
comparison, without speculation, all slaves are idle during this time.

The scenario in which speculation is expected to yield the most benefits is
where p ≈ n. Approximately all likelihood evaluations will start at the same
time. Without speculation, processors that are assigned with tasks that complete
quickly will need to wait on other processors due to the synchronization barrier.
With speculation, these processors can continue with likelihood evaluations for
particles in the next step.

To avoid having to modify code inside the model, a likelihood evaluation
that has commenced cannot be canceled; processors commit until completion.
It might seem that using p > n processors is superfluous, but with additional
processors bad speculation will have less negative consequences; a committed
processor will not affect performance as another will take its place. To put it
differently, as some bad speculation is to be expected, the scalability limit with
barriers removed will typically be reached with a slightly higher processor count
than when all speculative results are be useful.

6.5.4 Renumbering Particles

As noted above, speculation after a step in which particles have been resampled
is not always incorrect. As long as the ith selection falls on the ith particle, the
speculative result can be used. To increase the probability that these events
occur, the “from table” containing selections is reordered to ensure that indexes
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Figure 6.4: The renumbering process with six particles. The original selections,
stored in the “from table”, are depicted on the left. The frequency of each
selection is easily derived from this table. Renumbering ensures that the ith

selection falls on the ith particle as often as possible, improving the accuracy of
speculative execution.

coincide with selections as often as possible.
First, a frequency table, where entries denote how often each particle has

been selected, is created. Next, for each index i, the frequency table is consulted
to see if at least one selection has fallen on particle i. If this is the case, the
ith selection is set to the ith particle. Finally, all missing entries are filled using
the remaining counts in the frequency table. An example is shown in Figure 6.4
with six particles.

A PRNG is associated with each particle. Renumbering can be seen as
exchanging PRNGs between particles to maximize speculative usefulness. Since
each PRNG stream outputs another sequence, renumbering influences the output
of the sampler. Note however that the random numbers in each stream are still
distributed identically, which in turn ensures that the distribution of the output
samples is left unchanged. Accordingly, the statistical properties of the sampler
are left unaltered.

All other alterations to the classical SMC sampler do not influence the output
of the sampler in any way. Renumbering is therefore enabled in the original
algorithm for a fair comparison study with the speculative sampler; the same
samples are generated in either case.

6.5.5 Skipping Updates

Interestingly, when MCMC kernels are used during particle moves, together with
the backward kernel proposed by Del Moral et. al [MDJ06], it turns out that
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this allows weights to be updated before particles are updated themselves since
the weight depends only on the value of the previous likelihood. In addition,
since weights determine if resampling is required, it is possible to perform the
selection portion of the resampling procedure before the update as well.

Consequently, updates for particles that are not selected can be skipped.
These particles are detected using the same frequency table that tracks how
frequently each particle will be selected during the subsequent resampling pro-
cedure. Since this information is already available, finding which updates can
be skipped is a relatively inexpensive operation and should therefore always be
included.

6.5.6 Implementation Details

Figures 6.5 to 6.7 summarize the speculative sampler implementation. All steps
are detailed below. To ease implementation, placeholders for long-running tasks,
called futures [BH77; Hal85], are used extensively.

Each iteration starts by updating weights and determining which particles
will be selected in the next step. Note that this is different from the listing in
Figure 6.1 where particles are updated before weights are updated and resampling
occurs. Next, tasks to move the particles are scheduled. A future for each update
is returned. Futures are also composable to form a Directed Acyclic Graph
(DAG) of computation [Hel+17]. In the speculative sampler, futures representing
completion of particle updates in a step are composed into a single future Fs
which is fulfilled when all particles have been updated. This composition allows
to run the scheduler until all particles in a step have been updated.

As non-speculative execution progresses, and a new iteration is started, a
new particle update is only scheduled if no valid computation has been scheduled
yet or if there is a version mismatch with the previously scheduled computation.
However, if a valid future is stored for that update, it is returned immediately.
Either the future has already been fulfilled, or it will be when the slave executing
the speculative task will return its result and the post-processing step has finished
executing. In either case, the result will be used.

Finally, control is transferred to the scheduler which will return when the
future Fs is fulfilled. The scheduler will prioritize dispatching scheduled tasks
first. When all slaves are busy, the scheduler waits until a slave becomes idle.
Speculative tasks will only be started when all non-speculatively scheduled tasks
have been dispatched, and there are idle slaves. At this point, the final updates
in the current step are already being computed at the slaves.
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A version is kept together with each particle update. This version is incre-
mented when the particle does not select itself, something that potentially occurs
during a resampling step. The version number determines if a speculative result
needs to be discarded or if it valid for use.

When a particle update has finished, a post-processing procedure is run
through a continuation on the future. This is not shown explicitly in the
listings in Figures 6.5 to 6.7. If there is a version mismatch, the post-processing
procedure is aborted. A speculative task to update the same particle in the next
step is pushed onto the speculative task queue if there is no version mismatch.
To disable speculation, it suffices to disable adding speculative tasks to this
queue; the remainder of the algorithm does not change. Since updates can cause
particles to run ahead, a version mismatch can occur by the time a speculative
task, scheduled at some time in the past, would be launched. Therefore, an
additional check is needed just before the speculative task is dispatched.

Speculative tasks are prioritized first by step and then, for updates in the same
step, through a first-in, first-out order. Note that for models where execution
time is shorter for relatively well chosen parameters, particles that finish updating
first will typically be associated with a higher weight. Accordingly, the first-in,
first-out order happens to start speculative computation on particles for which
the result will likely be useful. Another approach is discussed in Section 6.8.

6.5.7 Fully Distributed Approach

The downside of the master-slave approach is that some portions of the algorithm
execute sequentially. This, by itself, limits scalability in terms of Amdahl’s
law [Amd67; Pad11]. More importantly, the post-processing step of a speculative
task that executed remotely can slow down the system. Therefore, it might be
tempting to consider a fully distributed sampler where particles are assigned to
processors, but it turns out that it has more performance limiting drawbacks
than the simpler master-slave approach.

When particles are partitioned across processors, information still needs to be
shared globally to calculate the ESS after each step. With speculative parallelism
enabled, each processor will start evaluating speculatively immediately if the
ESS is not available after the previous likelihood has been evaluated.

The processors that are executing speculatively will not contribute to calcu-
lating the ESS while they are busy with speculative execution. These processors
will be committed to speculation while it is already known that the result will
be useless. Compared to the master-slave approach, a processor will also be
committed, but progress can be made nevertheless. One possible work-around is

92



6.5. Speculative Sampler 93

procedure SpeculativeSMC(n, s)
nextFrom = IdentityTable(n)
for step = 0, . . . ,s do

from = nextFrom
UpdateWeights()
if ResamplingNeeded(step) then

nextFrom = CalculateResampling()
ResetWeights()

else
nextFrom = IdentityTable(n)

end if
Fs = MoveParticles(step, from, nextFrom) . See Figure 6.6
SetMinimumSpeculativeStep(step + 1)
RunSchedulerUntil(Fs) . See Figure 6.7

end for
end procedure

Figure 6.5: Sequential Monte Carlo with speculative execution. To avoid dis-
tracting from the essentials of the algorithm, arguments like t and γ have been
omitted. Instead of waiting for all updates in each step to finish, execution
continues speculatively if possible as shown by Figure 6.7.
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procedure MoveParticles(step, from, nextFrom)
if step == 0 then

return InitParticles()
end if
F = {}
for i = 0, . . . , n− 1 do

if Contains(nextFrom, i) then
if ValidTaskStarted(step, i) then

F = F ∪ GetFuture(step, i)
else

F = F ∪ ScheduleUpdate(step, i)
end if

end if
end for
UpdateVersions()
return WhenAll(F )

end procedure

Figure 6.6: Moving particle potentially reuses speculative results from subsequent
steps. New computational tasks are only started for those particles on which
computation has not yet been started.

procedure RunSchedulerUntil(Fs)
while not Fulfilled(Fs) do

while IdleSlaves() > 0 and HaveTasks() do
DispatchScheduledTask()

end while
while IdleSlaves() > 0 and

HaveSpeculativeTasks() do
DispatchSpeculativeTask()

ReceiveResult()
end while

end procedure

Figure 6.7: Execution continues until all particles in the current step have been
moved, as signified by fulfillment of Fs. Idle slaves are kept busy with speculative
updates of particles in the subsequent steps.
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to periodically check if the next ESS is available while evaluating speculatively.
This by itself has two drawbacks. First, adding periodic checks within the model
is intrusive. Second, as there is overhead involved with these checks, determining
the optimal frequency at which these checks are to be executed requires tuning,
making the sampler more difficult to use.

A sampler that allows ownership of particles to change over time might yield
better results, but such an implementation is more complex and out of the scope
of this chapter. Note that there is no fixed assignment between particles and
processors in the master-slave architecture.

6.6 Results

This section discusses performance of the listings in Figures 6.5 to 6.7 with
and without speculation for three use-cases with varying load balance. The
prominent technology used to program multiple interconnected systems is MPI.
Note that other message-based systems can also be used for the speculative
sampler. Execution time of an implementation using Intel MPI with InfiniBand
is measured on two different clusters.

The first cluster consists of homogeneous systems, each with two Intel Xeon
CPU X5660 CPUs with 6 cores. Even though these CPUs are relatively old, they
suffice for a study of scalability with and without speculation. Processes are
affinitized to cores and slaves are allocated in a compact manner. For example,
with 14 slaves, the master and 11 slaves run on the first system and the remaining
3 slaves run on the second system. The results from Sections 6.6.1 to 6.6.3 were
obtained running on this cluster.

Each system in the second cluster has two Intel Xeon Skylake CPUs. These
computational resources, provided by the Flemish Supercomputer Center, were
used to collect the results in Section 6.6.4. With 18 physical cores per CPU,
and 16 systems for a total of 576 cores, performance of the speculative sampler
was evaluated at a much larger scale. Again, cores were allocated in a compact
manner.

6.6.1 Accuracy Improvement From Renumbering

It is clear from Equation (6.4) that by renumbering particles, more speculative
results can be used. Figure 6.8 shows the fraction of updates in which speculative
results were useful for the second use-case described below. Since it is difficult
to control the frequency of resampling by changing the threshold t a biased coin
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Figure 6.8: Effect of renumbering on the fraction of particles for which speculative
execution is useful. The horizontal axis shows the fraction of steps in which
resampling took place. A bigger fraction of speculative results are used when
the renumbering scheme described in Section 6.5.4 is employed.

is flipped instead at the end of each step to determine if particles should be
resampled. Without resampling, renumbering does not provide any benefits.
As particles are resampled more often, renumbering becomes more important.
Interestingly, when resampling occurs in each step, speculation without renum-
bering is almost useless while 40% of the updates still benefit from speculation
if renumbering is enabled.

6.6.2 Distribution of Likelihood Evaluation Time

As discussed in Section 6.4, speculation becomes more important when execution
time is more imbalanced. Three use-cases are considered below. Other configu-
rations that have been omitted were tested as well. In all cases, the speculative
sampler was showing improved performance.

The target distribution π(θ|X) of the first use-case is a simple three-dimensional
multivariate normal distribution, with an added fixed-duration sleep of 50 mil-
liseconds to increase the evaluation time. Little to no improvement is to be
expected from speculative execution for this use-case. Some part of the sampler
running on the master will execute in parallel with evaluations at the slaves,
but this is minimal. Nevertheless, this use-case is included to show that specu-
lation does not negativity impact performance even with a likelihood that has
no imbalance in terms of the definitions from Section 6.4. More specifically,
δi = δmax,s for all s. Even in this perfectly balanced scenario, some variation is
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to be expected at run-time due to system noise [Tsa+05] and varying network
delays. The distribution for this use-case is shown on the right in Figures 6.9
to 6.11. Although not visible, there is some variation in execution time.

The second use-case is the Fitzhugh model given by Equation (5.1). The
target density is given by Equation (6.5), where θ = [a, b, φ]. Equation (6.5)
differs from Equation (5.2) in that Σ has been fixed.

π(θ|yi, ti,Σ) =
∏
i

N (yi|ψ(ti, θ),Σ)× p(θ) (6.5)

The system of equations from Equation (5.1) is integrated using the CVODE
solver from the SUNDIALS software package [Hin+05]. The initial values,
ψ(0, a, b, φ), are fixed, and the remaining three parameters are estimated. As a
prior, a three-dimensional normal distribution is placed around the origin. The
distribution of evaluation times for this use-case is shown by the histogram on
the right in Figure 6.10. Note that evaluations take on the order of microseconds.

In MCMC kernels, an accept-reject ratio is used to determine if a proposal
is accepted or rejected [Mac03]. A number u ∼ U(0, 1) is drawn and compared
to this accept-reject ratio. If u falls below the accept-reject ratio, the proposal
is accepted. The maximum threshold at which the proposal will be rejected
can be calculated before evaluating the likelihood by drawing u first. For some
models like the one described above, it can be shown that the likelihood is a
decreasing function as more data is considered [Sol+12]. Therefore, evaluation
can terminate if the threshold is reached. Not only does this reduce the total
computation time, it also affects the distribution of evaluation durations. For
the Fitzhugh model, it turns out that load becomes more imbalanced. Due
to the added ability to terminating early on, around 20% of evaluations take
less than 50 microseconds for the second use-case. There are two other distinct
modes visible in the histogram, one at 90 microseconds, and another around
420 microseconds.

The third use-case uses more compute intensive non-linear tasks. It consists
of simulating a Susceptible-Infected-Recovered (SIR) model used to study the
spread of diseases [Hen+12]. The model consists of three compartments S(t, a),
I(t, a), and R(t, a) for each time step t and age group a for a population of size
N . These are modeled as a set of Partial Differential Equations (PDEs). The
likelihood is given by Equation (6.6), where S(a), I(a), and R(a) denote steady
state solutions and B denotes a Bernoulli distribution. Again, a multivariate
normal prior is placed around the origin. The distribution for this use-case is
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shown at the right in Figures 6.9 to 6.11.

p(y,N |S, I,R) =
∏
a

B
(
ya

∣∣∣∣Na, S(a)

S(a) + I(a) +R(a)

)
(6.6)

6.6.3 Relaxed Scalability Limit

The most important performance aspect is the execution time of the speculative
sampler from the listings in Figures 6.5 to 6.7. For this, strong scaling is studied
by comparing speedup with and without speculation on the left in Figures 6.9
to 6.11. The baseline for speedup in each comparison is the sequential case. A
separate non-speculative run is used to measure the duration for each particle
update. This information is then used to calculate the theoretical limit for each
use-case as described in Section 6.4. These limits are shown in dotted lines
together with the results in Figures 6.9 to 6.11.

In the first use-case, the perfectly balanced case, speculation provides no
noticeable benefit when the particle count n is divisible by the processor count
p. In this case, each slave finishes work at approximately the same time, and
the wait time at the end of each step is minimal. However, when n is not
divisible by p, the speculative sampler provides some improvement. For example,
with p = n − 1, there will be one processor running two evaluations doubling
execution time of each step, and consequently the whole run. This results in
jumps in performance as shown in Figure 6.9. With speculation, similar delays
are introduced, but only once at the end as the master is balancing load across
the barriers.

In the second use-case, speculation raises the scalability limit from 15.11 to
50.54; this is a 3.34-fold increase shown in Figure 6.10. Initially, with p = 1,
speculation provides no benefit, nor does it negatively affect performance. As
p increases, speculation becomes more beneficial. The best performance with
speculation is reached around p = 71 which corresponds to a speedup of 73% of
the limit.

Another property of the speculative sampler can be observed with this use-
case. As model evaluations take on the order of microseconds, the master
does become the bottleneck here. With p > 71, performance starts to degrade
slightly. As more processors are added, incorrect speculation becomes more
common. The master has to process each task, be it normal or speculative. As
the master is already the bottleneck, non-speculative tasks are delayed. In any
case, speculation is still beneficial to use even if the optimal choice for p is not
known.
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Figure 6.9: Scalability of the perfectly balanced use-case. The dotted line shows
the scalability limit with and without speculation. The histogram of evaluation
times is plotted below. For the first use-case, when the particle count n is
divisible by the processor count p speculation provides no benefit.

The scalability limit is increased from 10.19 to 23.17 using speculation in the
third use-case, shown by Figure 6.11. Compared to the limit, 99% of what is
estimated to be possible is reached. This is shown on the right of Figures 6.9
to 6.11. Similar to the second use-case, the biggest improvements are made
with many processors. Here, when the limit is actually reached, performance
converges and no degradation is observed as evaluations take on the order of
seconds.

6.6.4 Weak Scaling

Due to the limited amount of computation time available on the cluster provided
by the Flemish Supercomputer Center, only weak scaling results with the third
use-case were collected. Hence, particle count was dictated by the number of
processors, i.e. n = p. The baseline for performance was the execution time
of a single system running with 36 cores either with or without speculation.
Execution time was averaged over multiple runs, each with a different random
seed, until the results were stable. Performance is expressed in terms of parallel
efficiency [Gra+03]. Note that parallel efficiency with and without scalability
with 36 processors is 100% due to the choice of a different baseline. However,
speculation provides a 2.15-fold reduction in execution time when comparing
the two baselines. The results, shown in Figure 6.12, indicate that efficiency is
better preserved as more processors are added when speculation is used.
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Figure 6.10: Scalability with significant amount of load imbalance caused by
potentially terminating evaluation early. The dotted line shows the scalability
limit with and without speculation. The histogram shows the distribution of
evaluation times, but 4% of the data falling in ]1, 95.17] has been omitted.
Nevertheless, these evaluations are important in the context of speculative
execution. This use-case shows a decrease in running time, for any choice of p,
by a factor of up to 2.72.
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Figure 6.11: Scalability with a compute intensive use-case. The dotted line
shows the scalability limit with and without speculation. For clarity, 10% of the
data falling in ]2, 43.25] has been omitted from the histogram that shows the
distribution of evaluation times. Note that these evaluations contribute to the
efficacy of speculative execution. A decrease in running time, for any choice of p,
by a factor of up to 2.28 is observed.
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Figure 6.12: Weak scaling on a large scale cluster. The baseline is the sampler
running with or without speculation on a single system with 36 cores. As more
slaves are added, speculation allows the sampler to maintain higher parallel
efficiency.

6.7 Conclusion

SMC samplers track the ESS of particles to determine when resampling is
required at the end of each step. The ESS is derived from global information
which requires all particles to be updated. Processors that finish updating
particles quickly wait on the processor assigned with the most compute intensive
updates. The fact that resampling does not occur at the end of each step is
exploited. By assuming that particles survive through multiple steps, and by
evaluating subsequent steps speculatively, scalability limits are relaxed. This is
shown both theoretically and practically using three use-cases representing a
variety of real-world scenarios including perfectly balanced use-cases and use-
cases with a high degree of imbalance. To further improve the accuracy of
speculative execution, a renumbering scheme is introduced that does not affect
the statistical properties of the sampler.

At one extreme, with a single processor, no speculation is performed. As
more processors are added, speculative execution becomes increasingly beneficial.
The biggest performance improvements are for parallel systems where processor
count and particle count are of the same order of magnitude. To evaluate
the effectiveness of speculative execution, speedup is compared to a maximum
derived from execution characteristics for each use-case.

There were no configurations where speculative sampling was slower. The
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biggest improvement is a 2.72 fold reduction in execution time, but, at least
theoretically, the improvements can be much higher depending on how imbalanced
particle updates are. Given the execution time of all updates, it is possible
to calculate the relaxed scalability limit. The results show that as long as the
master processor is not the bottleneck, with speculative execution, performance
approaches this limit.

6.8 Future Work

Currently, aside from prioritizing earlier steps, the order in which tasks complete
also determines the order in which speculative tasks will be started. While this
order is quite arbitrary, it happens to be beneficial for some models. A more
robust approach is to use particle weights in the prioritization process. These
express how likely the particle will survive the next step. Using this information
as well should further improve the probability that a result will be used. Note
that as long as there are more processors than particles available, no choice
needs to be made since all particles are updated in parallel; when an update to
a particle finishes, a task to update it again speculatively will be scheduled and
dispatched next.

While in the listings from Figures 6.1 and 6.5 to 6.7 the tempering schedule
γ is given as input to the algorithm, it can also be chosen dynamically. This
way, the user does not need to tune this parameter. The tempering schedule
is chosen in a manner that causes the ESS to be reduced by an amount falling
within some bounds, i.e. between 99% and 90% of the previous ESS value. The
tempering schedule itself is also constrained to fall within predefined bounds.

With such a dynamic tempering scheme, it is still possible to use speculation.
This is accomplished by assuming that the previous jump in temperature will
be used in the next step. Speculative results are correct if the previous jump
delta causes the ESS to drop by a fraction that falls in the predefined bounds
again. Since the ESS decreases slowly, another benefit is that resampling will be
required less frequently.

As mentioned in Section 6.2, the strategy of speculation within a chain
presented by Angelino et al. [Ang+14] can augment the speculation presented
below. Since this would introduce a second type of speculative execution, it
will be important to prioritize the speculative task that will provide the biggest
improvement.

The second use-case considered in Section 6.6 shows some degraded perfor-
mance due to processing incorrectly speculated tasks at the master. A direction
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for future work would be to investigate how messages could be prioritized with
the goal to advance non-speculative execution as fast as possible. In MPI, it is
not possible to prioritize messages. Therefore, it might be worthwhile to explore
exchanging messages between slaves to determine when to send messages to the
master or a way to automatically find the optimal number of processors based
on how congested the master processor is.

Although the load on the master strongly depends on the use-case, typically
it still forms a single synchronization which can be a recipe for disaster in terms
of parallelism. For long-running computations, there is usually no issue with the
master-slave architecture unless many particles are used. This can be beneficial
since it yields more accurate estimates. Future work will therefore consider a
distributed sampler that would not suffer from such a bottleneck. As discussed
in Section 6.5.7, a fixed assignment of particles to processors will not work well
for speculation. Instead, allowing particles to migrate between processors could
yield satisfactory results. The technique of work stealing [Din+07; Li+13] might
be useful in this context. The added complexity of such an approach needs to
be weighed with the benefits.

The implementation studied in Section 6.6 was written in C++ as the focus
was on a detailed study of performance. It is the intent to release a Python
implementation of the speculative sampler presented here since it is commonly
used by scientists.
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Part II

Front-end parallelization
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Chapter 7

From Conditional
Independence to Parallel
Execution

7.1 Introduction

Now, attention turns to front-end parallelization, where the scientific models
themselves are targeted. Due to their complexity, fitting on a single processor
takes too long in practice. The focus here is on the parallelization of hierarchi-
cal models composed of multiple interconnected levels. Computational tasks
required for each model evaluation are typically spread across relatively few
layers. Consequently, this brings with it the opportunity to execute each level in
parallel. While it might not be the optimal parallelization, it turns out that it
works well in practice. It can even be used in conjunction with other methods
that search for more fine-grained parallelism like the one presented in Chapter 8.

When the number of tasks exceeds the number of processors in a layer,
some processors will inevitably execute more than one task. Depending on the
variability of execution times between these tasks and the ratio between the
number of tasks and processors, neglecting the scheduling problem can result
in inefficient use of the underlying hardware. The parallelization approach is
augmented with the well-known Longest Processing Time (LPT) static schedul-
ing heuristic [CS18], where independent jobs with varying execution time are
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scheduled on p identical processors.
The reachable efficiency is model-dependent; in general, the more compute-

intensive tasks are available at each level of the hierarchy, the better performance
will scale. Therefore, two different models are considered for evaluation: one
containing only a few tasks and another with many more compute-intensive tasks.
While parallelization adds overhead introduced by inter-processor communication,
overall run time decreases in both cases.

The remainder of this chapter is structured as follows. Section 7.2 references
related work. Section 7.3 discusses hierarchical models, their structure in the
dataflow graph representation and the relationship with conditional indepen-
dence. Section 7.4 describes the parallelization approach. Section 7.5 discusses
performance results. Section 7.6 provides future work directions and concludes
the chapter.

7.2 Related Work

The input to the optimization routines or sampling algorithms is a function
that evaluates a model and returns a score that reflects the quality of the
parameters. In this chapter, the input is a model description specified similarly
to the probabilistic languages used in Turing [GXG18], Stan [Car+17] and
WinBUGS [Lun+00].

The Turing system [GXG18] relies on explicit vectorization syntax to gain
performance. The presented approach relies on the message passing model [KK07]
for parallelism and vectorization is an extension that is left as future work.

Stan [Car+17] is a platform for statistical modeling and high-performance
statistical computation. Recently, an extension to its modeling language has
been proposed for parallelization [Web18], but use requires changing the model
description. In contrast, the parallelization outlined below does not require the
user to specify additional input signifying how computation should be scheduled
on the hardware, but the downside is that it can be too aggressive causing
performance to degrade in some cases.

Gibbs sampling [CG92] draws samples from the marginal target distribution
by combining samples taken from conditional distributions. The concept of a
graphical model is fundamental for Bayesian inference Using Gibbs Sampling
(BUGS), implemented in WinBUGS [Lun+00]. MultiBUGS [Gou+17] has added
parallel execution to WinBUGS by working directly on the graphical model from
which conditionally independent parts are identified and scheduled to parallel
processors only when deemed beneficial by a heuristic. Execution of Gibbs
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Sampling requires synchronization between phases more closely resembling the
BSP model. The difference with the work presented below is that the graphical
model is used indirectly to detect parallel parts of the dataflow graph. Since
the posterior is evaluated as a whole with less synchronization instead of being
separated into smaller conditional densities, the applicability is not limited to
Gibbs sampling. Another difference is that MultiBUGS ignores load imbalance
by explicitly assuming that tasks have the same running time.

Even if the outlined approach is applied in a Gibbs setting, the parallelization
within a single phase is different. For example, given a posterior p(θ|D), if
p(θi| . . .) and p(θj | . . .) are assigned to one Gibbs phase, computation shared
between these two conditional distributions can be executed only once even
without blocking, a technique that affects convergence properties of Gibbs
sampling [Yil12].

Nemeth et al. [Nem+20a] uses an Evolutionary Algorithm (EA) to parallelize
the evaluation of probabilistic models by optimizing schedules through simulation
of a parallel system with communication overhead. The downside is that searching
for a schedule can become prohibitively slow, even though, at least in theory,
the optimal schedule could be found. In contrast, using the graphical model is
a simpler strategy as only tasks assigned to phases can be executed in parallel.
However, it turns out that such an approach already yields well-performing
schedules. Another difference is that the EA approach yields a static schedule in
which both the execution order and the assignment of tasks to processors are
fixed while the tasks that have been identified from the graphical model can be
re-assigned depending on load imbalance changes.

An extensive survey for the well researched task graph scheduling problem
is provided by Yu-Kwong et al. [KA99]. The main difference with conventional
scheduling approaches is that the target domain is rather specific. The dataflow
graph of a generative model specification always obeys a specific template. From
this observation, a mapping can be formulated from which the parallelism is
extracted directly.

7.3 Hierarchical Models and Conditional Inde-
pendence

The main goal of this chapter is to show how model descriptions can be par-
allelized by relying on information from the graphical model. This section
introduces the notion of a model description, its dataflow graph, and its graph-
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for i in 1, . . . , N
φi,1 ∼ Lognormal(µ2, σ1)
φi,2 ∼ Lognormal(µ5, σ2)
p = h1(µ1, µ4, µ5, φi,1, φi,2, pki)
iv = [0.0, 0.0, 0.0, h2(µ)]
ŷ = int ode(ti, 0, iv, dosei, p)
for j in 1, . . . , ni

sdv = h3(ŷj)
yi,j ∼ N (sdv, σ)

end

end

µ1

µ2

µ5

µ3 σ1 µ4 σ2

φi,1 φi,2

yi,j

i = 1, . . . , N

j = 1, . . . , ni

Figure 7.1: The Canagliflozin model description M on the left and its graphical
model on the right. A PK/PD model, used to describe the compound concen-
tration over time for N individuals in a population, is numerically integrated
by int ode. This model is defined elsewhere. The number of measurements for
the ith individual is given by ni, and h1, h2 and h3 are side-effect free helper
functions. In addition to yi,j , the data D also contains the dosing regimen dosei
and PK paramters pki for each individual.

ical model. To distinguish between the structure of the two representations,
“layers” refers to candidates for parallelism in the former and “levels” refers to
the depth of variables in the latter.

From a Bayesian perspective [SS06], a model description defines a posterior
p(θ|D). The numeric value of the posterior determines the quality of a chosen
set of parameters θ while taking into account evidence D. In what follows, θi
denotes a component of the θ vector and yi ∈ D denotes a data entry.

The description consists of likelihood expressions yi ∼ p(.|pa(yi)) and prior
expressions of the form θi ∼ p(.|pa(θi)) where pa(.) is the set of random variables
conditioned upon. These expressions will be generalized to γi ∼ p(.|pa(γi)) for
convenience. As an example, consider the model shown by Figure 7.1 on the left
describing both PK and PD of a drug for type-2 diabetes treatment [Win+17].

To convert a model description into an executable function f(θ,D), prior and
likelihood expressions are replaced by probability density function evaluations of
the density p(.| . . .) at γi, denoted by a call to pdf() to which the distribution and
the position are passed. Finally, the product of the resulting probability densities
is returned while the remaining expressions are left untouched. The resulting
function is then converted into a dataflow graph [Cul86; BJP91]. In contrast
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to the typical controlflow style reasoning, a dataflow graph is an alternative
model of computation where instead of executing operations on data, data
flows through operators. This representation of computation lends itself well
to parallelization [KK07]. This conversion is detailed in Chapter 8. A dataflow
graph G = (V,E) represents the set of computational tasks V and specifies how
data flows between the tasks with edges E.

In general, the dataflow graph of a function f(θ,D) for a hierarchical model
has the structure shown in Figure 7.2. The inputs θ and D are shown at the top
and the product over densities is shown at the bottom. These are connected with
the central portion of the graph, shown by dashed lines. Considering only the
part with solid lines, the relationship with the graphical model is revealed. Each
level depends on any of the previous levels through density evaluation nodes
in V . In the example shown, the connections are less dense; for example, the
first level is only connected to the second and fourth level and not to the third
level. However, it is easy to see how the structure generalizes to any hierarchical
model.

The model from Figure 7.1 is even less dense. Part of the first layer µ3, σ1, µ4

and σ2 are connected with the second layer with variables φi,1 and φi,2 and all
variables in the second layer together with the remaining part of the first layer
are connected with the third layer with variables yi,j .

One simplification made here is that an edge in Figure 7.2 can represent a
sequence of operations that transform random variables between layers or parts
of layers like h1, h2, h3 and int ode in Figure 7.1. It is important to keep this
in mind for the discussion in Section 7.4.

A graphical model H = (R,F ), is a representation of the conditional indepen-
dence between variables. Figure 7.1 shows the graphical model on the right for the
Canagliflozin model. For brevity, it is conventional to summarize similar variables
with the plate notation by placing them into boxes with the range of iterated in-
dices specified at the bottom [Gou+17]. For hierarchical models, H is a Directed
Acyclic Graph (DAG), where the set of nodes R represents the random variables
in the hierarchical model and their priors, and the edges F ⊆ R×R denote how
the posterior can be factorized, i.e. p(θ|D) ∝ p(θ,D) = p(γ) =

∏
i p(γi|pa(γi)).

An edge from γj to γi is placed in F if γj ∈ pa(γi).
To convert a dataflow graph G into a graphical model H, the nodes R

and edges F need to be defined in terms of V and E. All nodes with input
parameters in G, i.e. θi and yi at the top of Figure 7.2, form R. The edges F
are defined by the density evaluation nodes. By traversing the edges in E in
the opposite direction starting at the node that provides the density input, the
variables pa(γi) can be found. Similarly, following the other input, γi can be
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θ,D

θ1 . . . θk−1 θk . . . θl−1

pdf(p(.| . . .), . . .)

θl . . . θm

pdf(p(.| . . .), . . .)

y1 . . . yn

pdf(p(.| . . .), . . .)∏

Figure 7.2: Simplification of the structure of the dataflow graph of a function
f(θ,D) built from a hierarchical model with four layers the last of which is
the data layer. The structure generalizes to any generative specification of a
hierarchical models with arbitrary interconnected layers.
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found. This mapping introduces a function m from R to V where m(r) is either
the corresponding probability evaluation node if it exists, or the input node of
that variable. The set pa(γi) and γi for the red node in Figure 7.2 can be found
by following the green edges and the blue edges respectively.

7.4 Extracting Parallelism from the Graphical
Model

Since the dataflow representation naturally exposes parallelism in a model it
is possible to execute the dataflow graph by starting execution of each node
when all its inputs become available. It is well known that scheduling such a
computational DAG is hard to solve optimally, but many heuristics exist [B la+07].

Scheduling each node separately is prohibitively expensive in practice due
to the amount of overhead introduced on a contemporary system; not only is
overhead introduced by starting a function compiled from the expression in a
node, but also by tracking and storing its inputs and outputs. To reduce overhead,
sets of nodes can be grouped into larger tasks and treated as a single unit at
the cost of potentially reducing parallelism. It is possible to find satisfactory
assignments of tasks to processors by considering the dataflow graph and the
characteristics of the underlying parallel system directly [Nem+20a], but this
search can be slow in practice, especially with graphs that have on the order of
104 nodes or more. Such graphs are not uncommon for typical PMX models.
Assuming that the order of tasks is not fixed, there are np possible assignments
to consider with p processors. Parallelization based on the graphical model is
more tractable, although less detailed.

Since the posterior can be seen as a product of conditional densities as
discussed in Section 7.3, the most basic approach is to create one task for each
conditional density from the dataflow graph. This is accomplished by traversing
the dataflow graph backwards from each node c that contains the expression
pdf(p(.| . . .), γi) and selecting all reachable nodes, denoted by the set pred(c).
The procedure pred(c) extends naturally to sets of random variables as well.

While this leads to an embarrassingly parallel solution since each task can be
computed independently, the downside is that many nodes will be recomputed
due to the similarities. More formally, for two density evaluation nodes c1 and c2,
pred(c1) ∩ pred(c2) 6= ∅. For example, suppose that one of the input parameters
γi is first transformed to g(γi) and there are multiple γj such that γi ∈ pa(γj).
Then, to compute each conditional density p(γj |g(γi), . . .), g(γi) will need to be
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recomputed for every conditional density, a situation that is undesirable if a
significant portion of computation effort is spent in g.

Therefore, this chapter proposes to use the conditional independence to
find similarities between conditional densities. Computationally, conditionally
independence of two random variables γi and γj given γk means not only that
p(γi, γj |γk) = p(γi|γk) · p(γj |γk) holds, but also that some of the tasks related
to γi and γj are to be executed after some of the tasks related to γk. In
addition, there might be some similarity between the computation related to γi
and γj , but there will also be some differences. If this was not the case, then
p(γi|γk) = p(γj |γk).

Computational similarities can be captured by introducing deterministic vari-
ables β so that p(γi|β, γk) = p(γi|β) and p(γj |β, γk) = p(γj |β). Probabilistically,
after marginalizing the deterministic variables β, Equation (7.1) holds.

p(γi, γj |γk) = p(γi|β) · p(γj |β) · p(β|γk) (7.1)

Once p(β|γk) has been computed, both p(γi|β) and p(γj |β) can be computed
sharing as little information as possible. If no information is shared, they can be
computed in parallel. Figure 7.3 shows how to accomplish this by processing
random variables in the graphical model.

The end goal is to assign random variables to layers and to construct tasks
from the variables in these layers. The assumption is that tasks constructed
from a layer are independent. In the extreme, when a deterministic variable is
introduced for each node in the dataflow graph, all tasks will be independent given
their predecessors. Note however that Figure 7.3 introduces only a limited number
of deterministic variables. Therefore, the predecessor relationship imposed by E
will still need to be respected since there might still be some dependencies. The
rationale behind this is that variables in the same layer tend to share computation
through their connection with previous layers, on a layer by layer basis, while
little or no computation is shared within a layer.

First, following the depth definition from MultiBUGS [Gou+17], the level
d(r) is computed for r ∈ R. If pa(r) = ∅, then d(r) = 1. Otherwise, d(r) =
1 + maxp∈pa(r) d(p). In Figure 7.1 the depth is 1 for all µ and σ variables, 2
for all φ variables, and 3 for the data variables yi,j . The levels of the random
variables partition R into sets R1, . . . , RD. Here, Ri contains all the random
variables at level i.

It might seem that D layers can now be constructed, one for each set of
variables Ri. However, this does not expose computational similarities present
between layers. Instead, multiple layers will be introduced for each level i,

114



7.4. Extracting Parallelism from the Graphical Model 115

procedure ExtractLayers(G,H,m) . G,H and m defined in Section 7.3
Compute d(r) for r ∈ R as in MultiBUGS [Gou+17]
for i = 1, . . . , D do

Li,i = {{m(r)}|r ∈ Ri}
Pi = ∪r∈Ripa(r) . All direct parents of level i
for j = 1, . . . , i− 1 do

Pi,j = Pi ∩Rj . Direct parents in level j < i
Li,j = {lcpred(ch(p) ∩Ri)|p ∈ Pi,j} . Find computational

similarities
end for

end for
return L1,1 . . . , LD,D

end procedure

Figure 7.3: Extracting layers to construct parallel tasks.

represented by Li,j . The elements of layer Li,j are sets of dataflow graph nodes.

For a level i, the deepest layer Li,i contains the dataflow graph node associated
with the random variables r ∈ Ri as singletons. Next, the directly reachable
parents of the variables in Ri are collected in Pi. For each j < i, |Li,j | =
|Pi,j | where Pi,j ⊆ Pi are the direct parents on level j. Each element of
Li,j is given by the last common predecessors of the children of p ∈ Pi,j in
Rj , denoted by lcpred(ch(p) ∩ Rj). For a set of nodes S ⊆ R, lcpred(S) is
computed by taking the nodes in ∩c∈Spred(m(c)) for which edges lead to nodes
in ∪c∈Spred(m(c)) \ ∩c∈Spred(m(c)). The expressions from the dataflow graph
in each set in Li,j with j < i constitute the computational similarities of random
variables with depth i with respect to parents at depth j. These similarities
correspond to deterministic variables like β.

For the model from Figure 7.1, L1,1 contains singletons for the random
variables at depth 1 like {m(µ1)} and {m(σ2)}. Analogously, L2,2 and L3,3

contains singletons for the random variables φ and the data entries y respectively.
The direct parents of the variables with depth 3 are µ1, µ2, µ5, φi,1 and φi,2.
Since d(φi,1) = d(φi,2) = 2 and d(µ1) = d(µ2) = d(µ5) = 1, two additional
layers L3,2 and L3,1 will be introduced. Here, among others lcpred(ch(φi,1)∩R2)
contains calls to int ode, and lcpred(ch(φi,1) ∩R2) contains calls to h2.

Finally, to turn the constructed layers Li,j into a partitioning of V , they are
processed from shallowest to deepest while assigning all nodes in V . Each set
S′ ∈ Li,j is replaced by nodes in ∪s∈S′pred(s) except for those that have already
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been assigned. The resulting sets form the final tasks.
While it might seem that annotating the for-loops in the model description

like the one given in Figure 7.1 to specify that these should be parallelized is
straightforward, the parallelization described here will not only automatically
detect this, but it will also work for more arbitrarily interrelated models in which
loops need not necessarily match the levels of the hierarchy.

The tasks within each layer can be scheduled to run in parallel. To maximize
parallel efficiency [Gra+03], idle times need to be kept to a minimum. The only
heuristic considered during performance evaluation is LPT [CS18] although other
heuristics could be used as well. The focus is not so much on scheduling, but on
presenting a mapping between two representations of a model to identify parallel
parts.

Since subsequent posterior evaluations occur at similar positions in the
parameter space, i.e. θt ≈ θt+1, it turns out that the execution time for each
task changes only gradually. For this reason, after running one iteration with
tasks scheduled using a Round-Robin (RR) strategy, subsequent rounds can be
scheduled with LPT using the execution time measured during evaluation of the
previous candidate parameter θ.

7.5 Performance Evaluation

PMX models are key computational components leveraged for decision making
during drug development. Here, only a limited amount of data is available [PB00].
The data includes the compound concentration in the blood of subjects, a costly
measurement to make. In contrast to more classical models where all data is
“independent and identically distributed”, the data also specifies from which
patient each measurement is taken creating a hierarchy as discussed above.

In this section, the performance of the proposed method is evaluated using two
models from PMX. The first model, called the Nimotuzumab model, describes
a humanized monoclonal antibody mAb, in patients with advanced breast
cancer [Rod+15]. The second model is the Canagliflozin model used as the
example in Section 7.3.

The structure is similar in both models; it consists of a population layer in
which a set of patients that have taken part in the clinical trial are each modeled
separately. However, it is important to note that the parallelization outlined in
this chapter can be applied to models with more layers assuming that there are
enough computationally intensive tasks in each layer.

The data for the Nimotuzumab model contains measurements of 12 patients
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Table 7.1: The number of tasks per layer and the percentage of time in each
layer for the two test models. Most of the time is spent in the fifth layer, where
tasks that perform the numerical integration are concentrated. The final layer,
with the most tasks, contains likelihood evaluations.
Model Metric L1,1 L2,1 L2,2 L3,1 L3,2 L3,3

Nimotuzumab Tasks (#) 1 3 36 1 12 321
Coverage (%) 0.00% 0.09% 1.43% 0.03% 90.35% 8.10%

Canagliflozin Tasks (#) 1 2 2694 1 1144 5237
Coverage (%) 0.00% 0.01% 0.03% 0.00% 99.90% 0.06%

resulting in limited amount of parallelization. On the other hand, the data for
the Canagliflozin model consists of measurements of 1144 patients. For this
model, it is important to note that some patients in the placebo group are not
given the compound, while others are given the compound for either a shorter
or longer period. Therefore, the time required to simulate PK and PD for each
patient varies drastically [HR20]. For example, execution time of numerical
integration varies up to 100x across patients for Canagliflozin.

If all expressions are compiled separately, respectively 6643 and 46261 tasks
are created for the two models. The overhead of running these tasks separately,
estimated by a run on a single system, slows down execution time by a few
orders of magnitude. By applying the steps outlined in Section 7.4, the number
of tasks drops to 375 and 9080 reducing task management overhead.

The distribution of tasks across layers is shown in Table 7.1. Most of
the computation time, 90% and 99% respectively, is spent in the numerical
integration of the PK and PD equations. The tasks that perform this integration
are captured in a single layer. Both models compile to 5 layers with the most tasks
in the last layer containing likelihood evaluations. Since likelihood evaluations in
these models are lightweight, they also serve to demonstrate that the presented
parallelization can be too aggressive as all layers are parallelized while manual
parallelization would only assign more resources in the layer that captures
numerical integration tasks.

The number of messages exchanged between processors depends on how tasks
are scheduled, and varies at runtime for each evaluation when the scheduling
step reassigns tasks. It is important to note that the LPT heuristic has a local
view. Tasks in each layer are scheduled without considering the assignment of
tasks in other layers.

Figure 7.4 compares performance when tasks in a phase are scheduled using
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Figure 7.4: Mean scalability of the Nimotuzumab model on the left and the
Canagliflozin model on the right with the shaded regions showing the uncer-
tainty range for the 5th and 95th quantile of the speedup. The efficacy of the
parallelization approach is model dependent, but performance improves for both
models.

a RR strategy or by using the LPT heuristic on a single Haswell system with
2 Xeon E5-2699 v3 @ 2.30GHz CPUs, each with 18 physical cores for a total
of 36 cores. The parallelization was implemented in the Julia programming
language [Bez+17]. For the sake of stability of the results, frequency scaling was
disabled. While other custom message passing implementations were also tested,
the results are reported for an implementation relying on Intel MPI Version 2018
as it is widely available. Preparing and copying messages adds overhead, but
note that since the results are for a single system, this could be avoided by using
threads instead. Nevertheless, the mapping between the two representations with
this overhead still shows promising performance scalability. It is also applicable
to larger systems with a higher latency interconnect as long as the tasks are
sufficiently compute intensive.

Since the outlined approach uses the message passing model for parallel
execution, the more general term “processor” is used here [Gra+03]. The
comparison is made in terms of the speedup achieved by running on p processors,
denoted by Sp and given by the ratio between the execution time with one
processor and p processors, i.e. T1/Tp. As both T1 and Tp are stochastic due to
noise in the system [Lam09; HB15], execution time is measured 200 times for
each choice of p to obtain stable results. Samples for T1 are paired with Tp to
generate samples for Sp. The 5th and 95th quantiles are shown to quantify the
spread of Sp.

The limited number of patients in the Nimotuzumab model causes execution
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time not to scale past approximately 10 processors. Note also that performance
does not reach 10x with respect to baseline. Through profiling, it became
apparent that this is not only due to the varying computational requirements
between tasks associated with different patients, but also due to communication
overhead. With the relatively small amount of available parallelism, this cannot
be neglected, and it causes performance to degrade past 10 processors.

Note that the LPT heuristic results in slightly slower performance when
compared to RR. This is due to the increase in the time spent communicating
between some cores in some layers, an aspect not taken into account by the
heuristic while in RR communication cost is spread more evenly.

Note also that initially, there is little to no difference between the two
strategies. This is due to the two strategies behaving similarly when a few
processors are used. As the number of processors increases, the performance of
the two strategies diverges.

The Canagliflozin model scales better since there is a much larger opportunity
for parallelization. Due to the amount of imbalance between patients, the LPT
scheduling heuristic further improves performance by about 8%. Around 10%
is lost due to overhead introduced by communication between processors and
task management. This is verified by comparing to theoretically computed
execution time where this overhead is ignored. Note that efficiency, computed
by comparing actual scalability with linear scalability, stays above 90%. From
this, it can be concluded that most of the available parallelism is exploited.

Since multiple processors are employed in each layer of the hierarchy, it
only improves performance in layers with tasks that take a sufficient amount of
computation to dwarf communication overhead. For layers with small tasks, the
benefits of parallel execution will be outweighed by the overhead introduced by
communication. In this case, overall performance will improve only when other
compute-intensive layers make the overhead for layers with many small tasks
negligible.

7.6 Conclusion and Future Work

This chapter introduces a novel way to parallelize evaluation of hierarchical
models by observing that conditional independence in a graphical model rep-
resentation can be mapped to the dataflow graph. The presented method has
been shown to work for two characteristic models from PMX. Note that it is
not limited to this domain. The efficacy of the model depends on the amount
of parallelism inherent in the input models and the computational size of its
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tasks. The results show that by using a simple well-known scheduling heuristic
within each layer, performance can further improve in case execution time varies
between tasks.

One drawback of the presented method is that all layers are parallelized.
As long as there are enough layers with many compute-intensive tasks, the
presented approach results in high utilization of parallel resources. However, the
communication introduced in layers with small, but numerous tasks can degrade
performance. Therefore, future work will explore how to disable parallelization
selectively if communication overhead is high relative compared to the amount
of computation.

The scheduling heuristic relies on the measured execution time of tasks during
previous model evaluations. As long as the assumption holds that the execution
time of tasks changes gradually while the encompassing sampling algorithm or
optimization routine takes small steps in the parameter space, such an approach
will suffice. There is additional overhead introduced by measuring and collecting
the execution time of each task. Therefore, future work will study the trade-off
of occasionally disabling these measurements while the scheduling heuristic uses
less up-to-date measurements.

The current results were limited to a single system with communication
between processors accomplished through memory. Another aspect that will be
explored next is how to mitigate the latency of contemporary interconnects.

Finally, while the partitioning of nodes is used in this chapter to construct
tasks, using the resulting assignments for initializing more complex heuristics as
those used in other work [Nem+20a] to speed up convergence will be studied
next.
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Chapter 8

Automatic Parallelization
with Varying Load
Imbalance

8.1 Introduction

The parallelization based on the graphical model is dynamic. This allows a
more favorable schedule to be selected and deployed at runtime with minimal
overhead. Another upside is that any task that has all its inputs available can
be launched. This can be seen as reordering tasks at runtime. However, the
dynamic behavior is not for free as a data structure that represents tasks need to
be stored in memory. Inputs and outputs need to be propagated and managed.
In addition, it can be too crude and aggressive for some models and some parallel
architectures where communication price is high.

Therefore, a more general and fine-grained approach like the one proposed
here is desirable for some models. Again, a scientist provides the input in the
form of a model descriptionM lacking any notion of parallelism. Given a parallel
system with p processors, the goal is to create p optimized processor specific
procedures that, when run in parallel, evaluate a model. This static approach
fixes the order of tasks assigned to each processor. Consequently, less overhead is
introduced. The sequence of transformations outlined by Figure 8.1 accomplishes
this.
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Model description M

Expression for M: f(θ,D)

Controlflow graph for f(θ,D) Data D

Controlflow graph for f(θ) with D inlined

Dataflow graph for f(θ) with D inlined

Runtime measurement ETF scheduler LogP

Evolutionary Algorithm with DES Simulator

Procedure 1 Procedure 2 . . . Procedure p

Figure 8.1: The steps required to parallelize model descriptions M. By inlining
the data D into the model evaluation, its parallel structure is revealed. Static
schedules are combined into a more robust schedule from which processor spe-
cific procedures with embedded communication primitives, Procedure 1, . . . ,
Procedure p, are derived.

The contribution of this chapter is not only to describe how the pieces in
Figure 8.1 fit together, but to demonstrate that inlining data into the input model
reveals its parallel structure and to show that an EA is effective at combining
static schedules into more robust schedules that cope with the variation in the
execution time of tasks.

The focus here is on PMX models used during drug development to study
human-drug interaction dynamics. Typically, each participant in the drug trial
is modeled by a set of ODEs [OF14]. Numerical integration of these equations
can take a varying amount of time as θ changes [HR20].

While these models are structured in a particular way, it is important to note
that the outlined approach generalizes to compute bound models from other
domains with similar characteristics as well. In its current form, data bound
models like those seen in Machine Learning (ML) cannot be handled easily due
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to the large quantities of data to which these models are fit. To handle those
models, parts of the model that repeat for each data element would need to be
more compactly represented.

The remainder of this chapter is structured as follows. Section 8.2 references
related work. Section 8.3 discusses the components of Figure 8.1 in more detail.
Section 8.4 lists and discusses results. Section 8.5 concludes the chapter and
provides future work directions.

8.2 Related Work

Probabilistic languages, like the one used to specify M, are part of systems like
Turing [GXG18], Stan [Car+17], nlmixr [Fid+19] and WinBUGS [Lun+00]. To
leverage parallel resources, these languages either employ a parallel optimization
method [Gou+17] or rely on parallel building blocks [GXG18]. Stan [Car+17] and
nlmixr [Fid+19] are particularly well suited to fit nonlinear mixed-effects models,
like the models studied below, through their powerful back-end algorithms.
However, both packages limit parallelism to the back-end. Even with the
recently proposed extension to the modeling language of Stan [Web18], parallel
parts need to be explicitly specified. In contrast, as schedules are produced by
an EA, M need not change. If parallelism on the target platform is not deemed
beneficial for some parts of the model, that part will execute sequentially.

TensorFlow [Mar+15] is the most prominent framework for machine-learning
today. Users specify a model as a dataflow graph directly, and its nodes are
mapped across multiple systems within a computing cluster. The scheduling
problem in TensorFlow using heuristics has been studied in the past [MML17], but
those results are limited to ML models expressible in TensorFlow. Similarly, the
parallelization of the models presented below relies on the dataflow representation,
but the input models are compiled from an abstract description and static
scheduling is used instead.

Explicitly inserting parallel constructs and tuning of computer programs can
be extremely time-consuming and error-prone. Therefore, it is no surprise that
auto-parallelizing compilers have been around since the earliest parallel super-
computers in the 1960s. These analyze programs to detect implicit parallelism
and restructuring opportunities [Wol95; Pre75]. The methods described below
have a similar purpose but focus solely on parallelizing probabilistic models
instead of general programs. The specific structure of these models simplifies the
dependency analysis to determine where the sequential ordering can be relaxed.

Chen [Che06] builds on the work of Hou et al. [HAR94] by using an EA
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to optimize schedules under a LogP model, a well-known model for parallel
computing discussed in more detail in Section 8.3, for deterministic task execution
times. The evolutionary component in Figure 8.1 also optimizes schedules with
the LogP model, but instead of augmenting the task graph with send and
receive nodes to account for communication overhead, schedule execution time
is estimated through Discrete Event Simulation (DES) with stochastic task
execution times. The genetic operators are not those from Chen, but resemble
those from Omara et al. [OA09] since these have been found to produce better
schedules.

Kalinowski et al. [KKT00] considered Earliest Task First (ETF) scheduling
under the LogP model where a schedule produced by the classical ETF heuristic
is turned into a LogP feasible schedule by delaying tasks assigned to processors
that are occupied by sends and receives. They only account for the latency,
overhead and gap parameters. To more accurately assess schedules, including
those produced by ETF, DES is used instead to also account for out of order
receives and the cost of (de)serializing data exchanged between processes.

Zheng et al. [ZS13] discuss a Monte Carlo approach to schedule tasks with
uncertain execution times. Their method consists of a generating phase to create
static schedules with arbitrary heuristics based on sampled task execution times
followed by a selecting phase to evaluate these schedules. The initial generation
of the evolutionary approach outlined below similarly contains different static
schedules, but these are evaluated by a DES simulation of the LogP model. In
addition, the best schedules from subsequent generations are combinations of
the schedules from the initial individuals.

Labyrinth is a method to compile control flow constructs to a single dataflow
job with the goal to avoid incurring scheduling overhead in each iteration
of the encompassing algorithm [Gév+18]. The compilation approach taken
in Labyrinth consists of first compiling each basic block into a Static Single
Assignment (SSA) and then into a dataflow graph. Each block is then linked
using dynamic conditional edges. In contrast, all loops are compiled away when
D is combined with M leading to static dataflow graphs, greatly simplifying
parallelization. Although scheduling only takes place once, the characteristics of
multiple iterations are taken into account.

Task runtime systems like those in implementations of version 3 of the
OpenMP specification [LaG+11], StarPU [Thi18] and OmpSs [Fer+14] schedule
tasks dynamically taking into account inter-dependencies and system load. While
this dynamic approach allows to adapt to changes in load imbalance and reorder
tasks at runtime, it also inherently adds overhead requiring tasks to be large
enough to amortize the scheduling costs. For example, for StarPU, tasks should

124



8.3. Automatic Parallelization of Models 125

take at least 100µs [Thi18] to avoid introducing too much overhead in relative
terms. Since the smallest unit in the models is a single operation, it is on the
order of nanoseconds. The communication overhead in the platform is still
present, but concurrent operations that are too small to be scheduled on different
processors will be assigned to the same processor, and no runtime overhead will
be incurred. The performance of the resulting function for a system with a single
processor system will be close, if not equal, to the performance of evaluating the
model sequentially as all tasks are compiled together.

Many extensions to the standard LogP model have been proposed each
targeting different network characteristics [HLR07]. For the parallelization
presented here, the extension that separates send and receive overhead [Cul+96]
is sufficient to predict execution time accurately. Depending on the target parallel
system complexity and input model characteristics, other extensions of the LogP
model will need to be considered.

8.3 Automatic Parallelization of Models

The goal is to transform an input model M into p processor specific procedures
that when executed in parallel, compute the quality of a chosen set of parameters
θ. An input model M consists of a set of statements each describing the
distribution of unknowns. Statements follow the standard probabilistic syntax,
e.g. θi ∼ P(.) for some distribution P. Optionally, any number of procedures,
which perform arbitrary computation in a side-effect free manner, like conditional
constructs expressed as functions, numerically solving ODEs or performing other
complex simulations, can be referenced in the model. Turning the code of M
into an executable function corresponding to the log-posterior log p(θ|D) that
takes both a candidate solution θ and the data D as input, and outputs the
sum of the log probability densities of all the parameters and all data entries,
is accomplished by replacing all θi ∼ P(.) expressions by an evaluation of the
log probability of P(.) at θi. All steps outlined below work on the level of
expressions. Calls to functions, like those that evaluate the log probability or
arithmetic operations, are treated as black boxes. The left of Figure 7.1 shows
the code for an example model written with probabilistic syntax.

The model M describes a phenomenon abstractly, by specifying how data
is distributed; it does not specify how many data elements there are and what
the data is. However, since the data D for a particular problem is fixed for all
evaluations of the posterior function, it can be combined with M creating a spe-
cialized version to reveal concurrent parts. This is accomplished by substituting
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expressions with their known constants, where D is seen as a constant. For this
step, a controlflow graph needs to be used [Aho+06].

In the dataflow model of computation, data flows through operations as
opposed to the Von Neumann architecture where operations act on data. A
program in this model is represented by a graph where nodes specify operations
and edges specify how data flows through the operations. In general, when
dataflow graph encode loops and conditional constructs, they are referred to as
being dynamic and some nodes might either not be executed at all or multiple
times. On the other hand, static dataflow graphs guarantee that each node is
executed exactly once [Cul86]. The main benefit of this representation is that
since it is clear on which data each operation depends, concurrency is exposed.

The approach to convert the controlflow graph into a static dataflow graph is
based on Beck et al. [BJP91]. The central idea of their work is that each node in
a controlflow graph can be seen as an operation that transforms the memory of
a machine. Since memory is modeled by variables, a token is introduced for each
variable that grants access to the memory associated with the variable. Load and
store nodes are introduced that operate on memory, loading or storing a value of
a variable. Each controlflow node is replaced by a set of nodes that will become
the dataflow graph. Figure 8.2 shows the translation for an example expression
r = g(a1, a2, . . .). Tokens for a1, a2, . . . are each connected to load nodes of
which the loaded values are passed to a node that performs the operation g. The
output of this node is fed into a store node that also takes the access token for r.
Once the dataflow graph has been created, stores followed by loads are resolved,
essentially parallelizing memory operations.

Loop dependency analysis [DK14] is avoided by inlining D into M, typically
resolving all loops. For the models considered in Section 8.4, the remaining loops
and conditionals could be translated into so called dataflow graph switch nodes,
but it turns out that sufficient parallelism is exposed by simply packing these
into side-effect free functions. Since these are treated as black boxes, this avoids
having to deal with dynamic dataflow simplifying execution.

To reduce the search space for the EA, the input graph should be as small
as possible. Therefore, subsets of nodes in the dataflow graph that appear in
the same order in any topological sort are merged. The rationale is that it is
typically not beneficial to schedule these nodes over multiple processors due to
the lack of available parallelism.

The next step is to find schedules S = (O,A), where O is a permutation of
nodes that respects the predecessor relationships of the dataflow graph and A is
a vector that assigns nodes to processors. Processor specific procedures can be
generated from a schedule as shown by the example in Figure 8.3 for a dataflow
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. . .loadload

store

g(a1, a2, . . .)

a1a2 . . . r

Figure 8.2: Dataflow graph nodes and edges for the expression r = g(a1, a2, . . .).
Tokens, denoted by underlined variable names, for all variables a1, a2, . . . that
are read in the expression, pass through load nodes first, and tokens to the
variable r that holds the result of the operation passes through a store node.
Tokens for all other variables, not shown here, do not connect to any of the nodes
for this expression. This conversion was introduced by Beck et al. [BJP91].

graph of 7 nodes and a schedule with p = 3 processors. Since each receive
operation blocks on its requested input, these are placed as late as possible in the
procedures to avoid unnecessary blocks. If results are received out of order, they
are transparently buffered by the receive operation. Note that the more classical
approach of executing the task graph directly requires tracking all intermediary
values adding a significant amount of overhead. This approach was explored
but only a limited speedup was achieved. With processor specific procedures, if
related tasks are assigned to the same processor, data flowing through edges is
propagated by standard variables.

Another benefit of creating processor specific procedures is that an optimizing
compiler can be leveraged. This means that even though the dataflow graph
contains a node for each operation, these might be combined into a single runtime
instruction. For example, g6(r1, g4(r1)) in Figure 8.3 might be compiled to a
single instruction. The downside is that a schedule must be fixed beforehand. To
maximize performance, schedules that minimize the total runtime are preferred,
but the best schedule changes as task execution times change not only due to
system noise [Lam09], but also by the choice of the model parameter θ. The
latter is referred to as varying load imbalance.

The ETF heuristic is known to produce well-performing static schedules
by iteratively assigning tasks to processors with the earliest start time in each
scheduling step [KKT00]. For this, it requires the communication delay and the
execution time of tasks. A version of the heuristic under the LogP model has
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function procedure1(r0)
r1 = g1(r0)
send(r1, (3,2))
r3 = g3(r1)
send(r3, 2)
r5 = recv(5)
r6 = recv(6)
r7 = g7(r5, r6)
return r7

end

function procedure2()
r1 = recv(1)
r4 = g4(r1)
r6 = g6(r1, r4)
send(r6, 1)
r3 = recv(3)
r5 = g5(r3)
send(r5, 1)

end

function procedure3()
r1 = recv(1)
r2 = g2(r1)
send(r2, 2)

end

Figure 8.3: A dataflow graph and its three generated processor specific procedures
based on a schedule S = ((1, 4, 3, 2, 6, 5, 7), (1, 3, 1, 2, 2, 2, 1)). The result for the
operation gi in the ith node is stored in ri, and by executing all three generated
procedures in parallel, the final result r7 can be computed for an input r0.
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been considered by Kalinowski et al. [KKT00]. They propose to either simply
use a classically computed ETF schedule and adjust the make-span afterward or
to insert reserved time slots while creating schedules. Instead, DES simulation
with the LogP model is considered here. It not only more accurately takes into
account the possibility of overlap in computation and communication, but also
accounts for (de)serialization overhead and the time required to temporary buffer
results received out of order. The only issue that remains is that the schedules
assume fixed execution time of tasks.

To estimate the distribution of execution time for tasks, instructions to read
and store timestamps are inserted before every gi in the generated procedures.
The encompassing optimization method is then run for a few iterations to collect
samples of the execution time. An ETF schedule can then be generated from
each sample. While this instrumentation inevitably adds overhead that influences
the recorded timestamps, it turns out that the measured execution times are
accurate enough for schedule creation. This is due to the noise being relatively
small for the most compute intensive tasks and these have the most impact on
the overall execution time.

Each ETF schedule considers only a single sample of execution time. An EA,
initialized with ETF schedules, can combine and evolve these into a more robust
schedule.

Each individual in the EA population represents a valid schedule. The
population is not only initialized with ETF schedules, but also with schedules
produced by topologically sorting the dataflow graph while randomly breaking
ties and random assignments of tasks to processors.

Similarly to Omara et al. [OA09], the crossover operator chooses to either
mix the order of tasks or the assignment to processors of two schedules and the
mutation operator either reassigns a tasks to another process or changes the
order of two tasks without violating dependencies between tasks.

The fitness of an individual is determined by the reciprocal of the execution
time of the schedule while taking into account the variance in task execution time
and the parameters of the target parallel system. It is prohibitively expensive
to deploy and run candidate schedules on the target system. Not only does
deployment take time, but more importantly as schedules are inherently parallel,
only one can be evaluated at a time. Therefore, the fitness of individuals in the
population is based on an estimate of the execution time on the target system.
While there are many models of parallel computation [Zha+07], the variant of
the LogP model that is used here describes a parallel system with sufficient
detail to serve as a proxy for the real execution time.

The LogP model [Cul+93] is a well known computational model for distributed
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memory parallel systems in which the most performance-critical factors are
modeled. The system with P processors is modeled with messages exchanged
between processors incurring a latency of L units of time and where o units of
time is paid whenever a process receives or transmits a message. In this model,
the bandwidth of a network interconnecting processors limits the delivery of
messages to one every g units of time.

The extension of the LogP model that is used here is that from Culler et
al. [Cul+96] where o is further divided into the send overhead os and the receive
overhead or since a small change in or results in a significantly longer execution
time for the input models considered in this chapter, while a change to os
has a much smaller effect. Following the work of Kielman et al. [KBV00], the
parameters L, os, or and g are measured. Note that os and or only account for
overhead of the message passing implementation and not for (de)serialization
overhead.

To estimate the overall parallel execution time of a schedule, it is simulated
with DES for the LogP parameters of the target parallel system and the sampled
task execution times. This is a simulation modeling technique where the state
of the modeled system changes at discrete points in time [San07], is used. The
simulation consists of entities that can be in different states including active
or time delayed. In addition, a Future Event List (FEL) keeps track of when
the time-delayed entities are to be woken up [SBS13]. The entities for a LogP
simulation are the processors and the network, and the FEL contains processors
waiting for a message, computing processors, or the network waiting to deliver
a message. Using co-routines, the structure of the simulation code reflects
the generated processor specific procedures. Only send, receive, and compute
operations need to be replaced by simulated counterparts.

8.4 Results

The results below are of an implementation written in Julia [Bez+17] since it
provides powerful meta-programming capabilities for inspecting and generating
expressions, and a parser to read a model description, while simultaneously
performing JIT compilation through LLVM [LA] to achieve high performance.
The latter is important since it does not conflict with the performance goals of
parallelization. The send and receive operations, like those depicted in Figure 8.3,
are eventually forwarded to an implementation of the MPI standard.

Three pharmacometrics models are considered. These models mainly differ
in the structural portion s. The first model is a change-point model [JL08]. The
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Figure 8.4: Scatter plots of the real runtime versus the simulated runtime for
random schedules for a model that runs in less than 200µs on a single processor
(left), the Nimotuzumab model (middle) and the WBC model (right). The
estimates for runtime given by the LogP simulation are not perfect, i.e. R2

is 0.49 (0.85 after removing outliers), 0.98 and 0.99 respectively. However, as
the results in Figures 8.5 and 8.6 show, the correlation is sufficiently high for
the purpose of finding better schedules using the DES simulation that, when
deployed on a real parallel system, exhibit better performance.

second model from Rodriquez et al. [Rod+15] characterizes the pharmacokinetic
behavior of Nimotuzumab, a humanized monoclonal antibody, in patients with
advanced breast cancer. The third model given by Friberg et al. [Fri+02] describes
the pharmacokinetics and pharmacodynamics of multiple drugs and WBC to
study chemotherapy-induced myelosuppression.

The performance results are gathered on a Haswell system with 2 Xeon
E5-2699 v3 @ 2.30GHz CPUs. Precautions have been taken to minimize noise
in the system. Since software configurations play an important role in HPC
workloads, these are noted here. CPU frequency scaling and SMT was disabled
and processes were pinned. Intel MPI Version 2018 was used for message passing.

To assess if DES with LogP can serve as a proxy for the execution time of a
schedule, Figure 8.4 shows the real and simulated execution time for random
schedules with up to 36 processors. The coefficient of determination R2 is
0.49, 0.98 and 0.99 respectively. Not all aspects of the underlying system are
modeled. This includes operating system noise, garbage collection, and variation
in communication delays. Due to the short duration of the tasks in the first
model, these aspects introduce relatively large outliers that cause R2 to decrease.
After removing these, R2 increases to 0.85. DES was able to predict the execution
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time of all three examined models accurately. Note that the execution times
of tasks was only measured once and the execution time for all schedules was
predicted using this measurement. To measure the real execution time of a
schedule, it was deployed without timing instrumentation. Hence, the results
confirm that the overhead introduced by this instrumentation does not materially
affect the measured execution times.

The change-point model has many short-running tasks; the total execution
time on one processor for the whole model is less than 200µs and won’t be
selected for parallelization by an expert. Here, an EA should find a schedule
that uses only a single processor as long as it explores such schedules. For the
sake of brevity, this model is not considered further.

Scalability in terms of speedup Sp with p processors is reported in Figures 8.5
and 8.6 for the remaining two models. The speedup Sp is given by the ratio
between the sequential and parallel execution time T1/Tp of an optimization
method that takes multiple steps. As discussed in Section 8.3, the initial
population of the EA consists of schedules created using sampled execution times
of tasks. This together with the stochastic aspect of EAs and inherent noise
in the system causes execution time to vary. Therefore, the 90% uncertainty
intervals of Sp, estimated from the distribution of T1/Tp where Tp is collected
from multiple runs, is shown as well.

The Nimotuzumab model is quite compute intensive as the ODE system
that describes its dynamics [Rod+15] needs to be solved multiple times during
each model evaluation. Executing this model on a single processor takes on the
order of tens of milliseconds. It includes the data for 13 patients and compiles to
4029 dataflow nodes and 7778 dataflow edges. Scalability for up to 20 processors
is shown in Figure 8.5. First, note that the best ETF schedule, selected by
comparing the simulated execution times of the input ETF schedules of the EA,
shows more robust scaling than a randomly chosen ETF schedule. Next, note
the best ETF schedule performs poorly in some cases. For example, there are
runs where the best ETF schedule for p = 5 turned out to be as good as the
schedule used for sequential execution. Finally, observe that the EA was not
only able to produce more stable performing schedules, but it was also able to
repair the bad schedule for p = 5.

Next, Figure 8.6 shows the speedup achieved with the WBC model with
data for 45 patients. The model compiles to 903 and 1838 dataflow nodes
and edges respectively. Again, an arbitrary ETF schedule performs poorly
when using more than 5 processors. The shortsightedness of the ETF heuristic
causes performance to drop in some cases since once a sub-optimal decision
is made in a scheduling step, no backtracking is performed. The best ETF
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Figure 8.5: Scalability with 90% uncertainty intervals of an arbitrary ETF
schedule, the best ETF schedule from the set of schedules used to seed the
EA, and the best schedules found by the EA using DES simulation for the
Nimotuzumab model. Speedup is limited due to the limited amount of parallelism
in the model. The EA not only improved the subpar performing schedule with
p = 5, but it also produced more stable performing schedules in general.

heuristic outperforms arbitrary schedules. The EA is sometimes able to improve
performance stability, but more importantly, it is able to increase performance
by 10% by combining ETF schedules.

Figures 8.5 and 8.6 support the claim that the correlation between the
simulated and the real runtime need not be perfect. It only needs to be sufficiently
high for the EA to be effective in practice. If the correlation would be too low,
it would seem that better schedules are found from the perspective of the EA,
but when those schedules are deployed, real execution time would vary greatly.

It is difficult to assess the speedup in absolute terms as it depends on the
shape of the dataflow graph and the execution time of tasks. Since the scheduling
problem is hard to solve in general, the maximum theoretical speedup in function
of p could not be reported due to the size of the dataflow graphs. Therefore,
the ratio between sequential execution time and the critical path length of the
graphs is reported instead. The latter would be the execution time with infinite
processors and no communication delay. For the Nimotuzumab model and the
WBC model, this was respectively 9.27 and 8.28. Hence, with the best schedules,
around 33% parallel overhead is still observable in the Nimotuzumab model when
compared to this arguably unrealistic reference, while almost all parallelism is
exploited in the WBC model.
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Figure 8.6: Scalability of random schedules with 90% uncertainty intervals and
those found by the EA using DES simulation for the WBC model. The EA was
able to improve upon schedules produced by ETF up to 25% by combining and
evolving them.

8.5 Conclusion and Future Work

This chapter outlines an approach to automatically parallelize probabilistic
models. The two key enabling observations are that the parallel structure of
probabilistic model is revealed when the data is combined with the model and
that the static schedules can be combined into more robust schedules that are
able to deal not only with load imbalance, but also as load imbalance varies with
the model parameter θ.

By modeling the execution time of the message passing system using the
LogP model, it turns out that the execution time of a schedule is predictable
with sufficient accuracy so that it can be used by an EA to find better schedules.

From static schedules, processor specific procedures with embedded commu-
nication primitives can be created to avoid the overhead typically present in
many-task systems at the cost of fixing the execution order. It turns out that
the performance benefits far outweigh this cost. Around 66% and 99% all of the
estimated parallelism disregarding communication overhead is exploited in two
evaluation models respectively.

Using parallel resources in both the back-end and front-end simultaneously
could further improve performance. The trade-off between resource allocation
in these two levels seems an interesting future research direction. Alternatively,
embedding the task graph of the model into the optimization method task graph
and searching for schedules for the two simultaneously could be another valid
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approach.
Currently, a fixed number of steps were taken in the EA. Since a fixed

computational time budget is typically known upfront to run the optimization
method, future work will look into using EA convergence rate predictions to
trade-off quantified speedup gained per unit time spent in the EA. This can then
help decide if more evolutionary steps should be taken or to stop and use the
current best schedule to start the actual run of the optimization method.

The basic LogP model has already been extended to heterogeneous networks.
Incorporating that into the DES simulation model in the target parallel system
is straightforward and would allow to also take into account the hierarchical
nature of contemporary parallel systems while generating schedules.

The presented work could be extended to incorporate offloading computations
to hardware accelerators like Graphics Processing Units (GPUs) by making task
execution times and communication overhead resource specific. Computations
will only be assigned to accelerators when the overhead is small.

Finally, the focus has been on testing how well models run on a single
system although with a relatively high core count when compared to other
contemporary systems. The next step is to scale up further with larger models
and to consider the complexities of communicating across a network with different
characteristics.
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Chapter 9

Conclusions and Future
Work

This thesis tackles computational aspects of PMX models on large parallel sys-
tems. The key challenges with these models are that the amount of computation
is fixed and that they exhibits a high degree of variance in execution time. When
computational methods on these models are mapped to larger parallel systems,
they become sensitive to the latency of the interconnect.

These methods are classified into two components. The front-end consists of
model evaluations and the samplers execute in the back-end. Techniques and
improvements specific to either component are proposed.

First, an approximation that exploits the repeated dosing structure of the
PMX models is proposed resulting in an up to 70x improvement made possible
by numerically applying the method of averaging. Two techniques are shown to
correct the error in the approximation. This leads to a self-adjusting mechanism
that selects the error threshold by trading off accuracy and speed.

Next, the concept of “introducing useful computations during otherwise
stalled cycles” is introduced with the goal to increase operational intensity. This
idea is demonstrated in the context of Bayesian logistic regression with two
samplers yielding improvements of up to 5x.

Third, a parallel version of the affine invariant sampler is mapped to larger
parallel systems by observing that decisions based on a PRNG stream are
completely predictable. Here, improvements range from 10x to 20x depending on
the target. A scheduler that prioritizes some of the tasks at runtime is included
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to further improve performance by up to 15%.
Fourth, scalability limits caused by load imbalance are relaxed with specula-

tive execution in a SMC sampler. Reordering particle PRNG streams is shown
to increase predictive accuracy of speculative execution. The sampler is first
evaluated with up to 128 processors on three use-cases with differing load balance
characteristics. A speedup of up to 2.72x is achieved. The same speculative
sampler is also evaluated with 576 processors in a weak scaling setting showing
that a higher efficiency can be maintained.

In the second part, two automated parallelization methods are presented to
allocate resources in the front-end. The first is based on mapping conditional
independence to parallel execution and employing an existing scheduling heuristic
to schedule layers in the dataflow graph. This has been shown to perform well
on larger models where parallel efficiency remains above 90%.

The second parallelization method combines static schedules produced by
a scheduling heuristic through an EA to create novel schedules that are better
able to deal with varying execution time. Again, the reduction in execution time
is model dependent, but results show that almost all the available parallelism
can be exploited with this technique resulting in a speedup of 6 and 8 for two
test models.

A significant speedup can be achieved with all of the presented ideas. Putting
this into perspective, runs that take up to weeks with contemporary methods can
now be shortened to days or hours, aiding in the agility of the drug development
process.

As the scalability results show, there are more opportunities in the back-end
than in the front-end due to the inherent structure of the models. On the aspect
of resource allocation, the current recommendation is to allocate processors
hierarchically between the front-end and back-end following the hierarchical
organization within the parallel system. More specifically, all cores within a
CPU should cooperate on evaluating a model at a candidate parameter and
CPUs should cooperate on the level of the back-end. This is advisable since a
single model evaluation requires many messages and communicating through
shared memory avoids the (de)serialization overhead. A more detailed allocation
of resources could be an interesting avenue to consider.

In Chapters 7 and 8, speedup was reported not only in terms of a single value,
but the uncertainty was also quantified. Execution time on contemporary systems
is stochastic, and for that reason, the uncertainty of all the reported results
should also be quantified. Research suggests that the distribution of execution
time on parallel systems has a fat tail [HB15]. Removal of the synchronization
barriers in the samplers in Chapters 5 and 6 not only reduces the variance in
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overall execution time, but makes the fat tail thinner. It would be interesting to
investigate by how much the variance is reduced.

All the presented samplers and parallelization were implemented specifically
to showcase the ideas and achievable performance. A useful engineering project
would involve developing a single software package that leverages all the findings.
As noted earlier, it is important to have a variety of tools available since there
is no panacea that outperforms all the others. With this in mind, future work
should consider how to automatically select the best tool given a task.

The dataflow graph representation of the model enables powerful analysis
techniques, some of which have been explored in the second part. Samplers
like HMC require the gradient of the model and it is relatively easy to extract
these from the model description without any input from the user although the
gradients were defined manually for the results in Chapter 3. Another idea that
can transparently be enabled in this representation is to abort computation early
on. If a model evaluation is only used in an accept-reject ratio and it contains a
product of likelihood evaluations, it is possible to determine if a sample will be
rejected after computing a subset of the likelihood evaluations [Sol+12; Hab+18].
The benefit of the dataflow graph representation is that it is relatively easy
to transparently insert code to abort computation. Furthermore, likelihoods
evaluated in parallel could be aborted even sooner yielding super-linear speedup
as discussed in Section 2.4.

It is reasonable to assume that the model will not be created in one go.
Instead, multiple iterations will be required to fine-tune the details. Since the
statistical parameters of the samplers still require tuning, a possible improvement
to consider in this context is to reuse tuning settings at least partially to avoid
having to spend too much time tuning each run from scratch. In the same way, a
modeler will make small adjustments to the model after studying the results. A
research question here is not only how the results change in function of a small
change in the model, but also how computation changes. It could require less
resources to simply “update” the previous results.

Except for the approximation presented in Chapter 3 and the reordering
step in Chapter 6, all the techniques are transparent in that the output of the
algorithms is unaltered, but this comes at a cost. As illustrated by Chapter 3,
permitting a small error can yield great performance improvements. In essence,
another easier problem is solved. This idea could also be explored in the context
of MCMC samplers where knowingly introducing a negligible error could reduce
the computational burden.

Another constraint adopted in this thesis is that given an algorithmic config-
uration, the output should not change when run on a different parallel system.
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140 Conclusions and Future Work

For example in Chapter 5, the number of walkers can be set regardless of the
number of processors. The assignment of walkers to processors changes trans-
parently. The motivation behind this is that it aids not only in reproducibility,
an important property for the strictly regulated drug development process, but
also in debuggability.

Similarly, the output remains the same even when some processors are delayed.
Here, a relaxed reduction operation that completes with partial information
could still result in useful output while reducing stalls.

These approximations could be useful during the initial model development
phase, although the right statistical precautions need to be taken, since a slight
error can yield very different results when the models are not well conditioned.
The final “real” run can still rely on more precise proven methods.

As noted in Chapter 1, modelers currently switch between different projects
to avoid having to wait for results. Once a modeler has completed the structure,
it is scheduled for computation on lab machines shared across different groups
within the same organization. Since each of these run in isolation, it is reasonable
to assume that some computations will be repeated. This motivates the idea
that it could be possible to speed up computation by sharing information across
different projects either in an online or offline fashion. For example, numeric
integration algorithms search for a step size that obeys tolerance requirements.
It could be possible to speed up the search by initializing it with knowledge from
prior runs.

An important assumption in this thesis is that all resources are identical and
in most cases, latency was assumed to be constant between all processors. A
direction that should be explored as well is to utilize more heterogeneous systems
where a subset of the available hardware resources are better suited for a subset
of the tasks.
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Dutch Summary

Farmaceutische bedrijven moeten vroeg investeren in het ontwikkelen van
een nieuwe medicijn. Initieel worden er verschillende kandidaat middelen
gëıdentificeerd en vervolgens gaan deze door verschillende fasen vooraleer ze
beschikbaar gesteld worden aan een breder publiek. Pas als ze de laatste fase
halen, zal er winst kunnen geboekt worden, maar veel van de kandidaten worden
vroeg in het ontwikkelingsproces geschrapt. De voornaamste reden hiervoor is dat
het blijkt dat de middelen onvoldoende werkzaam zijn met als resultaat dat niet
alleen de investering, maar ook tijd en mankracht hierbij verloren gaat. Bijgevolg
zijn farmaceutische bedrijven erg gëınteresseerd om het proces te optimaliseren
door bijvoorbeeld sneller de meest doeltreffende middelen te identificeren. Een
veelbelovende manier om dit te doen is met “in silico” technieken. Hierbij is
Pharmacometrics een domein dat zowel wiskundige als statistische modellen
gebruikt om de interactie tussen een individu en een middel te verklaren. De
berekeningen voor deze modellen zijn rekenintensief. Het kan weken duren
vooraleer resultaten beschikbaar zijn en hierdoor kunnen sommige beslissingen
in het ontwikkelingsproces van de medicijn pas later genomen worden. Omwille
van de duur van de berekeningen schakelen wetenschappers tussen verschillende
projecten om zo het effect van de wachttijd te minimaliseren ten koste van extra
mentale belasting. Deze thesis introduceert een aantal methodes en technieken
om de berekening te versnellen door gebruik te maken van de rekencapaci-
teit van recente computersystemen om het werk van deze wetenschappers te
vergemakkelijken.

Het aantal parallelle rekeneenheden in recente systemen is in recente jaren
sterk toegenomen om de intrinsieke limieten van impliciete parallellisme en
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geheugensnelheid te omzeilen. Het nadeel hiervan is dat het gebruik van deze
expliciete vorm van parallellisme extra kennis vraagt. De onderzoekers missen
vaak de nodige kennis uit computerwetenschappen. Daarom worden bestaande
softwarepakketten gebruikt die de complexiteit van de onderliggende hardware
abstraheren. Helaas blijkt dat de meest bekende softwarepakketten die van
toepassing zijn voor Pharmacometrics beperkt gebruik maken van parallellisme.

In deze thesis worden parallelle methoden in de context van computationele
modellering onderverdeeld in twee klassen. In eerste instantie kan er parallel
gewerkt worden in de “front-end”, waar modelevaluaties zelf geparallelliseerd
worden. Software voor modelevaluaties kan gezien worden als een klassiek
programma dat als invoer een aantal numerieke parameters krijgt en als uitvoer
de kwaliteit, uitgedrukt als een getal, voor deze parameters geeft.

Om parameters te zoeken die zorgen dat het model beter aanleunt bij de
data worden er optimalisatie methodes of Markov Chain Monte Carlo samplers
gebruikt. Deze worden geclassificeerd in de “back-end”. Er worden enkel
samplers beschouwd in deze thesis omdat deze het meest toepasselijke zijn voor
Pharmacometrics. Samplers laten toe niet enkel één parameter te zoeken die
zorgt dat een model zo goed mogelijk aanleunt bij de data, maar ook om de
onzekerheid in de parameters te kwantificeren. De oplossing is dus niet één
vector, maar een hele distributie benaderd door samples.

De ontwikkelde methodes en technieken gaan uit van eigenschappen van
modelevaluaties die zeer typisch zijn voor Pharmacometrics. Dit wilt niet zeggen
dat de methoden beperkt toepasselijk zijn in andere domeinen, maar wel dat ze de
meeste snelheidswinst zullen geven als de modellen gelijkaardige eigenschappen
hebben. De eerste eigenschap is dat de hoeveelheid data beperkt is en niet
mag aangepast worden. Er nemen tijdens de eerste ontwikkelingsfases minder
patiënten en gezonde vrijwilligers deel aan de studie terwijl er in de laatste fases
juist wel meer data van meer individuen wordt verzameld. Bijgevolg is het niet
mogelijk om parallelle rekeneenheden bezig te houden door het model zwaarder
te maken. De tweede eigenschap is dat de tijd die nodig is voor modelevaluaties
afhankelijk is van de keuze van de parameters. Als er in parallel meer evaluaties
worden uitgevoerd, dan zal de traagste evaluatie de totale uitvoertijd bepalen.

Bestaande parallelle berekeningsmethoden maken beperkt gebruik van de on-
derliggende hardware. De efficiëntie ligt nog lager op grotere parallelle systemen
waarbij het uitwisselen van berichten tussen rekeneenheden meer tijd in beslag
neemt. Het zijn juist deze grotere systemen die de meeste snelheidswinst kunnen
bieden.

De thesis beschouwt eerst de algemene structuur van farmaceutische modellen
en stelt een methode voor die de numerieke simulatie van de differentiaalverge-
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lijkingen tot 70x kan versnellen. Deze vergelijkingen, die de interactie met het
medicijn beschrijven, hebben vaak een herhaaldelijke vorm, dit omdat een kandi-
daat een medicijn gewoonlijk meerdere keren toegediend krijgt over een langere
periode. Er wordt getoond hoe dit kan uitgebuit worden door een foutmarge
toe te staan in de berekeningen. Om bruikbaarheid te bevorderen, wordt deze
methode uitgebreid met twee manieren om de foutmarge zonder verdere invoer
van de gebruiker te bepalen.

Ten tweede worden Markov Chain Monte Carlo samplers beschouwd die
een lage operationele intensiteit hebben omwille van de hoeveelheid data dat er
geraadpleegd wordt tijdens het evalueren van het model. Hierbij worden nuttige
berekeningen gëıntroduceerd op het moment dat er anders zou gewacht worden.
Hoewel de hoeveelheid data eerder beperkt is in de context van Pharmacometrics,
blijven de methoden toepasselijk omdat ze ook eventueel gebruikt kunnen worden
om andere vormen van vertraging te verbergen.

Ten derde wordt een gedecentraliseerde versie van een bekende parallelle
affiene invariante sampler beschreven. De populariteit van deze sampler is te
danken aan de eenvoud in het gebruik ervan. Om deze sampler naar een gede-
centraliseerde omgeving te brengen wordt er gebruik gemaakt van de observatie
dat keuzes die gemaakt worden aan de hand van getallen geproduceerd met
een pseudotoevalsgenerator voorspelbaar zijn. Dit resulteert in een sampler
die tot 20x sneller is dan de oorspronkelijke parallelle sampler. Door minder
berichten uit te wisselen en door een synchronisatiepunt te verwijderen wordt
deze snelheidswinst mogelijk gemaakt.

Ten vierde worden Sequentiële Monte Carlo sampler beschouwd. Deze zijn
erg toepasselijk voor Pharmacometrics aangezien de niet-lineaire modellen in dit
domein zorgen voor distributies met meerdere pieken. Deze sampler beschouwt
verschillende parameters in parallel en combineert de resulterende kwaliteits-
maten in elke stap. Omdat de uitvoertijd nou samenhangt met de keuze van
parameters voor de Pharmacometrics modellen wordt er langdurig gewacht tot-
dat alle berekeningen op alle parameters voltooid zijn. Het blijkt dat de keuzes
die afhankelijk zijn van deze berekeningen accuraat voorspelbaar zijn. Door
speculatief verder te rekenen kunnen wachttijden beperkt worden. Indien er later
tijdens het berekeningsproces wordt bepaald dat een speculatieve berekening
fout blijkt te zijn, dan worden deze ongedaan gemaakt. Omdat dit zelden het
geval is, kan deze speculatieve sampler tot 2.72x sneller samples verzamelen dan
de standaard sampler.

Ten vijfde en zesde worden er twee automatische parallellisaties gëıntroduceerd
die toepasselijk zijn in de “front-end”. De eerste parallellisatie bestaat uit het
extraheren van de conditionele onafhankelijkheidsrelaties uit de dataflow graaf.
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Deze relaties kunnen dan gebruikt worden om parallelle taken te identificeren
die vervolgens toegekend kunnen worden aan processoren aan de hand van hun
geschatte uitvoertijd met een bekende heuristiek. Voor een groot model liggen
de versnellingen die hiermee gehaald worden dicht bij het theoretisch maximum
op een systeem met twee Xeon CPU E5-2699 processoren, elk met 18 cores.

De tweede parallellisatie vertrekt van een meer algemeen uitgangspunt met
als doel om meer parallellisme uit te buiten. De uitvoer van deze tweede
methode is een verzameling functies. Als deze uitgevoerd worden in parallel, dan
wordt de kwaliteit van één parameter bepaald. Deze functies bevatten naast de
berekeningen ook de communicatie primitieven. De uitvoertijd van alle delen
van de dataflow graaf wordt eerst gemeten. Deze metingen worden gebruikt om
een schatting te maken van de totale uitvoertijd van het model aan de hand
van discrete gebeurtenis simulatie. Een schema dat de toekenning van taken tot
processoren en de volgorde van de taken bepaald wordt als invoer gegeven voor
deze simulatie. Aangezien de uitvoertijd afhankelijk is van de parameter, wordt
het meerdere keren met verschillende parameters gemeten om zo de distributie
van uitvoertijd te schatten. Voor elke meting wordt er een schema gegenereerd
aan de hand van een bestaande heuristiek. Vervolgens wordt er gedemonstreerd
dat een evolutionair algoritme deze schemas kan combineren tot een meer robuust
schema dat beter werkt dan die gegeneerd werden door de heuristiek. Er wordt
getoond dat dit statisch maar robuust schema zo goed als alle parallellisme in
de modellen uitgebuit.
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[Nem+17a] Balazs Nemeth et al. “Improving Operational Intensity in Data Bound
Markov Chain Monte Carlo”. In: Procedia Computer Science 108 (2017),
pp. 2348–2352. doi: 10.1016/j.procs.2017.05.024

[Nem+17b] Balazs Nemeth et al. “Distributed Affine-Invariant MCMC Sampler”. In:
2017 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, Sept. 2017. doi: 10.1109/cluster.2017.68

[Nem+18a] Balazs Nemeth et al. “Relaxing Scalability Limits with Speculative Paral-
lelism in Sequential Monte Carlo”. In: 2018 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, Sept. 2018. doi: 10.1109/

cluster.2018.00065

[Nem+19] Balazs Nemeth et al. “Approximate Repeated Administration Models for
Pharmacometrics”. In: Lecture Notes in Computer Science. Springer
International Publishing, 2019, pp. 628–641. doi: 10.1007/978-3-030-

22734-0_46
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