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Preface

For some reason I always find it difficult to start writing a preface. The thought of
skipping the preface altogether and subsequently claiming it must have gotten lost in
the print process brought a smile to my face, yes perhaps even a chuckle. Nevertheless,
there are some things that need to be said, and people to be thanked, thereby ending
this small fantasy of mine.

The dissertation that lays before you concludes a number of years of research, that
actually started when working on my master’s thesis. If I hadn’t chosen the topic
about gravitational lensing at the time, or if that thesis subject simply wasn’t available
then, you would be reading a completely different text, if any. I would therefore like
to thank Sven De Rijcke, not only for introducing me to this topic years ago, but
also for his continuing guidance in the following years. Of course, my gratitude also
goes to my promoter, Philippe Bekaert, without whom pursuing this doctoral degree
would not have been possible.

When asked about my research topic, I like to start with saying that it belongs to
the category “computational astrophysics”. Apart from enjoying the fact that this
immediately impresses people, I actually believe that it covers the content fairly well.
Furthermore it stresses that this is an interdisciplinary work, tackling an astrophysics
problem with computational methods. It was therefore very convenient to have my
desk at the EDM, a computer science research institute of the Hasselt University,
as this gave me access to its high-quality computational infrastructure. I would like
to thank Eddy Flerackers, Frank Van Reeth and Peter Vandoren for making this
possible.

The fact that I have enjoyed performing this research during these years is closely
related to the nice work environment that everyone of the EDM and of the NVE
group that I’m part of, contributes to. Some friends and colleagues that I would like
to thank in particular are Wim Lamotte, Peter Quax, Panagiotis Issaris, Kris Luyten
and Tom Van Laerhoven.

Unfortunately it hasn’t all been fun and games, especially the last year of my PhD.
Saying that this was a difficult period would be an understatement at the least, and
I wouldn’t be finishing this dissertation right now without the support of colleagues,
friends and family. I would therefore like to thank my parents, whom I can always
count on to find stability and support in difficult times. Furthermore, they have made
it possible to start studying physics after finishing computer science studies, certainly
a privilege that not everyone can enjoy. I would also like to thank Stijn Neuteleers, a
friend for nearly twenty years now. Although we don’t meet that often, I always enjoy
our conversations as they help me put things into perspective. Finally, I would like
to thank my wife for her support and care. So Mieke, thank you . . . for everything.

Jori Liesenborgs
April 12, 2010
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Samenvatting

De titel van deze thesis, “Genetische algoritmes voor de niet-parametrische inver-
sie van gravitationele lenzen”, verdient enige verduidelijking. Laat ons van achter
naar voren werken, en beginnen met het sterrenkundige begrip gravitationele lens,
een soort kosmische luchtspiegeling. Figuur S.1 maakt duidelijk hoe dit in zijn werk
gaat: een zeer ver weg gelegen bron zendt lichtstralen uit die in de buurt komen van
een uitermate massief object, zoals een galaxie of een cluster van galaxieën. Dank-
zij de algemene relativiteitstheorie van Einstein weten we dat de zwaartekracht van
zo’n object in staat is om deze lichtstralen af te buigen. Het object dat de afbuiging
veroorzaakt wordt een gravitationele lens genoemd. Na hun afbuiging zetten de licht-
stralen dan hun koers richting Aarde verder, om deze uiteindelijk vanuit verschillende
richtingen te bereiken. Doordat de lichtstralen van eenzelfde bron een waarnemer op
Aarde vanuit verschillende richtingen bereiken, zal deze waarnemer kopieën van een-
zelfde bron zien op verschillende plaatsen aan de hemel. In het voorbeeld op de figuur
zal de waarnemer dus niet één heldere bron recht achter de cluster van galaxieën zien,
maar zal hij drie zogenaamde beelden van die bron waarnemen. Rechts-boven in de
figuur is een opname te zien die gemaakt is met de Hubble ruimtetelescoop. De vier
heldere objecten die duidelijk te zien zijn, zijn eigenlijk vier beelden van eenzelfde
bron, veroorzaakt door het gravitationele-lenseffect van een cluster van galaxieën, de
gele objecten.

De exacte plaatsen waar de verschillende beelden van eenzelfde bron te zien zijn,
hangen af van de zwaartekrachtwerking van de gravitationele lens, en dus van diens
massaverdeling. De beelden encoderen daardoor informatie over deze massaverdeling
en men kan proberen op basis van enkel de beelden die informatie weer te decoderen en
zo een idee te krijgen van de massaverdeling van de lens. Men spreekt dan van inversie
van de gravitationele lens1. Hiervoor zou men een bepaalde vorm van de gravitationele
lens kunnen vooropstellen, bijvoorbeeld een zekere elliptische massaverdeling. Inversie
van de lens betekent dan het zoeken naar juiste parameters voor zo’n model, zoals
bijvoorbeeld de ellipticiteit of de oriëntatie van de ellipsen. Typisch gaat het over
een relatief klein aantal parameters, en men noemt zulke technieken parametrische
methodes. Hiertegenover staan de zogenaamde niet-parametrische methodes, waarbij
men tracht geen aannames te maken over de vorm van de massaverdeling. De ironie
wil dat men dit typisch doet door de massaverdeling op te bouwen uit een zeer groot
aantal basisfuncties, waarvan men vervolgens de gewichten nog moet bepalen. In
werkelijkheid gebruiken niet-parametrische methodes dus net een zeer groot aantal
parameters.

Er bestaan verschillende technieken om goede waarden te vinden voor parameters
voor een model, al dan niet parametrisch. In deze thesis wordt gebruik gemaakt
van zogenaamde genetische algoritmes, een optimalisatiemethode die gëınspireerd is

1Als men alles weet over de bron en de gravitationele lens, kan men vrij makkelijk berekenen hoe
de beelden er uitzien, en men noemt dit ook wel het voorwaartse probleem. Als men de situatie
omkeert en op basis van de beelden probeert iets te achterhalen over de lens en de bron, spreekt men
van het inverse probleem.
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door de evolutietheorie van Darwin, door het principe van “survival of the fittest”.
Concreet zal men met een groot aantal willekeurige modellen beginnen, en men zal
deze steeds combineren en muteren, naar analogie met voortplanting in biologische
organismen. Hierbij wordt ervoor gezorgd dat betere modellen een groter nageslacht
krijgen, zodat generatie na generatie gunstige eigenschappen van bepaalde modellen
benadrukt worden, en ongunstige uitsterven. Op deze manier tracht men dus goede
oplossingen voor een probleem te kweken.

Alle ingrediënten van de titel van dit werk zijn hiermee beschreven. Deze thesis
gaat over de ontwikkeling van methodes – gebaseerd op genetische algoritmes – om
de massaverdeling van een gravitationele lens te achterhalen. Hierbij worden enkel
de beelden die door de lens veroorzaakt worden, gebruikt als invoer; er zullen geen
aannames gemaakt worden over de vorm van de massaverdeling. Het nut van mas-

Figuur S.1: De afbuiging van lichtstralen van een verre bron door een tussenliggend erg
massief object, zoals bijvoorbeeld een cluster van galaxieën, ligt aan de basis van het
gravitationele-lenseffect. Doordat de lichtstralen een waarnemer op aarde zo via verschil-
lende wegen kunnen bereiken, zal de waarnemer verschillende beelden van dezelfde bron te
zien krijgen. Rechts-boven wordt een foto getoond, gemaakt met de Hubble ruimtetelescoop.
Daarin zijn duidelijk vier zeer heldere beelden van een quasar te zien, veroorzaakt door de
cluster van galaxieën die te zien is in het geel.
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sabepaling op basis van het lenseffect, is dat ze onmiddellijk vat kan geven op alle
materie in de gravitationele lens: niet alleen op dat deel dat we zowiezo al met bijvoor-
beeld een telescoop kunnen waarnemen, maar ook op de meer mysterieuze donkere
materie. Vergelijking van zulke massareconstructies met theoretische modellen, kan
ons informatie verschaffen over de eigenschappen van donkere materie.

Om te achterhalen hoe betrouwbaar een massareconstructie is, is het belangrijk de
zogenaamde ontaardingen in dit vraagstuk te begrijpen. Het blijkt namelijk dat wan-
neer men één oplossing van het inversieprobleem gevonden heeft, men ook andere,
gelijkwaardige oplossingen kan reconstrueren, die even compatibel zijn met de waar-
genomen beelden. Men spreekt dan van ontaarde oplossingen. Een voorbeeld hiervan
is te zien in figuur S.2. Een eenvoudige berekening toont dat de massaverdeling aan de
linkerzijde de cirkelvormige bron in het middenpaneel transformeert tot vijf beelden.
In deze thesis wordt ondermeer aangetoond dat de massaverdeling aan de rechterzij-
de precies hetzelfde effect heeft. Bij het maken van deze alternatieve oplossing, werd
in een cirkelvormig gebied wat massa ‘geleend’ om een extra piek in de massaver-
deling te creëren. Het bestuderen van deze en andere soorten ontaardingen, brengt
meer duidelijkheid wanneer men een gevonden massareconstructie wil interpreteren.
Het voorbeeld in de figuur maakt al duidelijk dat niet alle eigenschappen van zo’n
reconstructie even betrouwbaar zullen zijn.
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Figuur S.2: De massaverdeling aan de linkerzijde transformeert de cirkelvormige bron in
het middelste paneel tot vijf beelden. De massaverdeling aan de rechterzijde, die duidelijk
verschilt van de eerste massaverdeling, heeft echter precies hetzelfde effect. Op basis van
enkel de beelden, zou men dus geen enkel onderscheid tussen beide modellen kunnen maken;
ze zijn beide even goed mogelijk. Dit is een voorbeeld van zogenaamde ontaardingen in het
vraagstuk van gravitationele-lensinversie.

Zoals al eerder gezegd werd, maakt een gravitationele lens meerdere kopieën – die men
“beelden” noemt – van eenzelfde bron zichtbaar en voor de eigenlijke inversiemethode
is het nodig om deze beelden te identificeren. In een eerste fase wordt dan op basis
hiervan een vrij ruwe schatting van de massaverdeling gemaakt, wat neerkomt op het
gebruik van een relatief laag aantal basisfuncties. Op basis van deze eerste schatting
wordt vervolgens een nieuwe massaverdeling gemaakt, met een hogere resolutie in
gebieden die – volgens de eerdere schatting – meer massa bevatten. In die gebieden
worden de basisfuncties daarom wat dichter bij elkaar geplaatst. Deze verfijningsstap
kan uiteraard een aantal keer herhaald worden, tot men een aanvaardbaar model voor
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de massaverdeling gevonden heeft.

Telkens er in een van zulke stappen een massaverdeling bepaald moet worden, wordt
een genetisch algoritme gebruikt om de gewichten van de basisfuncties vast te leg-
gen. Om het principe van “survival of the fittest” na te bootsen, is er een criterium
nodig om te beslissen welke modellen beter zijn dan andere, een zogenaamd fitness
criterium. Hiervoor wordt nagegaan in welke mate een model compatibel is met de
waargenomen beelden. Terugkijkend naar figuur S.1 kan men de lichtstralen ook
achterwaarts volgen, en voor een goed model moet men zo voor elk beeld weer bij
eenzelfde bron uitkomen. In het begin van de procedure, waarbij de modellen nog
zeer willekeurig zijn, zal dit echter niet het geval zijn. Wanneer men de lichtstralen
dan volgt, zal men voor elk beeld een andere bronpositie bekomen. Als fitness crite-
rium wordt dan gebruikt hoe ver zulke voorspelde bronposities van elkaar verwijderd
liggen. Door modellen die ze dichter bij elkaar brengen te bevoordelen, worden er
generatie na generatie oplossingen gekweekt die hier steeds beter in zijn. Uiteindelijk
bekomt men zo een model waarbij de beelden telkens door één enkele bronpositie
verklaard worden. Naast dit belangrijke criterium kan een genetisch algoritme ook
verschillende criteria tegelijk optimaliseren, zodat de methode kan uitgebreid worden
met alle bruikbare informatie. Een belangrijk voorbeeld is dat een goed model niet
alleen de waargenomen beelden moet voorspellen, maar ook moet vermijden dat extra
beelden voorspeld worden.

Om na te gaan of deze aanpak werkt, wordt er gebruik gemaakt van gesimuleerde
lenssituaties. Concreet worden een massaverdeling en een aantal bronposities voorop-
gesteld, en op basis daarvan worden de posities van de verschillende beelden berekend.
Deze beelden dienen dan als invoer voor de procedure, en de reconstructie van de
massaverdeling kan dan vergeleken worden met de oorspronkelijke. De voorgestelde
inversiemethode blijkt succesvol te zijn in het reconstrueren van de massaverdeling;
de nauwkeurigheid waarmee dit gebeurt hangt echter af van de hoeveelheid en de lo-
caties van de verschillende beelden. Enkele toepassingen van de methode op waarge-
nomen gravitationele-lenssystemen zijn te zien in figuur S.3, waarin contouren van de
massareconstructie getoond worden bovenop beelden gemaakt met de Hubble ruimte-
telescoop. In deze situaties waren er telkens een beperkt aantal beelden beschikbaar,
maar zelfs op basis van enkel deze informatie wordt een massaverdeling voorspeld die
in grote lijnen de zichtbare massa volgt.

Er bestaan uiteraard ook andere methodes voor lensinversie. Net als andere niet-
parametrische methodes heeft de voorgestelde techniek als voordeel dat er geen aan-
names over de vorm van de massaverdeling gemaakt worden. Het grootste voordeel
van deze procedure is echter dat het gebruik van een genetisch algoritme toelaat om
zeer flexibel allerlei soorten beschikbare gegevens te gebruiken; men moet enkel kun-
nen aangeven of een bepaalde voorgestelde oplossing beter is dan een andere. De prijs
van deze flexibiliteit is een wat langere berekening, die wel verlicht kan worden door
het rekenwerk op te splitsen over meerdere processoren.
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(a) Cl 0024+1654 (b) SDSS J1004+4112

Figuur S.3: De ontwikkelde inversiemethode werd toegepast op twee bekende gravitationele
lenzen, namelijk de clusters Cl 0024+1654 en SDSS J1004+4112. Op de achtergrond is
telkens een opname te zien, gemaakt met de Hubble ruimtetelescoop. De reconstructie van
de massaverdeling op basis van het gravitationele-lenseffect is te zien als contouren bovenop
deze afbeeldingen. Hoewel er in beide gevallen slechts weinig beelden gebruikt werden, vindt
men al snel een massaverdeling terug die gelijkenissen vertoont met de verdeling van het
licht. De kleurenbeelden komen uit het Space Telescope Science Institute (STScI) archief a,b.

ahttp://hubblesite.org/newscenter/archive/releases/2007/17/image/b/
bhttp://hubblesite.org/newscenter/archive/releases/2006/23/image/a/
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Introduction

The title of this dissertation, Genetic algorithms for the non-parametric inversion
of gravitational lenses, is certainly a mouthful and demands some clarification. The
purpose of this first chapter is therefore to introduce two important parts: gravita-
tional lenses and genetic algorithms. This should give the reader a firm grasp on what
this work tries to accomplish, before delving into the more technical aspects in the
remaining chapters.

1.1 The gravitational lens effect

The gravitational lens effect is a spectacular astrophysical phenomenon, with a myriad
of applications. This section shows the effect itself, what causes it and provides a brief
historical overview of research into gravitational lenses.

1.1.1 Example and working

The easiest way to explain what the gravitational lens effect is, is by showing it.
Figure 1.1 shows the cluster of galaxies Cl 0024+1654 and is a beautiful example of
the lens effect. The cluster galaxies themselves have a yellowish color, and together
form an object that is so massive that it causes a significant deflection of the light rays
that pass nearby. Because of this, a kind of cosmic mirage occurs: several distorted
images of the same blue galaxy – which is located much farther away than the cluster
itself – can be seen.

Figure 1.2 illustrates how the deflection of light can cause an observer to see several
copies of the same object. A light ray starts at the distant astronomical source and
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Chapter 1. Introduction

Figure 1.1: The distant cluster of galaxies Cl 0024+1654 (yellow objects) has such a strong
gravitational field that it causes a significant deflection of light rays. Because of this, multiple
– somewhat distorted – copies of the same blue background galaxy can be seen at several
locations. This is one of the larger gravitational lens systems, in which the largest image
separation is approximately 1 arcmin. The color image was taken from the Space Telescope
Science Institute (STScI) archive a.

ahttp://hubblesite.org/newscenter/archive/releases/2007/17/image/b/

2



1.1. The gravitational lens effect

Figure 1.2: In a gravitational lensing scenario, light rays from a distant source are deflected
by the gravitational field of an intermediate object – the gravitational lens – before continuing
towards the observer on earth. This can cause the observer to see the source in a different
direction, or can even cause multiple copies of the same source to be visible.

travels in the general direction of the observer. Due to the strong gravitational field
of an intermediate object, e.g. the cluster of galaxies in the previous example, the
light ray gets deflected however. This will cause the observer on earth to see the
source in a different direction than would be the case if the intermediate object were
not present. As is illustrated in the figure, in case of a very strong gravitational field
it is possible that light from the source can reach the observer by means of several
different paths. This will then cause the observer to see multiple copies of the same
object. The intermediate object responsible for the deflection of light rays is called the
gravitational lens; the copies of the source that an observer sees due to the lens effect
are usually called images of that source. The term source itself is usually reserved
for the object that one would see if the deflection of light rays could be turned off in
some way. Depending on the strength of the deflection, the shape of the source and
the complexity of the gravitational field of the lens, the images can show significant
distortion.

1.1.2 Regimes and applications

Depending on the scale of the lens effect and the alignment between source, lens and
observer, the lens effect is usually subdivided into a number of regimes. Below we
shall describe the strong lensing, weak lensing and microlensing regimes, as well as
some of their possible applications.

Strong lensing

In the strong lensing regime, the gravitational field of the lens is sufficiently strong
and the alignment between source, lens and observer is well enough so that multiple
images can be formed. The cluster lens Cl 0024+1654 is a very nice example of a
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(a) Abell 2667 (b) SDSS J1205+4910 (c) SDSS J2321+0939

Figure 1.3: If the alignment between source, gravitational lens and observer is well enough,
the images of a source can show a large amount of deformation. This can cause arc-like
images, partial and even full rings. In case a full ring is visible, one often speaks of an
Einstein ring. The color images were taken from the STScI archive a,b,c.

ahttp://hubblesite.org/newscenter/archive/releases/2007/12/image/a/
bhttp://hubblesite.org/newscenter/archive/releases/2005/32/image/d/
chttp://hubblesite.org/newscenter/archive/releases/2005/32/image/i/

strong lensing system. Often one will encounter highly deformed images, possibly
even arc-like or ring-like features, of which some examples are given in figure 1.3.

The precise location of the images depends on the source position and the gravitational
field of the lens, i.e. on its mass distribution. The images therefore encode some
information about said mass distribution, and one can try to decode this information
and reconstruct the mass density of the gravitational lens. Often, this procedure is
called gravitational lens inversion and several methods exist. In parametric methods,
a specific shape of the lens is assumed, e.g. an elliptical lens with a particular radial
profile. Inverting the lens then corresponds to finding a relatively small number of
appropriate parameters that can explain the observed properties of the source. In
non-parametric methods, one tries to avoid making assumptions about the shape of
the mass distribution. This can be done by using a large amount of basis functions for
example1. As lens inversion is the focus of this dissertation, a more detailed overview
of lens inversion methods will be given in chapter 4. The lens effect depends on
the distribution of all the matter in the gravitational lens, both luminous and dark.
Having such an independent probe of the mass distribution is very useful of course,
as comparing the result with the visible mass provides some information about the
distribution of dark matter.

The strong lens effect not only causes multiple images of the same source to appear,
but most often these images are also deformed. This makes it possible for images to
become much larger than the actual source, which in turn makes them much easier to

1For this reason, the term “non-parametric” is somewhat misleading, as it usually involves finding
a large number of appropriate parameters.
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1.1. The gravitational lens effect

Figure 1.4: The cluster lens Abell 2218 creates multiple highly magnified images of the same
distant background galaxy. The source itself is located at a redshift of z ≈ 5.6 and would
otherwise be impossible to detect [29].

see. Gravitational lenses are therefore a kind of cosmic telescope, allowing an observer
to view objects which would otherwise be impossible to detect. Figure 1.4 shows a
very nice example of this type of application. Here, two images of the same distant
source are highly magnified by a gravitational lens, the cluster Abell 2218.

When light can reach the observer by means of different paths, the light travel time
for each of these paths will differ. If the source itself has a variable brightness, each
image will contain similar brightness fluctuations at a different time, allowing the time
delays between different paths to be measured. It was already noted by S. Refsdal in
1964 that this time delay depends both on the mass distribution of the gravitational
lens and on the Hubble constant [86]. This makes it possible to provide an independent
measure of the Hubble constant by analyzing gravitational lens systems (e.g. [90]).

Statistical information about gravitational lenses, can, at least in principle, help con-
strain several other cosmological parameters, like Ωm or ΩΛ, or even the equation
of state parameter w of dark energy (see e.g. [40] or [36]). Currently however, the
best constraints still come from the analysis of the Cosmic Microwave Background
radiation.
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Figure 1.5: Left panel: central 8×8 arcmin2 region of the cluster Cl 0024+1654. Center panel:
shear map determined from the distortion of background galaxies in this cluster. Right panel:
mass reconstruction based on the shear map in the center panel (images from [104]).

Weak lensing

When source, lens and observer are less well aligned, the observer will only see a
single image of the source and one speaks of the weak lensing regime. The image
will still show some deformation, but since the real shape of the source is not known,
this deformation cannot be fixed based upon the information contained in the image
alone. However, if a large group of images, located close to each other in the sky, is
analyzed, it is possible to detect how these images were deformed.

To see how this is possible, first suppose that one still has only one source, but
perfectly round in shape. When this source shape is affected by a gravitational lens,
the observer will no longer see a circular object, but instead will see an elliptical one.
By inspecting the ellipticity and orientation of the ellipse, one can then learn how
the gravitational lens has affected the source shape. Now, in practice each individual
source is not round, but when a group of sources is considered in absence of lensing,
one expects them to be round on average, that is, they will not show a preferential
alignment. When there is a gravitational lens that distorts the intrinsic shapes, the
average shape that one obtains in this way will no longer be round, but will now show
some preferential direction.

By considering a large number of background galaxies this way, one can construct
a map of these distortions, usually called a shear map. In turn, this shear map
can be used to obtain an estimate of the mass distribution of the gravitational lens
(e.g. using [51]). The most important application of weak lensing is therefore related
to mass reconstruction. An example of a shear map and the corresponding mass
reconstruction can be seen in figure 1.5.

Since weak lensing does not have the requirement that multiple images are formed,
it can provide information about the mass in regions where the gravitational field is
less strong. Typically this is in the regions which lie further away from the central
mass concentration. On the other hand, in the central region itself, the weak lensing
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1.1. The gravitational lens effect

Figure 1.6: When a background star moves with respect to a foreground star, the received
flux from this background star will change due to the gravitational lens effect. For the
trajectory shown in the left panel, the expected brightness variation is shown in the right
panel.

approach usually fails because the distortions of the images become too large. Trying
to take the best of both worlds, some methods analyze both weak and strong lensing
at the same time, to obtain a mass reconstruction for a very large region (e.g. [26]).

Microlensing

The term “microlensing” is used to describe lensing on a smaller scale, in which there
may be multiple images, but the effect is too small to be resolved. A typical example
is lensing of one star by another star. Of course, if the scale of the effect is too small
to be resolved, the deformation in the image(s) cannot be seen directly. However,
because the size of the images, although not resolved, does change, the lens effect has
also an impact on the flux that we receive of the background star. More specifically,
if source star and lens star move with respect to each other, the received flux of the
background star will change in a very specific manner (see figure 1.6).

This brightness variation was used to search for Massive Compact Halo Objects, or
MACHOs. Such objects, like brown dwarfs or planets, are a candidate for dark mat-
ter in our own Galaxy, and by statistically analyzing the number of lensing events,
constraints can be placed on this form of dark matter. Results from the so-called MA-
CHO Project indicate that observed lensing events are likely to explain the existence
of roughly 20% of dark matter in this form [2].

This brightness variation is typical for lensing by a star, or a compact object in general,
but will be different if the lens configuration is modified somewhat. For example, it is
certainly possible that instead of a single star, a binary star is found instead, leading
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Figure 1.7: If the gravitational lens is a star with a planet orbiting around it, the typical
brightness variation of the background source will differ from the expected pattern. This
image shows such a deviation, and indicates the presence of a planet [3].

to a different brightness pattern. It is also possible that around the star a planet is
orbiting, also leading to different brightness patterns. Currently, several planets have
already been found by inspecting brightness fluctuations in this way. A nice example
of such a brightness variation can be seen in figure 1.7.

The term microlensing is also often used in another context. When a background
quasar is lensed by a galaxy for example, usually the image positions can be explained
by a relatively simple model. The fluxes that are received from each image however,
usually differ from the expected results. Apart from intrinsic quasar variability, it is
also possible that such fluxes are influenced by individual stars in the lensing galaxy.
If this is the case, one also speaks of microlensing, since the star itself will not have
much influence on the position of an image, but can have a significant impact on the
received flux. If the deviations are caused by larger substructures, often the term
millilensing is used.

1.1.3 A brief history of gravitational lensing

Below a short account of the history of research into the gravitational lens effect will
be given. The interested reader is referred to [96] for a thorough historical review.

The deflection of light rays by gravity can be traced back to Isaac Newton himself,
who already suspected that light could indeed be influenced by a gravitational field.
The first published result however, is attributed to Johann Georg von Soldner, who
showed in 1801 that using Newtonian mechanics, the size of the deflection angle α̂
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1.1. The gravitational lens effect

Figure 1.8: A light ray that passes close to a very massive object undergoes a noticeable
deflection. For a point mass deflector and in the limit of a small deflection angle α̂, this angle
only depends on the mass M of the deflecting object and the distance of closest approach ξ.

(see figure 1.8) in the limit of a small deflection is given by the formula

α̂Newtonian =
2GM
c2ξ

.

Here, M is the mass of the deflecting object, G is the gravitational constant, c is the
speed of light and ξ is the distance of closest approach.

More than one hundred years later however, Albert Einstein, having developed his
General Theory of Relativity, published a new result. He calculated that for the
deflection of a light ray, the deflection angle is actually twice the Newtonian result:

α̂ = 2α̂Newtonian =
4GM
c2ξ

.

If one calculates this deflection angle for light rays that pass close to the sun, i.e.

M = M� = 1.99× 1030kg,

ξ = R� = 6.96× 108m,

one obtains a value of 1.74 arcsec.

By measuring the positions of stars very close to the sun, and comparing these mea-
surements to the predicted positions of the stars without considering the lens effect,
one can try to measure the value of this deflection angle. For obvious reasons, one
has to wait for a solar eclipse to occur to attempt such a measurement, and this is
precisely what Arthur Eddington did in 1919. The result he obtained was that the
measurements of the deflection angle were compatible with the value predicted by
Einstein, taking into account the 20% error margin. Currently, this error margin has
been reduced to 0.02%[66].

In the early days after the confirmation of this gravitational lens effect, astronomers
studied the problem of lensing of a background star by some foreground star. It was
also Eddington who pointed out in 1920 that, if these stars are sufficiently well aligned,
multiple images can occur. A few years later, in 1924, O. Chwolson remarked that if
the alignment is perfect, the background star would be transformed into a ring-like
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image. Ironically, today such a ring-like feature is called an Einstein ring instead of
a Chwolson ring. The term “gravitational lens” was first mentioned by R. W. Mandl
in the 1930’s, although O. J. Lodge had already introduced the term “lens” in 1919.

As Einstein remarked in 1936, the optical telescopes then available would not be
able to resolve multiple images from a background star. A year later however, Fritz
Zwicky published an article in which he claimed that lensing by extragalactic nebulae
– as galaxies were still called then – would have a much better chance at being
observed. Zwicky also mentioned the importance of the gravitational lens effect as an
independent mass probe and as a natural telescope, allowing very distant objects to
be studied more easily.

The years that followed were rather silent with respect to gravitational lensing pub-
lications. About one quarter of a century later however, at around the same time
quasars were discovered, the field of gravitational lensing received new input. In the
1960s, Yu. G. Klimov, S. Liebes and S. Refsdal independently studied the lens ef-
fect again, from lensing by stars to lensing by galaxies. Refsdal also considered that
the difference in light travel time for multiply-imaged sources may be measurable if
the source shows brightness fluctuations. Furthermore, this time delay was shown to
depend on the Hubble constant, and therefore offered the possibility to measure its
value.

Until 1971, the deflecting object was always modeled as a point mass. At that time
however, N. Sanitt studied the influence of an extended mass distribution as a model
for a galaxy-lens. For the departure from spherically symmetric lens models, one
still had to wait two more years for the works of R. R. Bourassa, in which deflection
by a more general spheroidal mass distribution was studied. Sanitt also noted that,
in the case of quasars, the difference in size between continuum and line-emission
regions should lead to a different magnification for these two features. A more general
expression for the time delay between images was obtained by J. H. Cooke and R.
Kantowski in 1975. They showed that it could be decomposed into a part which
corresponds to the different lengths of the paths by which light rays reached the
observer, and into a part that corresponds to a difference in the gravitational potential
that each light ray has to cross. As shown by K. Chang and S. Refsdal in 1979
however, brightness variations can also be caused by small structures, e. g. a star in
a galaxy-lens, which makes it more difficult to measure such time delays.

The status of theoretical curiosity that gravitational lenses still had, ended in 1979.
D. Walsh, R. F. Carswell and R. J. Weymann announced the detection of the two
quasars QSO 0957+561 A,B with remarkably similar spectra, located very close to
each other, at about 6 arcsec. The gravitational lensing nature of this system was
confirmed when the lensing galaxy was detected close to one of the quasar images.
The detection of the first observed gravitational lensing system drew much interest
to the lensing topic, both observational and theoretical, and the number of articles
related to gravitational lensing has seen an enormous increase since then.
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1.2 Genetic algorithms

Genetic algorithms are an optimization strategy inspired by the principle of natural
selection, or survival of the fittest. The story therefore necessarily starts with Charles
Darwin’s famous work, On the origin of species [21], which he published in the year
1859. The central idea is that in a certain population, those individuals that are
adapted better to the living circumstances, have a better chance at survival and
consequently a better chance at passing on specific traits to their offspring. Darwin
himself was not aware of how these characteristics were passed on from one generation
to the next. It was Gregor Mendel who offered the first insights into these matters a
while later, although it took a few decennia for his work to become rediscovered.

In a genetic algorithm, one effectively tries to breed solutions to a problem. One starts
with an initial population of trial solutions, encoded in a user defined way. In analogy
to biological systems, an encoded representation of a trial solution can be called a
chromosome or a genome for example. The first population is usually initialized in
some random way, and using this population, a new one will be created. To do so,
one chooses genomes for recombination (also called crossover) or cloning, mimicking
sexual and asexual reproduction respectively. When selecting genomes for this step,
it is important to apply selection pressure: one would like better trial solutions to
produce more offspring. One therefore needs a so-called fitness measure, which allows
the algorithm to detect which genomes in the current population encode better trial
solutions. As a final step, mutations are introduced into the new population to en-
sure genetic variety, to avoid premature convergence to a local optimum. Using the
new population these steps are simply repeated, and so, generation after generation,
improving trial solutions are generated.

Genetic algorithms belong to a wider class of evolutionary computation techniques
or evolutionary algorithms, optimization procedures applying methods inspired by
evolution in biological systems. The history of evolutionary computation is quite
complex, with different researchers using slightly different techniques and early work
not getting the attention of a wide audience. One of the first published results are the
works of Barricelli, starting around 1953. Barricelli was using John von Neumann’s
high speed computer in Princeton, where he performed some trials in the area of
artificial life, evolving generation after generation. Around 1957, Fraser was working
on the modeling of genetic systems. In his work, a population of P individuals
produced P ′ offspring, of which a number were eliminated until a new population of
size P was obtained again. The offspring themselves were created by recombination of
solutions from the parent population. Around the same time, in 1958, Bremermann
was studying models in which a binary string represented a trial solution, and in
which reproduction, selection and mutation were used for creating a new population.
He also provided some theoretical perspectives on the working of his models. Also in
1958, Friedberg was trying to evolve machine language programs to perform simple
tasks.

In the 1960s, Ingo Rechenberg and Hans-Paul Schwefel worked on what they called
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evolution strategies. Using an evolutionary model, Rechenberg studied evolution to-
wards an optimal airfoil shape. Schwefel used a similar technique to determine the
optimal shape of a nozzle in a specific problem. While both in principle did use the
concept of a population, the population was only two individuals in size: a parent
and its offspring, a mutated version of the parent. In the early 60s, Lawrence Fogel
studied simulations of evolution for creating artificial intelligence, called evolutionary
programming. In his work only mutation was used to create a new population.

At the University of Michigan, John Holland started his research in the 60s as well. His
group studied adaptation in nature and looked for ways to apply similar techniques
to artificial systems. The emphasis was not on any specific problem though, but more
on the theoretical aspects. This led to his well known work “Adaptation in natural
and artificial systems”, published in 1975 [42]. Holland was the first to introduce the
name “genetic algorithm”, and used chromosomes consisting of strings of ones and
zeros. To advance to the next generation, recombination, selection and mutation were
used. It is interesting to note that a few years earlier, in 1970, Fraser and Burnell
also published a book, called “Computer models in genetics”, about a model which
resembled the genetic algorithm of Holland. For some reason however, this work did
not receive as much attention at the time. The work of Ken De Jong, a graduate
student of Holland, helped to raise the interest in genetic algorithms. Also in 1975,
he wrote his doctoral thesis in which he studied several test optimization problems.

In the years that followed, genetic algorithms became ever more popular as an opti-
mization method. The increasing computing power and inherent parallelism of genetic
algorithms undoubtedly played no small role in this trend. The brief historical in-
formation in this section is based on [35], [74], [85] and [32]; the interested reader is
referred to these works for more detailed information.

To sum up, genetic algorithms are a non-local heuristic optimization method, inspired
by the principle of natural selection. Thanks to the use of recombination, the search
space is sampled in a non-local way, contrary to a gradient based search for example.
It is a heuristic search method, since it is difficult to analyze theoretically. Fortu-
nately however, the many successful applications of genetic algorithms indicate that
it does indeed provide a good optimization method. The line which separates genetic
algorithms from other evolutionary algorithms is rather vague. In this work, contrary
to what was called a genetic algorithm by Holland himself, the notion of a genetic
algorithm will not be that strict. Anything that uses a population of trial solutions
and which advances to the next generation by means of recombination, selection and
mutation will be termed a genetic algorithm.

A few of the many interesting applications of genetic algorithms are:

• a method for fitting quasar spectra [101],

• analysis of supernova data [5],

• search for gravitational wave signatures of inspiraling black hole binaries (in
simulated data) [83],
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• design of antennae elements for a radio frequency telescope [55],

• allocation of railway platforms [18],

• the analysis of seismic wave data [95],

• method for finding an optimal molecular geometry [22], and

• protein folding studies [105].

1.3 Motivation and thesis outline

Hopefully, this introductory chapter has made it clear to the reader what this disser-
tation will try to accomplish. Using genetic algorithms as the optimization scheme,
the images in strong gravitational lens systems will be analyzed and used to attempt
to reconstruct the mass distribution of the gravitational lens. Furthermore, this will
be done in such a way that assumptions about the shape of the mass distribution are
avoided.

The gravitational lens effect depends on all the matter which is present, independent
of whether it emits light or is dark. Without altering the gravitational force, the
presence of dark matter is needed to explain for example the velocities of galaxies in
clusters (e.g. [115]), or to explain the rotational velocities of disc galaxies (e.g. [88]).
Having an independent probe of the total mass distribution, comparing this to the
visible mass allows one to obtain an estimate of the dark matter distribution.

Simulations of the evolution of cold dark matter, predict a universal profile for the
mass distributions, ranging from dwarf galaxies to clusters of galaxies. In this so-called
Navarro-Frenk-White (NFW) profile, for the outer regions of a mass distribution one
finds ρ ∼ r−3, while in the central regions one finds a cuspy ρ ∼ r−1 dependence [76].
Furthermore, an NFW halo is predicted to have many subhalos.

However, observations do not always seem to agree with these simulations. One
discrepancy is called the cusp-core problem: certain observations seem to suggest that
dark matter at least in some cases does not have a cuspy profile, but instead a flat
central core is found (e.g. [94]). Another problem is the missing satellite problem, i.e.
the Milky Way has a lot less small satellite galaxies than predicted.

Clearly, theory and observations do not match as well as desired, and having a good
method of probing the mass distribution directly is therefore of great value. Before
describing the inversion method proposed in this dissertation, some background in
gravitational lensing theory is provided in chapter 2. To be able to interpret the results
of a gravitational lens inversion, one has to know which degeneracies may affect the
reconstruction. These are described in chapter 3, after which the inversion procedure
is explained and tested using simulations in chapter 4. The method is applied to
observed lensing systems in chapter 5 and this work is concluded in chapter 6.
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Lensing theory

To be able to invert a gravitational lens, i.e. to determine its mass distribution based
on the observed images, one must first obtain a deeper understanding of how exactly
the lens effect is created. It is precisely this that this chapter tries to accomplish: the
bending of light rays is studied more rigorously and in doing so, the central equation
aptly called the lens equation, will be derived.

The theory in this section is largely based upon the information in [15], [75] and [96].
This last reference is recommended for an in-depth treatment of the theory.

2.1 Deflection of a light ray

We shall be interested in deflection caused by weak sources of gravity, and for our
purposes the space-time curvature around such an object is well described by the
so-called static weak field metric or first order post-Newtonian metric (e.g. [39]) :

ds2 =
(

1 +
2Φ
c2

)
c2dt2−

(
1− 2Φ

c2

)
(dx2+dy2+dz2) =

(
1 +

2Φ
c2

)
c2dt2−

(
1− 2Φ

c2

)
dσ2,

where Φ is the Newtonian gravitational potential of the object. A necessary condition
for this metric to be valid is that Φ � c2, which is certainly the case for galaxies and
clusters of galaxies. In a cosmological setting, as usual it is assumed that this metric
is a local perturbation of the global metric of the expanding universe. This means
that this metric is assumed to be valid in the neighborhood of the deflecting object.

Light rays travel along null-geodesics, i.e. ds = 0, so that the equation becomes:(
1 +

2Φ
c2

)
c2dt2 =

(
1− 2Φ

c2

)
dσ2.
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Taking into account that Φ � c2, this can easily be rewritten as

c
dt
dσ

≈ 1− 2Φ
c2
.

This equation makes it clear that the situation is formally equivalent with a light
ray traveling through Euclidean space, but containing a location-dependent refractive
index:

n(r) =
c

v(r)
= 1− 2Φ(r)

c2
in which v =

dσ
dt
.

Note that no wavelength dependence is present in this equation: a gravitational lens
is achromatic.

For a specific path, the light travel time is given by:

t =
1
c

∫ O

S

n(r)dσ

=
1
c

∫ O

S

dσ − 1
c

∫ O

S

2Φ(r)
c2

dσ (2.1)

= tgeom + tgrav, (2.2)

in which the integral is taken along a path from source (S) to observer (O). As
is indicated in these equations, the light travel time can be split into a geometrical
part, which is clearly just the length of the path divided by the speed of light, and a
gravitational part which depends on the potential of the deflector. To determine the
physical paths that light rays can follow, the principle of Fermat is used, which says
that the actual paths are those along which the light travel time is extremal.

It is show in appendix B that for such a physical path, the following relation is valid:

T S − TO =
2
c2

∫ O

S

∇⊥Φ dσ. (2.3)

Here, the vectors T S and TO are tangent vectors to the path of the light at the source
and observer respectively. The quantity ∇⊥Φ is the projection of ∇Φ on the plane
perpendicular to the path, in a specific point.

That the difference between these two unit vectors is related to the deflection angle
can be seen in figure 2.1. If one takes the z-axis orientation from source to observer,
the projection of this difference on the xz-plane is the following:

(T S − TO)xz = (cosα1 − cosα2)ez + (sinα1 + sinα2)ex

⇒ (T S − TO)xz ≈ (α1 + α2)ex = αxex,

if we consider only small deflection angles.

Of course, the right side of equation (2.3) still depends on the actual path followed by
the light, since one has to consider a plane perpendicular to it in a specific point to
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Figure 2.1: This image shows the tangent vectors T S and T O. Projected onto the xz-plane,
these unit vectors form an angle α̂x.

be able to calculate ∇⊥Φ. Instead of using the precise path to calculate this integral,
the small deflection angle approximation is used again, and the path is taken to be a
straight line, with the impact parameter of the original path. For the deflection angle
this then gives the following result:

α̂(ξ) = α̂(ξx, ξy) =
2
c2

∫ (
ex

∂

∂ξx
+ ey

∂

∂ξy

)
Φ(ξx, ξy, z)dz (2.4)

=
2
c2

∇
(∫

Φ(ξx, ξy, z)dz
)
. (2.5)

In this last equation, the gradient is a two-dimensional one, since the z-coordinate has
been eliminated by integration. The two-dimensional vector ξ describes the impact
parameter of the path.

2.2 Lens equation

In a typical gravitational lensing situation, the distances from source to lens and from
lens to observer are extremely large compared to the dimensions of the deflector itself.
One therefore usually employs the thin lens approximation: the mass distribution of
the deflector is said to lie in in the lens plane and the deflection happens instan-
taneously in this plane. Similarly, the source is said to reside in the source plane.
Figure 2.2 illustrates this situation.

Figure 2.3 shows the projection of this situation on the xz or yz plane, and illustrates
how one comes to the fundamental equation of gravitational lensing, the lens equation.
A light ray starts from the source S, travels in a straight line to the lens plane where
its deflection is described by α̂(ξ), and travels in a straight line again towards the
observer O. Instead of seeing the source S in the direction described by β, the light
ray will now reach the observer from a direction θ which consequently is where the
image I of the source will be seen.
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Chapter 2. Lensing theory

Figure 2.2: In the thin lens approximation, the source which is located in the source plane
emits light rays that travel in a straight line towards the lens plane. There, a ray gets
deflected instantaneously after which it continues on a straight line towards the observer
again. The distances involved are very large compared to the dimensions on which the
deflection takes place. This is why the lensing mass is said to be located in the lens plane.

From the figure it is clear that the following relation is valid if one considers the fact
that all angles involved are small:

β Ds + α̂ Dds = θ Ds.

This can easily be rewritten to obtain the lens equation:

β(θ) = θ − Dds

Ds
α̂(θ). (2.6)

In this equation, the identity Ddθ = ξ has been used to write the deflection angle in
terms of θ rather than ξ.

The lens equation is a mapping from θ-space to β-space. The β-space clearly corre-
sponds to the source plane, and describes what the observer would see if the gravita-
tional lens effect could be turned off somehow. The θ-space is often called the image
plane and describes what the observer sees because of the gravitational deflection of
light. Because the mapping is from image plane to source plane, it is in general not
possible to find a direct expression which gives the image positions for a specific source
position. Instead, one can use a so-called ray-tracing procedure to calculate what the
images look like if one knows the source shape and position and the deflection field
α̂(θ). For each position in the image plane, one calculates the corresponding position
in the source plane using the lens equation. If the point lies within the source, that
point will be seen at the corresponding location in the image plane. For this reason
the lens equation is also called the ray-trace equation and states that the observer will
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2.2. Lens equation

Figure 2.3: This figure illustrates the various quantities involved in deriving the lens equation.
In essence, it is the same as figure 2.2, but showing only the projection on the xz or yz-plane.

see in a direction θ what would be seen in the corresponding direction β if the lens
effect could be disabled.

The distance measures Dd, Dds and Ds are in principle angular diameter distances, as
will become clear in section 2.3. For these kinds of distances, in generalDs 6= Dds+Dd.

Using the relationship between θ and ξ, equation (2.5) can be rewritten as

α̂(θ) =
2
c2

∇ξ

(∫
Φ(Ddθx, Ddθy, z)dz

)
= ∇θψ̂(θ),

in which ψ̂ was defined as follows:

ψ̂(θ) =
1
Dd

2
c2

∫
Φ(Ddθx, Ddθy, z)dz.

For convenience, when only a single source plane is being used, one often uses a scaled
version of the deflection angle

α(θ) :=
Dds

Ds
α̂(θ),

for which:
α(θ) = ∇θψ(θ). (2.7)

The quantity ψ(θ) is usually called the projected potential, effective lensing potential
or lens potential, and is defined as follows:

ψ(θ) :=
Dds

Ds
ψ̂(θ) =

2
c2

Dds

DsDd

∫
Φ(Ddθx, Ddθy, z)dz. (2.8)

In this text, ψ̂(θ) shall also be referred to as the lens potential and shall be used when
multiple source redshifts, and hence multiple Dds/Ds fractions, can be present.

19



Chapter 2. Lensing theory

2.3 Lensing on a cosmological scale – time delays

To introduce the lens effect on a cosmological scale, we will start from equation (2.2).
The derivation which follows is based on the information in [56] en [96].

2.3.1 Geometrical part

First, let us focus on the geometrical part of the time delay of a light ray and sup-
pose that the large-scale geometry of the universe is well described by the Friedman-
Robertson-Walker metric

ds2 = c2dt2 −R(t)2dσ2

in which:

dσ2 =
du2 + u2dθ2 + u2 sin2 θdϕ2(

1 + k
4u

2
)2 .

Light rays travel along null geodesics, giving the equation

cdt = R(t)dσ. (2.9)

Again, the thin lens approximation will be used: the light ray will travel from source
S along a null geodesic until it reaches the lensing object. In the deflection point I,
the light ray is deflected by the angle α̂ after which it travels along a null geodesic
towards the observer O. The spacetime coordinates (u, θ, ϕ) of these points are fixed.
The physical distance between them varies only because of the overall expansion of
the universe, encoded in R(t).

Ultimately, physical paths between a fixed source and observer will require looking
for paths which extremize the time delay. Because source and observer are fixed and
adding a constant will not matter when looking for extrema, we shall evaluate the
following expression:

tgeom = ∆tSI + ∆tIO −∆tSO.

From equation (2.9) one obtains:

∆σ = c

∫
1

R(t)
dt ≈ c

1
R0

∆t.

Here, we used the fact that the time differences involved are small with respect to the
time over which the scale factor R(t) changes, and have called R0 the value of the
scale factor at the current time. The geometrical part of the time delay then becomes
(see also figure 2.4):

c tgeom = R0(σds + σd − σs). (2.10)
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S
I

O

σs

σds

σd

α̂

Figure 2.4: The coordinate distances and deflection angle in the cosmological setting of the
gravitational lens effect. This is used to calculate the geometrical part of the time delay
function.

In the following derivation it is assumed that k = 0, but an analogous derivation can
be made for k = ±1. In the case under study, space is flat and again assuming small
deflection angles, the coordinate distance becomes:

σ2
s = σ2

d + σ2
ds − 2σdσds cos(π − α̂) = σ2

d + σ2
ds + 2σdσds cos α̂

≈ σ2
d + σ2

ds + 2σdσds(1−
1
2
α̂2) = (σd + σds)2 − σdσdsα̂2.

Taking the square root of this expression, one obtains:

σs ≈ (σd + σds)

√
1− σdσdsα̂2

(σd + σds)2
≈ (σd + σds)

(
1− σdσdsα̂

2

2(σd + σds)2

)
≈ σd + σds −

σdσds
2σs

α̂2,

since in zeroth order in α̂ one finds that σs ≈ σd + σds.

Finally the expression (2.10) then reduces to:

c tgeom = R0
σdσds
2σs

α̂2. (2.11)

To proceed it is necessary to introduce the concept of angular diameter distance,
as illustrated in figure 2.5. Suppose that two light rays A and B are emitted by a
source S, starting from a physical distance d from each other. These light rays travel
towards the observer O and will arrive there with an angle θ between them. The
angular diameter distance Ds to the source is then defined as:

Ds :=
d

θ
.

Call δ the coordinate distance which corresponds to d, and in contrast to d this
coordinate distance is fixed in time. If Rs is the scale factor at the time the light rays
are emitted, obviously

d = Rsδ.

Since the coordinate distance δ is supposed to be extremely small, from the sine rule
one finds:

θ

δ
=

1
σs
.
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S

d

A

B

Oθ

σs

Figure 2.5: Definition of the angular diameter distance. If an observer sees an object of
intrinsic size d under an angle θ, the angular diameter distance D to the object is such that
Dθ = d.

The expression for the angular diameter distance then becomes:

Ds =
d

θ
=
Rsδ

θ
=
Rsθσs
θ

= Rsσs.

Using the substitutions

σs =
Ds

Rs
σds =

Dds

Rs
σd =

Dd

Rd

equation (2.11) becomes:

c tgeom =
R0

Rd

DdDds

2Ds
α̂2.

It is well known that the factor R0
Rd

is simply 1 + zd, in which zd is the redshift of
the deflecting object. Again calling θ and β the directions in which the observer sees
the image and the source respectively, and applying the sine rule to the triangle in
figure 2.4, one finds:

sin(π − α̂)
σs

=
sin(θ − β)

σds
,

which, for small angles, reduces to:

α̂ ≈ σs
σds

(θ − β).

Finally, the geometrical part of the time delay becomes:

c tgeom = (1 + zd)
DsDd

2Dds
(θ − β)2.

2.3.2 Gravitational part

As was stated earlier, the gravitational interaction with the deflecting object is locally
still described by the static weak field metric. From equation (2.1) the gravitational
part of the time delay, when the light ray reaches the lens itself then becomes:

−1
c

∫ O

S

2Φ(r)
c2

dσ ≈ −1
c
Ddψ̂(θ).
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2.4. Deflection by a mass distribution

Because of the cosmological expansion, this time delay will be modified by a factor
1 + zd when the observer is reached. The gravitational part of the time delay then
becomes:

c tgrav = −(1 + zd)Ddψ̂(θ) = −(1 + zd)
DdDs

Dds
ψ(θ).

2.3.3 Time delay function

Adding the expressions for the geometrical and gravitational parts of the time delay,
one obtains the following time delay function:

t(θ) =
1 + zd
c

DdDs

Dds

(
1
2

(θ − β)2 − ψ(θ)
)
. (2.12)

For a given source position β, the time delay (up to an arbitrary constant) for a light
ray reaching the observer from direction θ is given by t(θ). The surface defined in this
way, is often referred to as the arrival time surface. Using the principle of Fermat,
the stationary solutions give the true paths of the light rays, that is:

∇t(θ) = 0 ⇔ θ − β −∇ψ = 0,

which is again the lens equation if one takes into account equation (2.7).

Appendix C shows how angular diameter distances can be calculated if one knows
the cosmological parameters H0, Ωm, Ωr and ΩΛ, and one knows the redshift of the
object.

2.4 Deflection by a mass distribution

Instead of working with the gravitational potential of the object, using which one can
obtain the deflection angle from equation (2.4) or (2.5), one can also use the mass
distribution of the lens.

2.4.1 Point mass deflector

The gravitational potential of a point mass of mass M is given by

Φ(x, y, z) = − GM√
x2 + y2 + z2

.

Equation (2.4) then becomes:

α̂(ξ) =
2
c2

∫
GM

(ξ2x + ξ2y + z2)
3
2

(ξxex + ξyey)dz
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It is an easy exercise to show that this expression reduces to the value first reported
by Einstein:

α̂(ξ) =
4GMξ

c2ξ2
, (2.13)

or in terms of θ:

α̂(θ) =
4GM
c2Dd

θ

θ2
. (2.14)

The lens equation for a point mass lens becomes

β(θ) = θ − θ2E
θ

θ2
in which θE =

√
Dds

Ds

4GM
c2Dd

.

It is clear that in general, lens, source and images will lie on a straight line. Rewriting
this as

β(θ) = θ

(
1− θ2E

θ2

)
,

it is clear that for θ � θE , β ≈ θ and source and image positions nearly coincide.
This is of course what one would expect: if the source and lens are badly aligned, the
lens effect is negligible.

2.4.2 General mass distribution

For a general mass distribution, one can start from equation (2.4) and fill in the
gravitational potential for a mass distribution ρ(r):

Φ(r) = −G
∫

ρ(r′)
|r − r′|

dr′.

Some straightforward algebra then gives the expression:

α̂(ξ) =
4G
c2

∫
Σ(ξ′)(ξ − ξ′)
|ξ − ξ′|2

dξ′,

in which

Σ(ξ) =
∫
ρ(ξx, ξy, z)dz

is the two-dimensional or projected mass density. Note that this is the expression one
would expect for a two-dimensional mass density built from mass elements Σ(ξ) dξ,
if the deflection angle for a point mass in the origin is described by equation (2.13).

In terms of θ the expression for the deflection angle becomes:

α̂(θ) =
4GDd

c2

∫
Σ(θ′)(θ − θ′)
|θ − θ′|2

dθ′. (2.15)
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2.4. Deflection by a mass distribution

2.4.3 Circularly symmetric mass distribution

Suppose that the projected mass density Σ only depends on the length of ξ, i.e. it
possesses circular symmetry. In that case, as can be expected, the deflection angle at
a distance ξ is equal to the deflection angle of a point mass with mass equal to the
total mass within this radius. Explicitly:

α̂(ξ) =
4GM(ξ)

c2
ξ

ξ2
in which M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′dξ′,

or again in terms of θ:

α̂(θ) =
4GM(θ)
c2Dd

θ

θ2
in which M(θ) = 2πD2

d

∫ θ

0

Σ(θ′)θ′dθ′. (2.16)

A derivation of this result using complex integration can be found in appendix D. The
fact that for a circularly symmetric mass distribution the deflection angle depends only
on the enclosed mass will be very useful when discussing degeneracies in chapter 3.

2.4.4 Einstein radius and critical mass density

If one has a circularly symmetric mass distribution centered on the origin and a
source which lies directly behind it, the symmetry of the situation demands that if a
strong lens effect is present, the image of the source will be a ring, usually called an
Einstein ring. Substituting β = 0 and the deflection for a circularly symmetric mass
distribution (2.16) in the lens equation, one finds the condition

1 =
Dds

Ds

4GM(θ)
c2Dd

1
θ2

(2.17)

for the non-trivial solution. If, for a specific mass distribution with total projected
mass profile M(θ), this condition has a solution for a real value of θ, a ring will be
visible and the corresponding radius will be called the Einstein radius θE .

To gain some further insight into this condition, it is instructive to introduce Σ̄(θ),
the mean mass density within a radius θ:

Σ̄(θ) =
M(θ)
πD2

dθ
2

The previous condition can then be rewritten as

Σ̄(θ)
Σcr

= 1,

in which

Σcr =
c2

4πG
Ds

DdsDd
(2.18)

is called the critical density. This means that a source in the origin will produce an
Einstein ring at a radius θ if the average density within that radius is equal to the
critical density.
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Chapter 2. Lensing theory

Figure 2.6: Illustration of the influence of the deflection of light on the flux received from an
ideal point source. In the unlensed case, a detector of area A receives the photons emitted in
the solid angle Ωunlensed. Because of the lens effect however, a different amount of photons
will reach the same detector, namely the ones emitted in solid angle Ωlensed.

2.5 Magnification

Because the lens effect changes the size which an observer measures for an object, one
can easily imagine that it can have an effect on the flux received from an astronomical
source. In this section we shall investigate this, first for an ideal point source and
next, more realistically, for an extended source.

2.5.1 Point source

To calculate the influence of the lens effect on the flux received from an isotropic point
source, we shall first turn around the lensing situation somewhat, as is illustrated in
figure 2.6. This time, the source is at the origin, and because of the gravitational
deflection of light, a bundle of light rays hits an area A, for example the surface of a
detector.

For an isotropic source, the flux received from the source on the detector will be
proportional to the solid angle subtended by the detector, as seen from the source:

Funlensed ∝ Ωunlensed =
A

D2
s

.

If the influence of the lens is taken into account, the photons in the solid angle Ωlensed

are received instead, so that the flux received from the source is:

Flensed ∝ Ωlensed =
A0

D2
ds

.
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2.5. Magnification

This means that the ratio of these fluxes, i.e. the magnification of the source is given
by:

µ =
Flensed

Funlensed
=
A0

A

D2
s

D2
ds

.

So to calculate the magnification, on needs to find the ratios of the areas A0 and A.

Suppose, for A0, we take triangular area bounded by the vectors

ξ0, ξ1 = ξ0 + dξ1 = ξ0 + dξ1ex and ξ2 = ξ0 + dξ2 = ξ0 + dξ2ey.

By inspecting figure 2.6, one easily sees that these vectors are transformed to the
vectors

ζi =
Ds

Dds
ξi − α̂(ξi)Dd,

in which i is 0,1 or 2. These vectors again define a triangular area of which the area
can be calculated by1

A =
1
2

(dζ1,xdζ2,y − dζ2,xdζ1,y)

in which
dζi = ζi − ζ0.

Some straightforward algebra then yields the result:

A =
1
2

[(
Ds

Dds
−Dd

∂α̂x
∂ξx

)(
Ds

Dds
−Dd

∂α̂y
∂ξy

)
dξ1dξ2 −D2

d

∂α̂y
∂ξx

∂α̂x
∂ξy

dξ1dξ2

]
Noting that Ddθ = ξ as before one finds

µ−1 =
A

A0

D2
ds

D2
s

=
(

1− Dds

Ds

∂α̂x
∂θx

)(
1− Dds

Ds

∂α̂y
∂θy

)
− D2

ds

D2
s

∂α̂y
∂θx

∂α̂x
∂θy

=
∣∣∣∣∂βi∂θj

∣∣∣∣ . (2.19)

The inverse magnification of a point source is thus given by the Jacobian determinant
of the lens equation.

2.5.2 Extended source

To simulate a small source of constant surface brightness, suppose that this source
consists of a large number of point sources, all with the same intrinsic luminosity and
distributed uniformly. If the source is small enough so that µ does not change over
its area, each of the point sources will cause a flux that is larger by this factor.

To the observer however, the point sources are not perceived as lying at their original
spacing since the observer sees an image of the source, not the source itself. The
surface area of the image that the observer sees is larger by a factor that is precisely
the inverse of the Jacobian determinant of the lens equation. This means that the

1Compare this to the z-component of a vector product.
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(a) Source plane (b) Image plane

Figure 2.7: Lens effect of a point mass lens in the origin of the coordinate system, on a source
which has different dimensions in different wavebands. The axes on this figure are in units
of the Einstein radius of the point mass lens. Because one region is large compared to the
Einstein radius, its magnification will be quite small. For a small region on the other hand,
the magnification factor can be considerably larger. Combining these effects with limited
resolving power, this means that the color of the source can still be different from the color
of the image.

point sources in the image are brighter by a factor µ, but the image itself is also larger
than the source by a factor µ. Therefore, the surface brightness of the image is the
same as the surface brightness of the source. This is true in general: lensing conserves
surface brightness. The fact that the flux of an object changes is purely geometrical
as this can be attributed to the change in size.

Since it is just the image size that is changed, not the surface brightness, it is actually
the resolution of the detector that will determine if the magnification of an image is
well described by the magnification of a point source or not. If an image is much
smaller than a CCD pixel for example, the pixel itself will receive the modified total
flux of the image which is well described by µ. If the image is much larger than the
typical size of a pixel, i.e. it is well resolved, each pixel will estimate the surface
brightness at that point. Of course the flux of the image as a whole will still be
changed by a factor that is approximately µ, but again this is a purely geometrical
effect.

It is also interesting to see how color changes are still possible because of this. Fig-
ure 2.7 illustrates the situation, using the effect of a point mass lens with a certain
Einstein radius θE . Suppose, in one waveband, that the source is quite large, for
instance a disc of uniform surface brightness with a radius that is much larger than
θE . The lensed version of this source will look very much like the source itself: the
lensed radius will be almost equal to the real radius of the source, as it is much larger
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that θE , and the surface brightness inside the lensed disc is unchanged. Suppose that
in another waveband, this same source is small compared to θE and located close to
the center of the lens. The point mass lens will generate two distinct images, each
with a modified flux. The total flux in this waveband will also differ from the original
one. If the resolution of our detector is not good enough to resolve the image, in one
waveband the flux will not be magnified, but in another waveband it will. This of
course leads to a modified color.

2.6 Convergence and shear

In equation (2.8) the projected potential was already introduced:

ψ(θ) =
2
c2

Dds

DsDd

∫
Φ(Ddθx, Ddθy, z)dz,

for which one finds that:
∇ψ(θ) = α(θ)

Calculating the two dimensional Laplacian of the projected potential one finds:

∇2
θψ =

(
∂2

∂θ2x
+

∂2

∂θ2y

)
ψ =

Dds

DsDd

2
c2

∫
D2

d

(
∂2

∂x2
+

∂2

∂y2

)
Φdz

=
Dds

Ds

2
c

∫ (
∇2Φ− ∂2Φ

∂z2

)
dz =

Dds

Ds

2
c

∫
4πGρdz − 0,

where in the last step the fact that Φ → 0 at infinity was used. It is then immediately
clear that

1
2
∇2ψ(θ) =

Σ(θ)
Σcr

:= κ(θ).

The quantity κ is called the convergence and is a dimensionless measure of the mass
density. Since α is the gradient of a scalar function, it is also clear that:

∂αx
∂θy

=
∂2ψ

∂θx∂θy
=
∂αy
∂θx

.

One also defines the shear components γ1 and γ2 as:

γ1(θ) =
1
2

(
∂2ψ

∂θ2x
− ∂2ψ

∂θ2y

)
=

1
2

(
∂αx
∂θx

− ∂αy
∂θy

)

γ2(θ) =
∂2ψ

∂θx∂θy
=
∂αx
∂θy

=
∂αy
∂θx

.

Consider the Jacobian matrix A of the lens equation, and call its elements Aij :

A =
(
∂βi
∂θj

)
=

(
1− ∂αx

∂θx
−∂αx

∂θy

−∂αy

∂θx
1− ∂αy

∂θy

)
=

(
1− ∂2ψ

∂θ2x
− ∂2ψ
∂θx∂θy

− ∂2ψ
∂θx∂θy

1− ∂2ψ
∂θ2y

)
,
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2.7. Critical lines and caustics
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Figure 2.8: These figure show the time delay function for several positions of the source,
for a circularly symmetric mass distribution. Left panel: the source is placed behind the
symmetry center of the lens. Center panel: there is a distance of 1 arcsec between the source
and the center of the lens. Right panel: source and lens are offset by 2 arcsec.

Since µ−1 becomes zero on a critical line, these lines also mark regions where the sign
of the magnification changes. A negative sign simply indicates a mirrored image, and
therefore the critical lines mark the regions of positive and negative parity.

To gain some further understanding it is instructive to take a closer look at the time
delay function. If one calculates the Hessian matrix of the function (2.12), one finds:

∂2t

∂θi∂θj
=

1 + zd
c

DdDs

Dds

(
δij −

∂2ψ

∂θi∂θj

)
=

1 + zd
c

DdDs

Dds
Aij ,

in which Aij are again the elements of the Jacobian matrix of the lens equation.
The curvature of the time delay surface is therefore related to the magnification:
if the Hessian matrix has an eigenvalue which is zero, so will Aij and the inverse
magnification, being the product of the eigenvalues of A, will be zero. So, in general,
a smaller curvature indicates a smaller inverse magnification, or correspondingly a
higher magnification.

Now, for the time delay function which corresponds to a specific source position β,
the images will lie at the positions where the time delay function is extremal. The
brightness of the images of a point source can then be derived by evaluating the
Hessian matrix of the time delay function at these positions, a smaller curvature
indicating a larger magnification. Figure 2.8 illustrates this for a source at different
positions. For a circularly symmetric mass distribution2, as was used in creating
the panels, the images will lie along the line which connects the center of the mass
distribution with the source, so we can limit ourselves to a one-dimensional cut of the
time delay function.

The left panel shows the situation in which the source is directly behind the mass
distribution. As shown in the image, there are three extrema and therefore three
images. In reality, by symmetry the outer two extrema will form a ring, the Einstein

2The mass distribution used corresponds to a projected Plummer sphere. See section 2.8.2 for
details.
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ring. The center panel shows what happens if the source moves outwards slightly. The
offset between the center of the lens and the source is 1 arcsec. It can be clearly seen
that the extremum on the right moves outward as well, the other two extrema move
towards each other. The right panel shows what happens if the source moves outwards
even further: the offset is now 2 arcsec. In this case, the time delay function will only
have one extremum anymore. This is to be expected: as the alignment between
observer, lens and source deteriorates, the gravitational lens effect will diminish in
strength and only one image of the source will be visible.

In between the situation in the center and right panels, it is clear that the two images
will merge and disappear. At that point, the maximum of the center image and the
minimum of the left image will merge as well and the curvature of the time delay func-
tion will become zero. Of course this means that the inverse magnification becomes
zero at that point as well, or equivalently that image pairs get created or destroyed
on critical lines. When images are merging or nearly merging, the magnification will
be very large.

These one-dimensional versions of the time delay surface also suggest that in general
there will be an odd number of images: one that converges to the source position as
the source and lens become less well aligned, and possibly other image pairs. This is in
fact a general result and does not only apply to circularly symmetric lenses [16]. Also,
each time an image pair gets created on a critical line, the source crosses a caustic.
This means that the position of the source with respect to the caustics, determines
the number of images.

For a circularly symmetric lens, equation (2.16) shows that a vector θ in the image
plane corresponds to a vector β in the source plane which is oriented along the same
direction. This means that angle under which an image is seen from the lens center, is
the same angle as the one under which the source is seen. Figure 2.9 then shows that
the lens equation for such a lens transforms a surface element β∆φ∆β to a surface
element θ∆φ∆θ. Or, stated differently, this means that the inverse magnification,
being the ratio of these quantities, simplifies to:

µ−1 =
β

θ

∂β

∂θ
,

in which

β(θ) = θ − 4GM(θ)
c2Ddθ

is a one-dimensional version of the lens equation for a circularly symmetric lens.

The equation of the inverse magnification above shows that in general there will be
two critical lines: one for which β

θ = 0 and one for which ∂β
∂θ = 0. The first one

obviously corresponds to the caustic point β = 0. When the source is close to this
point, the images will be stretched tangentially along the corresponding critical line.
One therefore speaks of the tangential caustic, and tangential critical line. When the
source is close to the other caustic, it will have images close to another critical line.
Since these images are then elongated in the radial direction, one speaks of the radial
caustic and radial critical lines. Figure 2.10 illustrates this.
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Figure 2.9: For a circularly symmetric lens, the angle under which the source is seen, is the
same as the angle under which the images are seen. This causes a surface element β∆φ∆β
to be transformed into a surface element θ∆φ∆θ, leading to a particularly simple expression
for the inverse magnification (see text).

2.8 Specific lenses

The concepts derived in the previous sections will be illustrated for a number of
specific mass distributions. First, the lens effect for a family of mass distributions
derived from the so-called singular isothermal sphere is shown. Next, because it
is used frequently in the inversion procedure, the lens effect of a Plummer mass
distribution is shown.

2.8.1 Isothermal ellipsoids

As a model for a galaxy for example, consider it as consisting of a large number of
identical components of mass m. Furthermore, assume that such particles behave as
an ideal gas, trapped in the combined spherically symmetric potential. Assume that
the temperature is T everywhere in this ideal gas, so that the velocity dispersion σv
of the particles is given by

mσ2
v = kT.

One particularly easy solution to the equation of hydrostatic equilibrium is given by
the density of the so-called singular isothermal sphere (SIS):

ρ(r) =
σ2
v

2πG
1
r2
.

An interesting feature of such a mass distribution is that the speed v of a test par-
ticle on a circular orbit in the gravitational potential of such a mass distribution, is
independent of the radius of the orbit:

v2 = 2σ2
v .
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Figure 2.10: Left panel: a circular source close to the tangential caustic (top) and radial
caustic (bottom). Right panel: corresponding images and critical lines, showing how images
close to the tangential critical line are stretched tangentially and images close to the radial
critical line are stretched radially.
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This model can therefore predict flat rotation curves.

Starting from this mass density, one can easily calculate Σ(θ) and M(θ):

Σ(θ) =
σ2
v

2GDdθ
, M(θ) =

πDdσ
2
vθ

G
.

Equation (2.17) has the solution

θE =
Dds

Ds

4πσ2
v

c2
,

using which the expression of the deflection angle (2.16) becomes:

α(θ) = θEeθ.

Here, eθ is a unit vector parallel to θ.

Some modifications of this mass distribution exist. The first one is called the non-
singular isothermal sphere (NSIS), in which the central singularity has been removed
through the introduction of a core radius θc. The projected mass density and total
mass profile then become:

Σ(θ) =
σ2
v

2GDd

√
θ2 + θ2c

, M(θ) =
πσ2

vDd

G

(√
θ2 + θ2c − θc

)
.

One can also introduce an ellipticity f into the projected mass distribution. A first
version, in which the central singularity is still present is called the singular isothermal
ellipse (SIE), which has the following mass distribution:

Σ(θ) =
σ2
v

√
f

2GDd

√
θ2x + f2θ2y

.

It can be shown that this lens causes the following deflection angle[63]:

α̂(θ) =
4πσ2

v

c2

√
f√

1− f2

[
asinh

(√
1− f2

f

θx
|θ|

)
ex + asin

(√
1− f2

θy
|θ|

)
ey

]
.

A final variation is the one in which both a core radius and ellipticity are introduced.
The projected mass density of such a non-singular isothermal ellipse (NSIE) is then

Σ(θ) =
σ2
v

√
f

2GDd

√
θ2x + f2θ2y + θ2c

.

The components of the deflection angle in this case are (see e.g. [73]):

α̂x(θ) =
4πσ2

v

c2

√
f√

1− f2
atanh

 θx
√

1− f2√
θ2x + f2θ2y + θ2c + fθc
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α̂y(θ) =
4πσ2

v

c2

√
f√

1− f2
atan

 fθy
√

1− f2

f
√
θ2x + f2θ2y + θ2c + θc

 .

Figure 2.11 shows the gravitational lens effect of these lenses. In each case, the image
plane and source plane are drawn on top of each other, so that both the source and
images can be seen. Of course, in a real lensing situation only the images would be
visible. The mass distributions of these lenses are not shown in the figure, only their
effect is visible. These pictures were made using the ray tracing procedure explained
before: for each point in the (gridded) image plane, the corresponding point in the
source plane is calculated using the lens equation. If that point lies within the circular
source, the pixel in the image plane is painted black, otherwise it is left blank. Note
that this also means that if the images are projected back onto the source plane, they
should form a consistent source shape since all of these images are derived from a
single source.

2.8.2 Plummer mass distribution

The gravitational potential of the Plummer sphere [84] is:

Φ(r) = − GM√
r2 + a2

P

,

in which aP is a characteristic width of the mass distribution. The Poisson equation
∇2Φ = 4πρ can be used to easily show that this potential corresponds to the mass
distribution

ρ(r) =
3M
4π

a2
P

(r2 + a2
P )

5
2
.

Integration along the z-axis then yields the circularly symmetric projected mass den-
sity Σ:

Σ(θ) =
M

πD2
d

θ2P

(θ2 + θ2P )2
,

in which θP is a characteristic angular width, related to aP through DdθP = aP . The
total mass profile M(θ) then becomes

M(θ) = M
θ2

θ2 + θ2P
,

from which one sees that the parameter M is the total mass contained in the mass
distribution.

By equation (2.16), the scaled deflection angle then becomes

α(θ) =
Dds

Ds

4GM
c2Dd

θ

θ2 + θ2P
,
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(a) SIS
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(b) NSIS

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y
 (

ar
cs

ec
)

X (arcsec)

Caustics
Critical lines

Sources
Images

(c) SIE
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(d) NSIE

Figure 2.11: Images of a circular source in the case of a SIS, NSIS, SIE and NSIE lens. The
critical lines and caustics are also shown in each case. For these simulated situations, the lens
is at redshift zd = 0.25, the source is at redshift zs = 1.5 and the angular diameter distances
were calculated in a flat cosmological model with H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and
ΩΛ = 0.73. The lens in each case has a velocity dispersion of σv = 250 km s−1 and where
appropriate a core radius θc = 0.1 arcsec and ellipticity f = 0.8 were used.
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which can be seen to originate from the projected potential

ψ(θ) =
Dds

Ds

2GM
c2Dd

ln(θ2 + θ2P ).
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–3–
Lensing degeneracies

Before talking about lens inversion, it is important to gain some further insight into
what actually can be constrained by the images in a lensing system. This brings us to
the important topic of lensing degeneracies. This chapter will also serve to illustrate
further the theory of the lens effect.

3.1 Introduction

Since, in a strong lensing situation, the precise positions and deformations of the
images of a source depend on the exact shape of the mass distribution, gravitational
lensing holds the promise of constraining said mass distribution. In principle, this
strong lens inversion sounds fairly straightforward: use a particular model and op-
timize its parameters so that it reproduces the observations as good as possible. In
practice however, one is hindered by gravitational lensing degeneracies which allow
a wide range of mass distributions to produce the exact same image configuration.
On the level of parametric lens inversion results, this can manifest itself as parameter
degeneracies (e.g. [109]), but at their core the degeneracies are of course present at
the level of the mass distribution. An obvious example is that one cannot constrain
the three dimensional mass distribution, as lensing is described by the two dimen-
sional, projected density. But even when only considering this projected density,
many degeneracies are present.

Several classes of degeneracies were first identified in [37] and were later reinterpreted
in [89] in terms of changes in the arrival-time surface. Although we shall be focusing
on strong lensing, degeneracies have also been studied in weak lensing systems (e.g.
[97]) and even in the context of microlensing [81].
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Chapter 3. Lensing degeneracies

As with many inverse problems, lens inversion is often said to be ill-posed, indicating
that there is no real unique solution to the problem. Of course, this is what lensing
degeneracies are all about: given that at least one solution can be found for the
inverse problem, is it possible to modify the corresponding mass distribution and still
be compatible with the observational constraints?

3.2 The monopole degeneracy

If the constraints provided by the images in a strong lensing system seem to suggest
a particular feature in the mass distribution, one may wonder if this is in fact a real
feature of the mass map. To verify this, a question one can ask is the following:
can this feature be removed from the reconstruction while still obtaining a good
inversion, given the available constraints? Below, we shall describe how the monopole
degeneracy can help to answer this question. The content of this section is based on
[70].

For a circularly symmetric mass distribution Σ(θ), the expression for the deflection
angle only depends on the total enclosed projected mass, as can be seen in equa-
tion (2.16), repeated here for convenience:

α̂(θ) =
4GM(θ)
c2Dd

θ

θ2
.

From the same equation, it is clear that a circularly symmetric mass distribution of
which the total mass is zero beyond a specific radius, does not produce a gravitational
lens effect outside said radius. If such a mass distribution is added to an existing one,
the original lens equation will be modified only inside the circular region in which it
has non-zero mass.

Consider a lens mass map M(x) specified by MA(x) in [0,m], by MB(x) in [m, 1] and
which is zero beyond the unit radius:

MA(x) = − 1
4m2

x4 +
1
2
x2

MB(x) =
m2

4(m− 1)3
[
−2x3 + 3(m+ 1)x2 − 6mx+ 3m− 1

]
.

The shape of such a function is shown in the left panel of figure 3.1 for two different
values of m, which specifies the position of the maximum. The right panel of the
same figure shows the associated density profiles, which are composed of two parts as
well:

ΣA(x) =
1
x

dMA

dx
= − 1

m2
x2 + 1

ΣB(x) =
1
x

dMB

dx
=

m2

4(m− 1)3

[
−6x+ 6(m+ 1)− 6m

x

]
.
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Figure 3.1: Left panel: shape of the total mass map of the circularly symmetric basis functions
used to construct degenerate solutions (see text). The value of m determines the position of
the maximum. Right panel: the total mass profiles shown in the left panel give rise to these
density profiles. As the value of m becomes smaller, the amplitude of the negative density
part decreases.

Clearly, the smaller the value of m, the flatter the density profile becomes after this
point. Using such a profile, it is possible to introduce or erase a peak in an existing
mass map without changing much to the rest of the distribution and while conserving
the total mass.

A particular example of such a mass distribution, which we shall call a monopole1,
can be seen in figure 3.2. From a circular region, some mass is “borrowed” to build a
central density peak. Now consider the mass distribution of the left panel of figure 3.3,
which causes five images of the same circular source. If one adds the monopole from
figure 3.2 to this mass distribution, placing it in the circular region indicated in the
figure, it will only affect the lens equation within that circular region. The right panel
of figure 3.3 shows the resulting mass distribution, which clearly differs much from the
original one. One can also see in the bottom half of this panel that the circular source
still produces the exact same images as before. Note that in principle it is possible
that extra images will be predicted inside the circular region, since the lens equation
was modified there. In this particular example, this was not the case however.

While this example may seem somewhat artificial, this type of degeneracy in fact
allows one to redistribute the mass in between the images in a wide variety of ways.
One only needs to use a large number of these monopoles, making sure that none of
them overlap with the input images. For any set of weights of these basis functions,
the images will be projected onto the same sources, since the lens equation was not
modified at the location of the images. One only needs to make sure that no extra

1In a multipole expansion, only the monopole term is needed to describe this mass distribution.
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Figure 3.2: Example of a “monopole” mass distribution: a circularly symmetric mass distri-
bution with a total mass of zero beyond a specific radius. Such a mass map will not cause
any lens effect outside the outer radius.
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Figure 3.3: Left panel: elliptical mass distribution (top) transforms a circular source into
five images (bottom). Right panel: after adding the “monopole” (see text), the resulting
mass distribution (top) still transforms the source into the same five images (bottom).
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images are predicted, but otherwise it is clear that a large number of mass maps will
produce the same image configuration. We shall come back to this in section 5.1.4
where this type of degeneracy is applied to a particular lens inversion.

Since the deflection field is not changed at the location of the images, it is clear that the
magnification of the images is not changed. Another way to see this is that the image
sizes and source sizes are not affected by this degeneracy, so that the magnification
is not modified either. Each individual monopole is circularly symmetric and does
not produce a deflection field outside a specific radius. From ∇ψ = α = 0 it is then
clear that the lens potential outside that radius is a constant. Adding a monopole
to the mass distribution then has the effect of adding a constant to the time delay
function at the location of all the images, but since only differences in time delays can
be observed, this does not matter and the predicted time delays between the images
stay the same.

3.3 The mass sheet degeneracy

The so-called mass sheet or steepness degeneracy (e.g. [31] or [92]) is undoubtedly
one of the most famous degeneracies in lensing. In this section, the basic mechanism
will be discussed; some generalizations of this degeneracy will be discussed in the next
section.

Let us consider a strong lensing system with images coming from a single source, for
example the strong lensing system in the left panel of figure 3.3. A uniform sheet of
mass with density Σs produces a deflection described by

α̂s(θ) =
Ds

Dds

Σs

Σcr
θ,

in which the critical mass density Σcr for the current geometry is defined by equa-
tion (2.18). Note that Σcr depends on the redshift of the source via the angular
diameter distances Ds and Dds. Let Σ0(θ) be a mass distribution that is compatible
with the observed images. This means that the corresponding lens equation

β0(θ) = θ − Dds

Ds
α̂0(θ)

projects the images onto the source plane in such a way that they overlap exactly.
Without further constraints, this immediately yields an infinite number of alternative
solutions. Indeed, if the mass distribution is replaced by

Σ1(θ) = λΣ0(θ) + (1− λ)Σcr, (3.1)

the new lens equation becomes

β1(θ) = θ − λDds

Ds
α̂0(θ)− (1− λ)

Dds

Ds
α̂s(θ) = λβ0(θ). (3.2)
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Figure 3.4: Left panel: the mass distribution in the left panel of figure 3.3 is rescaled
by a factor λ, and a mass sheet of density (1 − λ)Σcr is added. Right panel: as shown
in equation (3.2), this causes a scaled version (scaled by factor λ) of the source plane to
correspond to the same image plane.

The transformation (3.1) describes the so-called mass sheet degeneracy and simply
rescales the source plane by the factor λ, as shown by equation (3.2), producing an
equally acceptable source reconstruction. The dimensions of the source are different,
but since these are not observable the new mass distribution is equally valid. Note that
merely adding a mass sheet is not sufficient; one also needs to rescale the original mass
distribution by the same factor λ, which justifies the alternative name of steepness
degeneracy. The density of the mass sheet has to be precisely the critical mass density
for this to work. For this reason, a mass sheet cannot be used when there are sources
at different redshifts, since these would require different critical densities. Figure 3.4
illustrates the rescaling of the source plane.

If the source involved is variable, it may be possible to measure the time delays
between the images:

∆tij = t(θi)− t(θj),
where t(θ) is the time delay function from equation (2.12), and θi and θj are the
positions of two of the images. For a sheet of mass consisting of precisely the critical
density, the projected potential is

ψs(θ) =
1
2
θ2,

so that the mass sheet degeneracy transforms an initial lens potential ψ0 into

ψ1(θ) = λψ0(θ) + (1− λ)ψs(θ) = λψ0(θ) +
1− λ

2
θ2

Noting that the mass sheet degeneracy changes a source position β0 to β1 = λβ0, a
quick calculation shows that the relationship between the original time delay ∆tij,0
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3.4. Generalizations of the mass sheet degeneracy

and the time delay of the degenerate version ∆tij,1 simply becomes:

∆tij,1 = λ∆tij,0. (3.3)

This means that time delay measurements break the mass sheet degeneracy, since a
particular version of the degeneracy corresponds to a particular time delay.

The mass sheet degeneracy also has a particularly simple effect on the magnification
factor µ. Since each dimension is scaled by a factor λ, the area of a small source is
scaled by a factor λ2. Keeping the sizes of the images constant, this means that the
new magnifications of the source are given by µ1 = λ−2µ0. Since absolute magnifi-
cation values are in practice very difficult to obtain as the source is not observable
and since all images are magnified by the same factor, brightness information of the
images is in general not useful for breaking the mass sheet degeneracy.

3.4 Generalizations of the mass sheet degeneracy

An infinite sheet of mass cannot be used to create degenerate solutions when multiple
sources at different distances, or different redshifts are present. For this reason, it is
often claimed that the presence of two sources at different redshifts suffices to break
the mass sheet degeneracy (e.g. [1]). Although this clearly breaks the degeneracy in
its original form, below we shall see that even when multiple sources are present, it is
possible to create rescaled versions of them. First we shall consider the case in which
the sources are rescaled with the same factor (based on [69]), afterward the case in
which each source is rescaled by a different factor shall be considered.

3.4.1 Identical scale factors

Let us first start by considering a single source again. As was shown in the previous
section, it is fairly straightforward to produce equally compatible solutions using a
mass sheet. An infinite sheet of mass, however, is not the only mass distribution which
can be used to produce such degenerate solutions. If the mass density is circularly
symmetric and equal to Σcr in an area large enough to encompass all the images,
the same source scaling effect will arise, thanks to equation (2.16). The center of
symmetry of such a distribution determines the center of the scaling (which is the
origin of the coordinate system in case of an infinite sheet). This way, the mass sheet
degeneracy is easily transformed into a mass disk degeneracy. In fact, the added mass
density need not be constant inside such a disk to produce the same effect. As long
as the total mass inside each image point is the same as for the mass disk, equation
(2.16) ensures that the distribution can be used to construct a degenerate solution as
well. This constraint automatically implies a density equal to Σcr inside the annuli
in which the images reside, but otherwise allows a lot of freedom.

This freedom allows us to construct a mass distribution which, when added to a scaled
version of an existing solution for the lens mass density, is equally compatible with
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Figure 3.5: Left panel: original sources used to illustrate the construction of degenerate
solutions. The source surrounded by a box is placed at redshift z1 = 1.2, the second source
is at z2 = 1.8. The caustics created by the non-singular isothermal ellipse placed at z = 0.5
are also visible. The solid line corresponds to z1 = 1.2, the dotted line to z2 = 1.8. Right
panel: images of the two sources used to illustrate the construction of degenerate solutions.
The critical lines are also shown.

the observed images, but which will rescale the sources. The effect is therefore very
similar to that of the mass sheet degeneracy, but this degeneracy is not necessarily
broken by the presence of additional images of sources at different redshifts.

To illustrate the procedure, consider the two sources and their respective images
in figure 3.5. The two sources are placed at redshifts z1 = 1.2 and z2 = 1.8 and
the images are created by a non-singular isothermal ellipse at z = 0.5. This non-
singular isothermal ellipse then provides us with the initial mass density Σ0(θ). A
flat cosmological model with Ωm = 0.27, ΩΛ = 0.73 and H0 = 70 km s−1 Mpc−1 was
used to calculate the necessary angular diameter distances.

The circularly symmetric mass density Σgen(θ) and corresponding Mgen(θ) that we
shall construct, must have the same effect as a mass sheet for both sources. This mass
density will serve as the generator of the transformation which creates a degenerate
solution Σ1(θ) from an existing solution Σ0(θ). The procedure is very similar to the
mass sheet case:

Σ1(θ) = λΣ0(θ) + (1− λ)Σgen(|θ − θc|), (3.4)

in which θc is the center of symmetry of the generator. The mass distribution of
the generator must satisfy constraints provided by the images: the mass enclosed by
each image point must equal the mass of the corresponding constant-density mass
sheet. Therefore, if a specific image of a source at redshift z lies in an annulus with
inner radius θin and outer radius θout, the constraint provided by said image is the
following:

∀θ ∈ [θin, θout] : Mgen(θ) = πD2
dθ

2Σcr(z), (3.5)

in which the radii are measured with respect to the chosen center of symmetry θc.
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3.4. Generalizations of the mass sheet degeneracy

Figure 3.6: Left panel: the annuli in which the images reside, as seen from the origin of the
coordinate system, are displayed as gray rings. The darker ring indicates the region in which
the annuli of the outer images overlap. Because of this overlap, no suitable mass density
can be constructed (see text). Right panel: similar to the left panel, but now the annuli are
centered on (0,−5). This center can be used in the construction of a degenerate solution
since there are no longer overlapping annuli.

Consequently, within such an annulus the mass density must equal the critical density
for an image at redshift z and in the region enclosed by the annulus, the mean density
must equal the critical density. In the left panel of figure 3.6, we plot the annuli of the
images, as seen from the center of the non-singular isothermal ellipse. Looking at the
furthest image of each source, it is clear that no Σgen can be constructed. The mass
density would have to be equal to Σcr(z1) inside the annulus of one image and Σcr(z2)
inside the annulus of the other image. Since these regions overlap, as is indicated by
the darker ring, this is impossible. However, if we take (0,−5) as the center, there
are no overlapping annuli as can be seen in the right panel of figure 3.6.

Once an appropriate center has been identified, the positions of the images of each
source can be used to calculate parts of the total mass map Mgen(θ), as specified by
(3.5). In our example, these constraints are illustrated by thick black lines in figure 3.7
(left panel), when using (0,−5) as the center of the distribution. The rest of the mass
map can easily be interpolated, after which the full density profile of Σgen(θ) can
be derived. In the left panel of figure 3.7, a third degree polynomial was used to
interpolate between the constrained regions. The resulting density profile is plotted
in the right panel of the same figure and the critical densities for the two sources
are indicated with dotted lines. Note that although this particular example does not
require negative densities, in general it is possible that this is indeed necessary. This
need not be a problem, since the resulting mass distribution will be combined with the
existing distribution Σ0(θ) (the non-singular isothermal ellipse in this example) and
may still yield an overall positive density profile. Still, placing a positivity constraint
on the overall density profile may help to alleviate this degeneracy.

47



Chapter 3. Lensing degeneracies

 0

 1e+14

 2e+14

 3e+14

 4e+14

 5e+14

 0  5  10  15  20  25  30  35  40

M
ge

n 
(M

O
)

Radius (Arcsec)

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40

Σ g
en

 (
kg

 m
-2

)

Radius (Arcsec)

Figure 3.7: Left panel: the positions of the images of each source place constraints on the
enclosed mass Mgen (thick lines on the mass profile). The regions in between can easily be
interpolated. Right panel: the total mass profile in the left panel gives rise to the density
profile Σgen shown here. The dotted lines indicate the critical mass densities for the two
sources.

By construction, the procedure (3.4) has the same effect as the mass sheet degeneracy:
the observed images are identical but the reconstructed sources are scaled versions
of the original ones while the density profile of the lens has become less steep. The
resulting density profile for λ = 0.75 can be seen in figure 3.8, in which the original
profile is shown as well. Clearly, the central peak has become weaker while at larger
radii a ring of excess density has been introduced. This figure illustrates nicely that
the term steepness degeneracy still applies to this kind of degenerate solution. When
the images of figure 3.5 are projected back onto their source planes using the new mass
distribution Σ1, the sources in figure 3.9 (solid lines) are retrieved. The fact that the
images of a specific source overlap perfectly when projected onto the source plane
proves that the constructed mass distribution is still compatible with the observed
images and can therefore correctly be identified as a degenerate solution. Since each
dimension is scaled by λ = 0.75, the reconstructed sources are smaller than the original
ones (dotted lines). The image also clearly shows that the direction of the scaling is
towards (0,−5), the center of the circularly symmetric Σgen which was constructed.

Of course, since the positions of the images are not affected, one is free to repeat the
entire procedure using the newly acquired Σ1 as the “original” solution. In general,
if it is possible to create N different circularly symmetric density distributions Σgen,i,
each with another center of symmetry θc,i, it is easily derived that for any λ, the
following mass distribution will still project the images back onto consistent sources:

ΣN (θ) = λNΣ0(θ) + (1− λ)
N∑
i=1

λN−iΣgen,i(|θ − θc,i|). (3.6)

This way, the mass distribution which is added to Σ0 need not possess circular sym-
metry anymore and its density profile can become much more complex. Equation
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Figure 3.8: The profile of the degenerate solution (thick line) is compared to the profile of
the original mass distribution, a non-singular isothermal ellipse. In this example, λ = 0.75
was used.

-6

-4

-2

 0

 2

 4

 6

 0  2  4  6  8  10  12

Y
 (

A
rc

se
c)

X (Arcsec)

Figure 3.9: Sources recreated by the degenerate solution (thick solid lines); the original
sources are indicated by dotted lines. The direction of the scaling is clearly towards (0,−5).
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Figure 3.10: Left panel: sources and caustics predicted by a degenerate solution. Comparing
with the left panel of figure 3.5 one sees that both sources and caustics are scaled versions
of their original counterparts. Right panel: the reconstructed sources and caustics shown in
the left panel predict the images and critical lines shown here. The same images as in the
right panel of figure 3.5 can be seen and the critical lines still resemble the original ones.

(3.6) is important from a practical point of view: the target scale λN can easily be
reached by using N generators, each producing only a very small effect. If a large
number of suitable center positions can be found, this can severely reduce the amount
of substructure introduced by the procedure.

An example of degenerate source and image planes obtained by using N = 100 differ-
ent Σgen,i can be seen in figure 3.10. Each source is scaled by a factor λN = 0.75 in
each dimension; the caustics are scaled as well. The critical lines still show the same
general structure. The mass distribution of the degenerate solution can be seen in
figure 3.11 (left panel) and contains several ring-like structures, the most prominent
one being centered on (−8,−8). This can also be clearly seen when the density profile
is calculated using (−8,−8) as the center (right panel of figure 3.11). The first peak
in this plot is due to the non-singular isothermal ellipse, the second one is caused by
the ring-like substructure of the degenerate solution. Note that the ring is not caused
by one particular generator, but is a combined effect.

As an aside, even when it is impossible to rescale the sources, it may still be possible
to introduce ring-shaped features. One only needs a ring-shaped region without data
points. A circularly symmetric distribution which is zero everywhere but which fluc-
tuates in the ring-shaped region in such a way that the total mass inside the region
is zero as well, can simply be added to the original, again thanks to equation (2.16).
Doing so can obviously introduce a ring-like feature in the mass distribution of the
lens. While such a construction only affects the deflection angles in the ring-shaped
area, we shall see further on that such a modification may have an effect on the time
delays in the system.
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Figure 3.11: Left panel: the degenerate solution which gives rise to the source and image
planes shown in figure 3.10. Several ring-like features can be seen, the most prominent one
being centered on (−8,−8). Right panel: density profile as seen from (−8,−8). Apart from
the peak of the non-singular isothermal ellipse, one can clearly see a ring-like feature.

3.4.2 Different scale factors

Using the generalization of the mass sheet degeneracy that was just shown, the sources
are still rescaled with the same factor. But it is also possible to construct a degenerate
solution which allows one to scale each source with a different factor. To illustrate
this, we shall be using the situation shown in the left half of figure 3.12: an elliptical
mass distribution causes two sources to produce three images each. In what follows,
only source 1 will be rescaled with a certain factor, in a subsequent step the other
source can be rescaled in a similar way, using a different factor. Focusing on only one
source and temporarily forgetting about the other, the source can be rescaled using
the classic mass sheet degeneracy:

Σ1(θ) = λΣ0(θ) + (1− λ)Σcr(z1),

in which an initial mass distribution Σ0 is replaced by a new one, Σ1, and the critical
mass density for the source at redshift z1 is used. For simplicity, an infinite mass sheet
was used here, but in principle this can be replaced by a mass disk or even a more
complex mass distribution which has the same effect as a mass sheet for source 1.

This means that to the initial Σ0, a mass distribution Σadd was added to obtain Σ1:

Σadd(θ) = Σ1(θ)− Σ0(θ) = (1− λ) [Σcr(z1)− Σ0(θ)] .

Taking the second source back into account, it is clear that adding Σadd to the original
mass distribution will cause the images of one source to correspond to a scaled version
of that source, but the effect on the second source is less clear.

However, suppose it is possible to modify Σadd so that the deflection it causes for
source 1 is unaltered, and no deflection is caused at the location of the images of

51



Chapter 3. Lensing degeneracies

source 2. In that case, after adding Σadd, the images of source 1 would correspond
to a scaled version of that source, and the images of source 2 would still be projected
onto the same source area. Furthermore, since

α̂add(images of source 2) = 0

and since

Σadd ∝
∂α̂x,add
∂θx

+
∂α̂y,add
∂θy

this implies that

Σadd(images of source 2) = 0.

If one then constructs Σ1 = Σ0 + Σadd, in general one finds that

Σ1(images of source 1) = λΣ0(images of source 1) + (1− λ)Σcr(z1)
Σ1(images of source 2) = Σ0(images of source 2)

There still remains the question of how to modify Σadd so that it does not produce
a deflection at the location of the images of source 2. This can be done by using a
large number of the monopole basis functions we met earlier. If none of these overlap
with the images of source 1, the deflection there will be unaltered. To make sure that
the deflection angle at the location of the images of source 2 vanishes, appropriate
weights of these basis function must be sought. An example of this approach can be
seen in the right half of figure 3.12. In this example, the weights were determined by
a genetic algorithm.

Another approach can be used as well. From the discussion above, it is clear that
the final version of the mass distribution Σadd should produce a specific value of the
deflection angle α̂add at the location of the images of source 1. On the other hand,
at the location of the images of source 2, no deflection should be produced. We
therefore know the deflection angle at specific locations, and at other locations the
deflection angle can take a large number of values, the only real constraint being that
no additional images should be produced. Interpolating a deflection field in such a way
that ∇× α̂add = 0, or equivalently that the deflection originates from a scalar lensing
potential ψ̂, is precisely what is done in the LensPerfect lens inversion procedure [19].
Using a similar interpolation procedure to determine α̂add and therefore Σadd, yields
the result shown in figure 3.13.

3.4.3 General considerations

It is clear from the discussions above that these generalizations of the mass sheet
degeneracy necessarily introduce substructure into the mass distribution. If, in the
most general case, source 1 is rescaled by a factor λ1 and source 2 by λ2, for the
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Figure 3.12: Left half: an elliptical mass distribution causes two sources at different redshifts
to each produce three images. Right half: a modified version of the mass distribution, using
the monopole functions defined earlier, causes the first set of images to correspond to a
rescaled version of the source. The images of the second source still correspond to a source
of the same size.
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Figure 3.13: Left panel: another mass distribution which causes a scaling effect of source 1
(top). Because the difference with the original mass distribution is hard to see, the bottom
half shows the difference Σadd between the new and original mass maps. Right panel: this
modified mass map also causes source 1 to be rescaled, while not changing the size of source 2.
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projected density this implies:

Σ1(images of source 1) = λ1Σ0(images of source 1) + (1− λ1)Σcr(z1)
Σ1(images of source 2) = λ2Σ0(images of source 2) + (1− λ2)Σcr(z2).

Note that this is precisely what happens by construction in the case of identical scale
factors, as shown by equation (3.5) and in the right panel of figure 3.7. With respect
to this degeneracy, the density at the location of the images is directly related to
the source scale. Substructure that is introduced at other locations can always be
manipulated using the monopole degeneracy, but this cannot change the density at
the location of the images themselves.

The effect on the magnification is obvious, and the same as in the classic mass sheet
degeneracy. The source area is again scaled with a factor λ2, possibly different for
each source in the most general version, so the magnification of each image of that
source changes from µ0 to µ1 = λ−2µ0. The effect on the time delay is less clear than
in the case of the simple mass sheet degeneracy, but there clearly is an influence since
the overall lens potential changes. Precisely how this changes is more complex.

3.5 Magnification and time delay information

In the previous sections it was shown how the monopole degeneracy can be used to
redistribute the mass in between the images, and how the mass sheet degeneracy – or
its generalizations – is responsible for changing the size of a source. Now suppose that
a particular model for an observed gravitational lens has been found, but that new
measurements have shown that the predicted time delays or image brightnesses are
wrong. In this section it will be shown how the existing mass map can be modified
to yield the correct results, further illustrating lens degeneracies.

For a general lens, the deflection angle is produced by a scalar function ψ̂:

∇ψ̂(θ) = α̂(θ),

which for a circularly symmetric lens, by using equation (2.16) for the deflection angle,
can be seen to give the relation

∂ψ̂

∂θ
=

4GM(θ)
c2Ddθ

.

If ψ̂(θ) or M(θ) is known, it is straightforward to obtain the other quantity using the
relations:

ψ̂(θ) =
4G
c2Dd

∫ θ

0

M(θ′)
θ′

dθ′ and M(θ) =
c2Dd

4G
θ
∂ψ̂

∂θ
. (3.7)

Suppose one would like to modify the time delay at one of the images. Recalling the
discussion about the time delay function (2.12), it is clear that the images of a source
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Figure 3.14: Left panel: a lens potential based on this profile can produce a different time
delay at one of the image locations. One only needs to make sure that the non-constant part
does not overlap with any of the images. Right panel: the non-constant part of the potential
shown in the left panel can be modeled using this function f(x).

lie at the positions where ∇t = 0, and at these positions the time delay function can
be used to predict time delays. If it is possible to modify the lens potential in such
a way that the image locations are not affected, but the time delay is, the goal of
modifying the time delay at one of the images will be reached.

If a circularly symmetric potential ψ̂ shown in the left panel of figure 3.14 is added
to the original potential, centered on one of the images, and in such a way that the
non-constant part does not overlap with any of the images, the time delay at the first
image will be changed. Since α̂ = ∇ψ̂ and ψ̂ is constant at the image locations, the
deflection field will not be changed there, which means that the same images will still
be predicted. Furthermore, because of the extra potential difference ∆ψ̂ at one of
the images, the time delay there will be modified. Specifically, if the time delay there
should be altered by a value ∆t, equation (2.12) shows that

∆ψ̂ =
c∆t

(1 + zd)Dd
.

The non-constant part of this ψ̂(θ) profile can be modeled by the dimensionless func-
tion f(x) where

f(x) = 6x5 − 15x4 + 10x3,

which is shown in the right panel of figure 3.14. The lens potential can then be
described by:

ψ̂(θ) =


0 θ ∈ [0, θ1]
∆ψ̂ f

(
θ−θ1
θ2−θ1

)
θ ∈ [θ1, θ2]

∆ψ̂ θ ∈ [θ2,∞]

.
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Figure 3.15: Left panel: a circularly symmetric lens potential based on this profile will,
when centered on one image, change the predicted magnification there as it has non-zero
curvature at the center. Right panel: the non-constant part of the profile in the left panel
can be modeled by the function g(x) (see text). The curvature in the origin can be controlled
by the parameter w.

From equation (3.7), the total projected mass inside θ1 and outside θ2 is zero; in the
interval [θ1, θ2] the total mass profile needed to modify the time delay is given by:

M(θ) =
c2Dd

4G
θ

θ2 − θ1
∆ψ̂

df
dx

(
θ − θ1
θ2 − θ1

)
.

Something similar can be done to change the predicted magnification at the location of
a specific image. Remember from the discussion in section 2.6 that it is the curvature
of the lensing potential at the location of an image which determines the magnification.
If it is possible to change the curvature at one of the image sites, without affecting the
deflection angle there, the same image location will be predicted but the magnification
will be changed. By adding the circularly symmetric potential from the left panel of
figure 3.15 to the existing potential, centered on the image of which the magnification
should be changed, this can be accomplished. The non-zero curvature in the origin
will modify the magnification; the zero first derivative makes sure that the deflection
angle is not changed at the image location. One then still has to make sure that
the area of width ∆θ does not overlap with any of the other images, otherwise the
deflection field will be changed there and different image locations will be predicted.

The non-constant part of such a potential can be modeled by the function g(x), in
which

g(x) =
(

6− w

2

)
x5 −

(
15− 3w

2

)
x4 +

(
10− 3w

2

)
x3 +

w

2
x2

and which has a dimensionless curvature w in the origin. A plot of this function for a
few values of w can be seen in the right panel of figure 3.15. For w = 0 this obviously
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reduces to the function f(x) from before. The lens potential ψ̂ is then given by

ψ̂(θ) =
{

∆ψ̂ g
(
θ

∆θ

)
θ ∈ [0,∆θ]

∆ψ̂ θ ∈ [∆θ,∞]
.

The curvature in the origin is given by

ψ̂′′(0) =
∂2ψ

∂θ2
(0) =

∆ψ̂
∆θ2

w,

so if the desired magnification and curvature of the existing lens potential are known,
the necessary ψ̂′′(0) can be calculated and ∆ψ̂, ∆θ and w can easily be chosen to
provide the necessary curvature.

Note that even for a fixed value of w, there still exists a further degeneracy between
∆ψ̂ and ∆θ. To obtain a certain value of the curvature ψ̂′′(0), a smaller value of
∆ψ̂ then implies a smaller value of ∆θ. Only a small change to the existing lensing
potential is therefore necessary to influence the curvature and hence the magnification
at a specific location.

3.6 Conclusions

This chapter should have made it clear that degeneracies plague lens inversions, as
one can easily construct another mass map compatible with the observations, once
one solution has been found. This is of course to be expected, as lens inversion is an
ill-posed problem.

The monopole degeneracy as described earlier, allows one to create degenerate solu-
tions by shifting mass in between the images. Using the information in the images
alone, this degeneracy is impossible to break, as each degenerate version predicts the
exact same observable properties of the images. In a later chapter we shall see a very
nice example of this: in an inversion of the cluster lens Cl 0024+1654 an interesting
feature was present, but since this was located in between the images, it was readily
removed using this degeneracy and cannot be considered a true feature of the mass
map (or at least, not with any certainty). Because of this degeneracy the best one can
hope is to obtain constraints on the projected density at the location of the images
themselves. This automatically illustrates the need for lensing systems containing
many images from many sources.

The mass sheet degeneracy on the other hand does change the density at the loca-
tion of the images themselves, and therefore introduces some substructure. Since the
monopole degeneracy cannot change the mass density at the images, it is actually
the degree of smoothness one wishes the solution to have that breaks the degeneracy
– at least when multiple sources are present. The degree of smoothness can depend
implicitly on the method used to perform the inversion, e.g. in parametric techniques
or procedures using overlapping, smooth basis functions, or explicitly as prior infor-
mation or a regularization scheme, e.g. in the PixeLens method [1]. It is interesting
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that neither terms mass sheet degeneracy or steepness degeneracy are very correct in
the most general version, as is shown in figure 3.13. Perhaps the name of source scale
degeneracy would be more appropriate.

The discussion in this chapter was from the viewpoint of strong lensing data, but the
mass sheet degeneracy is present in weak lens inversions as well. This is because in
practice one does not measure the shear, but the so called reduced shear, a combina-
tion of the shear and convergence. It is precisely this quantity that is invariant under
the mass sheet transformation. However, as was shown by [6], using weak lensing
data it is in principle possible to break the mass sheet degeneracy if individual source
redshifts are available and if sources with a rather high distortion are included. An-
other way to break the degeneracy is to add information about the magnification, for
example by using source number statistics [12] or Type Ia supernovae observations
[43]. Additional information about stellar dynamics in the gravitational lens can also
help to break the degeneracy [62]. Since the mass sheet degeneracy rescales the time
delay surface, time delay measurements can be used to break it as well.

It was also shown that it is relatively straightforward to modify the predicted time
delays. This does not even change the density at the location of the images themselves.
The procedure discussed here introduces a ring-shaped feature in between the images,
but this can of course be redistributed using the monopole basis functions.

The predicted magnification at an image location can also be altered quite easily.
In principle one only needs to make very small changes to the mass distribution to
change the predicted magnification, without modifying the predicted positions of the
images. This is similar to the microlensing problem: in strongly lensed quasars, the
magnification of the images is often different from the expected magnification based
on a smooth lens model. But it is often less clear what kind of modification needs
to be made to ensure compatibility with the observations. A possible explanation
is microlensing by a single star, as this would not modify the image position by a
measurable amount, but could change the magnification factor much. The discussion
above shows that a wide variety of changes to the mass distribution can explain
measurements, so that the scale of the object that causes the deviation from a smooth
model is very hard to establish.

The degeneracies described here may introduce substructure, and therefore degenerate
solutions may predict additional images. This means that the area where no images
can be seen provides some information as well. In the next chapter we shall see how
this so-called null space is used in the proposed inversion method.
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–4–
Gravitational lens inversion

Having discussed lensing theory and the effect of possible degeneracies, the core topic
of this dissertation is now opened: gravitational lens inversion. In this chapter, the
inversion procedure based on genetic algorithms is explained, and is tested using
simulated gravitational lens systems.

4.1 Parametric and non-parametric methods

As explained in the introductory chapter, lens inversion procedures are usually sub-
divided into two categories: parametric and non-parametric methods. In parametric
methods, a model is chosen based upon the observed image configurations or the visi-
ble mass distribution. Because of this, much of the structure in the mass distribution
of the lens is fixed before the actual inversion is applied. The inversion step then
corresponds to finding appropriate parameters for the model, like the ellipticity or
orientation of an elliptical lens model. In non-parametric methods on the other hand,
one tries to avoid making assumptions about the shape of the mass distribution. This
can be done using a large number of basis functions, allowing a wide range of shapes
of the mass distribution.

One can also make the distinction between source plane and image plane based meth-
ods. In source plane based methods, the images of a source are projected back onto
the source plane, and depending on the positions of the images there, a goodness-of-fit
measure is assigned. Note that the uncertainties are measured in the image plane and
must be transformed to be taken into account correctly. As the lens equation works
in this direction, from image plane to source plane, this is a fast method. In image
plane based methods on the other hand, the lens equation is solved: for a suggested
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source position the corresponding image locations are calculated. Solving the lens
equation for a particular source position is in general hard and time consuming, but
is in principle more correct since the number of predicted images can be taken into
account and the uncertainties on the image positions can be used entirely correctly.

Many parametric methods exist, some of the most popular being the GRAVLENS
[53] and LENSTOOL [57][50] packages. Both can use a combination of source plane
and image plane optimization, where a source plane based method is used for speed,
and an image based method can be used for accuracy. The technique used in [114]
uses a cluster scale component to describe the dark matter influence and adds lens
models for the galaxies in a cluster as well. Their technique uses an image plane
based goodness-of-fit, and is used to iteratively identify additional multiple image
systems. One of the earliest accounts of parametric fitting can be found in [28], where
models were fit to the observations of the system Q0957+561 A,B. There are also
methods that use a parametric lens model, but allow the source surface brightness to
be more complex, such as the RingCycle method [58], LensCLEAN [59], LensMEM
[108] and methods derived from them, such as Visibility LensCLEAN [30] and LenTil
[112]. In the work of [9] and subsequent articles a Bayesian technique was used to
obtain a parametric model of the lens, as well as a gridded source shape. The same
authors also investigated using a genetic algorithm to learn about the source shape
[8]. A search for appropriate coefficients in a multipole expansion of the lens mass
distribution was performed in [102].

In the category of non-parametric inversion procedures, the PixeLens method [91]
certainly deserves mentioning. This method uses a lens mass distribution composed
of a large number of square cells, of which the mass densities are determined in such
a way that the image configuration is best explained. The SLAP method [24] uses
basis functions on a dynamic grid, providing better resolution in regions containing
more mass. This method was used to estimate the mass distribution of the cluster
Abell 1689 [25] and was later modified to include weak lensing measurements in the
WSLAP version [26]. The combination of weak and strong lensing data was also done
in [7] and applied to the cluster RX J1347.5-1145. In the works [61] and [106], a
non-parametric correction to a previously established lens potential is generated, to
learn about substructure present in gravitational lenses.

In the realm of non-parametric techniques, one has to choose between optimizing for
the lens potential or for the mass distribution. The advantage of working directly
with the lens potential is that all lens properties can be derived from local properties
of the lens potential. This means that no assumptions have to be made about the
mass outside the area in which the procedure works. Since all mass contributes to the
lens effect, working with the mass density always involves some assumptions about
the region outside of which the inversion method works. On the other hand, making
sure that the mass density does not become negative is straightforward if the mass
density is modeled directly.
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4.2. Inversion method

4.2 Inversion method

The inversion method described below belongs to the non-parametric class of methods.
By using a large number of basis functions for the mass distribution, no assumptions
are made about the mass density of the lens. As will become clear, only minimal
constraints will be used to obtain an acceptable lens model. The method was first
described in [67] and extensions were discussed in [68], [70] and [71].

4.2.1 Outline of the procedure

The reconstruction procedure requires the user to specify a square shaped area in
which the algorithm shall try to recover the mass distribution. The user also needs to
specify the images – these can be extended images or point images – as well as which
images originate from the same source. The angular diameter distances to lens and
sources, or equivalently the redshifts to these objects, are also required input.

In this square shaped area, the mass distribution will be modeled by a large number of
basis functions. The basis functions that were chosen, are projected Plummer spheres,
of which the lens effect was discussed in section 2.8.2. Such a mass distribution was
chosen as a basis function since it is well behaved at all radii and has a finite total
mass. For a mass distribution that consists of a number of Plummer mass distributions
of total mass Mi, with width parameter θP,i and with symmetry center on θs,i, the
projected mass distribution is easily seen to be:

Σ(θ) =
1

πD2
d

N∑
i=1

Mi

θ2P,i(
|θ − θs,i|2 + θ2P,i

)2 .

Since the deflection angle for a single Plummer sphere is known, equation (2.15)
becomes:

α̂(θ) =
4G
c2Dd

N∑
i=1

Mi
θ − θs,i

|θ − θs,i|2 + θ2P,i
,

which, knowing the projected potential of a single circularly symmetric mass distri-
bution, can easily be seen to originate from:

ψ̂(θ) =
2G
c2Dd

N∑
i=1

Mi ln
(
|θ − θs,i|2 + θ2P,i

)
.

For the magnification or shear components, one needs the derivatives of the deflection
angle with respect to θ, which yields:

∂α̂i

∂θj
=

4G
c2Dd

N∑
k=1

Mk

 δij

|θ − θs,k|2 + θ2P,k
−

2(θi − θis,k)(θj − θjs,k)(
|θ − θs,k|2 + θ2P,k

)2

 .
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Chapter 4. Gravitational lens inversion

For clarity, the indices referring to vector components have been written in superscript
in this last equation.

The θ positions for which such quantities will be calculated – the image positions for
example – are fixed before the actual inversion starts. This means that the deflection
angle, its derivatives and the lens potential are all linear functions in the masses Mi

of the basis functions, so that the relevant equations can be written in matrix form.
For the lens equation, as was already noted in [24], this goes as follows. A given set
of R points in the lens plane, θk, k = 1 . . . R, is related to a corresponding set of R
points in the source plane. Let Θ be a vector of length 2R, containing the coordinates
of the points in the image plane, in which x and y components alternate. Similarly,
B is a vector of length 2R which will contain the coordinates of the corresponding
points in the source plane. The masses Mi of the Plummer distributions that make
up the mass distribution of the lens are stored in an N dimensional column vector
M . The lens equation can then be rewritten as

B = Θ− γM,

with γ a 2R×N matrix whose components are given by:

γ2k−1,l =
Dds

DdDs

4G
c2

(θk − θs,l)x
|θk − θs,l|2 + θ2P,l

γ2k,l =
Dds

DdDs

4G
c2

(θk − θs,l)y
|θk − θs,l|2 + θ2P,l

.

The problem of inverting a gravitational lens system is thus transformed into the
problem of finding the vector M , given the matrices Θ and γ. By requiring the Mi

to be positive, one automatically obtains a mass distribution which is non-negative
in the entire region under consideration.

Apart from the Plummer basis functions, an infinite sheet of mass can also be present
as a basis function, depending on the choice of the user starting the inversion proce-
dure. This can be useful if enough data are present to break the mass sheet degener-
acy. If one only considers the center of a cluster, a non-negligible density offset may
be present, which otherwise would need to be modeled by a large amount of basis
functions. Section 4.6.3 contains an illustration of this.

Inverting the gravitational lens observations then corresponds to finding appropriate
weights Mi of the Plummer basis functions, and possibly a suitable weight of the mass
sheet basis function. Searching for these weights is done using a genetic algorithm,
possibly even a so-called multi-objective genetic algorithm. Before describing this in
section 4.2.3, we shall first discuss how the Plummer basis functions are arranged in
the square shaped area defined by the user starting the inversion procedure.

4.2.2 Adaptive grid

As was already described in the previous section, the procedure starts with a square
shaped area, which the user deems large enough to encompass the projected mass
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4.2. Inversion method

density of the lens. At first, this area in the lens plane is uniformly subdivided in
square grid cells. At the center of each grid cell, a Plummer mass distribution is
positioned. The width of each Plummer distribution is set proportional to the side of
its grid cell. We tested which proportionality factor allows to best reproduce a wide
range of mass densities and found that a value of 1.7 yields a good trade-off between
smoothness and dynamic range. The same scale factor was subsequently used in our
lens inversion simulations.

The genetic algorithm then breeds, for this given grid and corresponding weights of
the basis functions, the best solution M (and possibly a suitable weight of the mass
sheet basis function). Given this first approximation of the total mass density, a new
grid is constructed by further subdividing grid cells that contain a large fraction of
the total mass. This way, the new grid will allow a better approximation of the mass
density, without wasting resources on areas which contain little mass. Note that in
this step, the mass in the mass sheet is not considered as it does not contribute to
the structure in the gravitational lens.

With each cell of this new grid a Plummer distribution is associated and the individual
masses are determined by the genetic algorithm, as before. In our implementation,
this procedure of refining the grid is repeated unless the number of grid cells exceeds
a user defined number. In our tests using simulations, increasing the number of basis
functions over one thousand rarely yielded an improved reconstruction. Figure 4.1
illustrates the procedure. At first, a uniform grid is used. With this grid, a first
estimate of the distribution is found and this is used to create a new grid. The figure
shows a few additional mass density estimates on which new grids are based.

4.2.3 Multi-objective genetic algorithms

As was already described in the introductory chapter, with genetic algorithms, one
tries to breed good solutions to a given problem. A central concept is the genome,
which is an encoded representation of a possible solution. Usually, the genome will
encode the parameters of a specific model, in this case the weights of the basis func-
tions.

For a particular genome, there has to be some kind of measure of how adequate it fits
the data. This value is usually called the fitness of the genome. The algorithm starts
with a random set of genomes which together form the initial population. From this
population, a new one will be created using the following procedure:

• For each genome, the fitness is calculated.

• A new set of genomes is created by combining and copying genomes of the
current population. Selection of genomes in this reproduction step should favor
genomes with a better fitness.

• Finally, mutations are introduced in the new population to ensure genetic vari-
ety.

65



Chapter 4. Gravitational lens inversion

(a) Step one (b) Step two

(c) Step three (d) Step four

Figure 4.1: The use of a dynamic grid. The grid spacing is refined in those regions where
individual grid cells contain a large fraction of the total mass of the lens.
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Figure 4.2: Probability distribution when selecting genomes in a population that is 100
genomes large, using a selection pressure parameter β = 2.5.

By repeating this procedure generation after generation, one tries to breed increasingly
better solutions to a problem.

When selecting genomes in the process of creating a new population, a key ingredient
of the genetic algorithm is to apply some form of selection pressure: genomes which
are deemed more fit, should have a higher probability of creating offspring. This
can be achieved by ranking the genomes according to their fitness measures and by
assigning a higher selection probability to the genomes with a more favorable rank.
To be specific, let s be the population size and suppose the genomes have been sorted
according to their fitness measures. The probability of selecting a genome x is then

p(x) =
1 + β

s

(
1− x

s

)β
,

where the parameter β controls the selection pressure. The algorithm described here
typically uses a setting of β = 2.5, but somewhat lower values may be helpful if the
genetic algorithm seems to easily get stuck in a non-optimal solution. Figure 4.2
shows this probability distribution for β = 2.5 and population size s = 100.

Other selection schemes exist, but this one has the advantage that the precise fitness
value does not matter; one only needs to be able to tell if a genome is better than
another one. After introducing some random mutations to ensure genetic diversity,
the newly created population replaces the old one and the procedure is repeated until
a stopping criterion is fulfilled. For an excellent introduction to the use of genetic
algorithms in an astrophysical context, the interested reader is referred to [17].

In tests using lens inversion it was often found that it would be advantageous to use
more than one fitness criterion. For example, one would not only like the reconstruc-
tion to be compatible with the observed images, one would also like the reconstruction
not to predict the existence of additional images. Stated differently, in some cases
the area in which no images are observed, i.e. the null space, can effectively be used
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Chapter 4. Gravitational lens inversion

as well. To be able to use additional constraints, one has to be able to quantify how
well a solution performs with respect to these constraints, which yields a set of fitness
values. The genetic algorithm as described above only uses a single fitness measure,
so one solution would be to combine all these fitness values into one number. In doing
so, weight factors can be used to combine them, effectively stating how important
each fitness measure is. While this is a possible approach, it would require the user
to specify the weights to be used, and may result in a trial-and-error method to find
appropriate weight factors. Furthermore, using a specific set of weight values will
automatically bias the path followed in the search space as the optimization routine
progresses.

Fortunately, there is no need to specify a weight factor. Genetic algorithms are
excellent solvers of multi-objective or multi-criterion optimization problems. Below,
some key concepts are introduced. The interested reader is referred to [23] for an
in-depth treatment of this subject.

In a multi-objective genetic algorithm a genome has several fitness measures, each
one related to a specific aspect of the optimization problem. A genome is said to
dominate another genome if two criteria are met:

1. it is not worse in all fitness measures, and

2. it is strictly better in at least one fitness measure.

Using this concept of dominance, one can identify in a population the members which
are not dominated by any other genome, resulting in the so-called non-dominated set.
The concept of a non-dominated set is used to devise a new ranking scheme, as there
is no longer a single fitness criterion to base the ranking procedure on. First, the
non-dominated set of the entire population is calculated. The genomes in this set will
receive the highest rank. After removing this set from the population, a new non-
dominated set is identified and these genomes receive the next-to-highest rank. The
procedure is repeated until all genomes of the population are processed. Afterwards,
the genetic algorithm can proceed as before. This procedure is often referred to as
non-dominated sorting.

When there are conflicting objectives, there is a whole range of optimal solutions:
the Pareto-optimal front. There exist procedures to preserve a certain amount of
diversity in the population, allowing the Pareto-optimal front to be well sampled by
the genetic algorithm. In our specific case however, the objectives are not conflicting
and no further modifications are required.

The genetic algorithm may be instructed to use elitism. In this case, in a single-
objective genetic algorithm, the best trial solution in one generation is automatically
copied to the next. In a multi-objective setting, one or a few genomes of the current
set of best solutions can be introduced into each generation. This may help to obtain a
better and faster convergence, but on the other hand it may also evolve the algorithm
towards a sub-optimal solution identified early on in the search.

68



4.3. Genetic algorithm details

4.2.4 Finalizing and averaging

The dynamic grid method has one disadvantage: regions containing only a relatively
small portion of the total mass will not be subdivided into smaller grid cells. As
a result, the basis functions in such regions may lack the resolution needed for an
accurate reconstruction. To overcome this problem, a finalizing step can be added to
the procedure. A uniform grid of 64 by 64 grid cells for example, is then created and
the associated basis functions are used as small corrections to the current estimate of
the mass distribution. Because they are corrections, the weights of the basis functions
are allowed to be negative. The genetic algorithm again determines appropriate values
for these weights.

To create a single candidate solution, first the dynamic grid method is used to create
a first good estimate of the mass distribution and afterward, small-scale corrections
are introduced in the finalizing step. This entire procedure is then repeated a number
of times, each time yielding a somewhat different mass distribution. One can then
calculate the average mass distribution to inspect the features which are common in
all reconstructions, and one can calculate the standard deviation to check in which
regions the individual solutions disagree. Averaging the solutions will also increase
the smoothness of the retrieved mass density.

Being able to create an averaged solution is an attractive feature of our approach, but
it would be of little use if the resulting mass density would not be a good solution
of the inversion problem (or a worse solution than the individual solutions). Using
simulations (see section 4.6), we found that the averaged solution is indeed also a
good solution, with a very high fitness, and in many cases even does a better job
than many of the individual solutions. This is because the random mutations that
occur during the reproduction process of the genomes, cause the best solution to
oscillate around the “true” solution. Since averaging a set of solutions suppresses
these random fluctuations, the averaged solution can be a more faithful realization of
the true solution than any of the individual solutions.

4.3 Genetic algorithm details

The actual inversion of a gravitational lens system comes down to determining the
weights of the basis functions, so it is clear that the genetic algorithm lies at the core
of the inversion procedure.

4.3.1 Genome and basic fitness measure

The goal of the genetic algorithm is to determine good values for the masses of the in-
dividual Plummer distributions which are laid out according to a specific grid. There-
fore, the genome in our genetic algorithm will encode the masses of these Plummer
distributions.
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Figure 4.3: Left panel: the ray-trace procedure has been used to calculate the images of a
circular source, being lensed by an elliptical mass distribution. Center panel: if the images
of the left panel are projected back onto the source plane using the correct lens equation,
a single, consistent source shape is recovered. This is only natural, since this source was
used to create the different images in the first place. Right panel: if on the other hand, an
incorrect lens equation, or correspondingly an incorrect mass distribution, is used to project
the images back onto the source plane, each image will occupy a different region in the source
plane. As the situation in the center panel is clearly superior, this suggests that the overlap
between the back-projected images can be used to base a fitness measure on.

For a specific set of basis function weights, we need to define a way to evaluate how
good the corresponding solution is. Since we are working in the strong lensing regime,
it is assumed that the gravitational lens system produces multiple images of one or
more sources. Figure 4.3 illustrates the basic idea to judge how good a trial solution
is. Suppose that a specific lens causes the images of a source which can be seen in the
left panel of this figure. If one would project these images back to the source plane
using the correct lens equation, one would find that back-projected images of the same
source will overlap perfectly, as can be seen in the center panel. However, if one were
to use an incorrect gravitational lens to project the images back onto the source plane,
a situation like the one shown in the right panel of this figure could arise. There, the
back-projected images clearly do not correspond to a single, consistent source shape.
For this reason, the degree in which back-projected images of the same source overlap
will be used to determine how good the suggested solution actually is.

The basic way this is implemented is as follows, more details can be found in sec-
tion 4.4. For a given solution of the mass distribution of the lens, the images of a
single source are projected back to the source plane. The areas occupied by each
image are surrounded by rectangles: two examples are shown in Figure 4.4. Corre-
sponding corners of the rectangles are connected with imaginary springs. Consider
two rectangles, each enclosing a back-projected image. For corresponding corners, the
distance is calculated in absolute units, for example in units of arcminutes or arcsec-
onds. In a previous step, a length scale was calculated as the average of the lengths of
the sides of all the rectangles belonging to a specific source. The distance between two
corresponding corners is then divided by this length, yielding a dimensionless distance
d. The “potential energy” for this pair of corners is then simply d2. Repeating this
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4.3. Genetic algorithm details

Figure 4.4: Evaluating the fitness of back-projected images. In the left panel, on an absolute
scale, the value of the potential energy of the imaginary springs connecting the rectangles
that enclose the back-projected images of a single source is higher than in the situation
depicted in the right panel. However, the back-projected images in the left panel overlap,
unlike those in the right panel. We therefore scale the rectangles enclosing the back-projected
images of a single source with the mean size of the rectangles when calculating the fitness
value.

for the other three corners and adding together the energies then gives the potential
energy of these two rectangles. For a specific source, this procedure is then done for
all pairs of back-projected images and the sum of these potential energies is then the
potential energy contribution of this source. The fitness value of a given lens solution
is the sum of the potential energies of all sources. It is important to take into account
the scaling of the rectangles when calculating the potential energy values. Compar-
ing the left and right parts of figure 4.4, it is clear that the left situation definitely
corresponds to a better overlap, while on an absolute scale the potential energy of the
right situation will be the lower one. For this reason, we express distances between
corners of rectangles relative to the size of the rectangles, or, in other words, relative
to the size of the source.

As was mentioned above, the genome represents the masses of the individual Plummer
distributions. To be more precise, the genome only represents the relative contribution
of each Plummer distribution: each Plummer mass is represented by a dimensionless
number between 0 and 1000. These numbers are stored in the vector M and the
matrix product

Θ′ = γM (4.1)

is calculated. For the dimensionless masses to be converted into real masses, the
vector M needs to be multiplied with a factor λ, bringing the lens equation in the
form

B = Θ− λΘ′. (4.2)

Since Θ and Θ′ are constant column matrices, it is an easy and computationally
inexpensive task to find, for a given M , the factor λ that maximizes the fitness, or, in
other words, for which the back-projected images of the sources coincide best. The
value of the fitness of that particular situation is then considered to be the fitness of
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Figure 4.5: Reproduction and mutation of genomes. See text (section 4.3.2) for explanation.

the genome.

This search for an appropriate scale factor λ for the so-called positional fitness is
always done, even when multiple fitness measures are being used. For example, when
both a positional fitness measure and null-space fitness measure are being used (to
avoid the prediction of extra images), the positional fitness alone is first used to
determine the scale factor λ and using the situation described by this scale factor, the
null-space fitness measure is calculated.

4.3.2 Cross-over and mutation

In our implementation, to obtain a new population, some genomes are copied from
the original population while others are obtained by merging two genomes. These
processes are called cloning and cross-over or recombination, and are intended to
mimic the effects of asexual and sexual reproduction respectively.

The procedure of merging two genomes consists of a few steps which are illustrated
in figure 4.5. At first, the values between 0 and 1000 of each genome are multiplied
with their best λ value to obtain the true Plummer masses they represent. Then, for
each Plummer distribution, the procedure selects at random the mass from one of
the two genomes. In genetic algorithm literature this is often referred to as uniform
cross-over. Finally, these values are rescaled in such a way that the largest number
is 500.

When the new population is complete, mutations are introduced in some genomes.
In early generations, some values are simply changed to a random number between
0 and 1000. It is for this reason that the previous step rescaled the Plummer masses

72



4.4. Fitness measures for lens inversion

to a maximum value of 500. This way, a random change of the value will also allow
a considerable increase in mass for that Plummer distribution.

When the best fitness values of successive generations start to converge, a new mu-
tation rule is adopted. In this case, random numbers in the interval [−200, 200] are
generated and added to some of the genomes’ values. Resulting values which are neg-
ative or larger than 1000, are set to zero or 1000 respectively. The first mutation rule
makes sure that a large range of mass densities can be inspected. When the algorithm
starts to converge near a good solution, the second mutation rule assures that the
algorithm can more closely approach the best solution. If desired, extra steps can
be introduced where even smaller mutations are introduced, but this tends to change
very little to the overall mass distribution.

4.3.3 Evolution

It is instructive to see how the genetic algorithm evolves towards a solution. Fig-
ures 4.6 and 4.7 show the mass distribution corresponding to the best genome in a
population at various stages, or generations, in the genetic algorithm. Also shown are
the input images projected back onto their source planes. In this example, the only
requirement was that the back-projected images should overlap, so the situation in
the source plane is used to judge how well a trial solution is. In essence, the algorithm
tries to pull the back-projected images of a source towards each other, in which it is
clearly successful: as the genetic algorithm advances, images of a each source start
to overlap increasingly well. At the same time, the corresponding mass distribution
starts to show similarity to the true mass distribution, which is shown in the left panel
of figure 4.12.

It is also clear from these figures that most of the structure of the resulting mass map
is determined relatively early on in the process. The final stages will definitely cause a
better overlap in the back-projected images, as can be seen by comparing generation
100 to generation 2000, but the corresponding changes in the mass distribution are
minimal.

4.4 Fitness measures for lens inversion

The weights stored in a genome will determine what the mass distribution looks like,
and will determine the deflection angle, its derivatives and the lens potential. This
information can be used to calculate the back-projected positions of the images in
the source plane, the magnification factors etc., and it is based on this situation that
fitness measures are assigned. Below, different fitness measures that can be used,
depending on the information at hand, are described.
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(a) Generation 1
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(b) Generation 10
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(c) Generation 20
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(d) Generation 30
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(e) Generation 40
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(f) Generation 50

Figure 4.6: This figure shows the mass distribution and back-projected images corresponding
to the best genome in a population at various stages in the genetic algorithm. This allows
one to look at the evolution of the genomes that is taking place. Shown here is the best
genome in generation 1, 10, 20, 30, 40 and 50.
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(a) Generation 100
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(b) Generation 200
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(d) Generation 700

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

Y
 (

A
rc

m
in

)

X (Arcmin)

(e) Generation 1000
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(f) Generation 2000

Figure 4.7: Continuation of figure 4.6. Shown here is the best genome in generation 100,
200, 400, 700, 1000 and 2000.
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Figure 4.8: When different images of an elliptical source are projected back onto the source
plane, the situation shown has a good fitness value, even though the images do not overlap
well. This problem is easily resolved by allowing the enclosing rectangles to be rotated.

4.4.1 Positional fitness

The basic idea behind the so-called positional fitness measure was already encountered
earlier. Since the images originate from a single source, when back-projected onto the
source plane, the images of each source should overlap to form a consistent source
shape.

Extended images

For extended images, the images of each source are projected onto the source plane.
There, rectangles of which the sides are parallel to the coordinate axes are used
to surround the images, and the distance between corresponding corners of these
rectangles are used to calculate the overlap between the images. In doing so, the
average size of the rectangles is used as the length scale to determine the distance.
This makes sure that the genetic algorithm does not evolve towards a solution which
over-projects the images. This can appear to be a better solution on an absolute scale,
while on the size of the source itself the overlap is actually worse (see figure 4.4).

If few sources are present, it is possible that one encounters the following problem
if this method is used, as is illustrated in figure 4.8. Because the rectangles used to
determine the degree of overlap in the back-projected images are aligned with the
coordinate axes, crossing elliptical shapes will be interpreted as overlapping images.
If there are a large number of multiply imaged sources and hence a large number of
independent constraints, this problem does not manifest itself. The solution to the
problem is clear: the rectangles which are placed around the back-projected images
should be rotated until they are aligned with their respective images. This can be
done in an efficient way using the “rotating calipers” algorithm [98].
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4.4. Fitness measures for lens inversion

If inside each image several features can be identified which originate from the same
source features, these image points can be identified as extra constraints. The prin-
ciple is the same as before: connect the corresponding features with virtual springs,
and the potential energy is used as as fitness measure. Here also, the estimated source
size is used as the distance scale.

Point images

The original algorithm was designed to work with extended images. As is clear from
the discussion above, this yields a natural scale size which can be used in determining
how well the back-projected images overlap. However, in many studies (e.g. [10], [38]
or [72]) point-like information is provided instead. For this reason, it would certainly
be practical if this information could be used directly.

Unfortunately, when using point like images, the natural scale size which can be used
to calculate the overlap of the images is no longer present. As shall be illustrated in
section 4.6, the following approach seems to work very well. First, all the point-like
images are projected back onto their source planes. Then, the size of the rectangle
(again aligned with the coordinate axes) which encloses all these back-projected points
is sought, and this is used as the length scale in measuring the distances between
points originating from the same source. Using such a length scale not only makes
the measure independent of an absolute scale size, it also prevents a general over-
projection of the images. This would scale the source planes as a whole and therefore
would automatically reduce the fitness value if an absolute scale is used.

4.4.2 Magnification information

It is possible that in an extended source there are features that effectively behave
as images from a point source. Although the magnification is well described by the
relation between source size and image size, the precise magnification may differ at
the location of these point-like features. A typical example is a quasar-image as the
point-like image, embedded in an image of its host galaxy.

Although the discussion in the chapter about degeneracies should have made it clear
that such magnification information does not tell much about the overall mass distri-
bution, it may be that for some reason one would like the model to correctly reproduce
the brightnesses of the point-like images. In any case, adding extra information may
help to find a valid reconstruction, since it will lead to a different exploration of the
search space.

Because a consistent source shape has to be found when the images are projected
back onto the source plane, the back-projected brightnesses of the point-like images
should also be the same. Of course, to project these brightness values back onto the
source plane, the magnification value at the position of the image has to be used. One
can then compare the brightnesses of these back-projected images as well, and use
them as a height value. Instead of using two-dimensional springs to base the fitness
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Chapter 4. Gravitational lens inversion

Figure 4.9: Back-projected images are surrounded by rotated rectangles and placed at a
height corresponding to the maximal brightness values of the images. Corresponding corners
are connected with virtual springs (indicated by thick dotted lines) and the potential energy
of the situation is used as the fitness measure. This way, reconstructed sources will also
overlap in the brightness domain.

measure on, in this case three-dimensional ones are used. Figure 4.9 illustrates this.

4.4.3 Null-space

The positional fitness measure described above makes the genetic algorithm evolve
towards a solution which causes the image regions to be back-projected onto the same
area in the source plane. However, no measures are taken to prevent other regions in
the image plane from being projected onto the same area in the source plane as well. If
that were the case, running the ray-trace procedure from before on the reconstructed
lens and sources would clearly predict additional images, as is illustrated in figure 4.10.

One possible solution to avoid these spurious images, is to impose some kind of prior on
the lensing mass. For example, one could modify the fitness criterion to favor smoother
mass distributions. Undoubtedly, this would reduce the number of extra images since
smoother mass distributions have less complex caustic structures. However, this goes
against the spirit of our endeavor, which is to find out how much information can
be retrieved non-parametrically from lensing systems, using only the information at
hand.

In order to avoid introducing this kind of bias in the generated solutions, a different

78



4.4. Fitness measures for lens inversion

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Y
 (

A
rc

m
in

)

X (Arcmin)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Y
 (

A
rc

m
in

)

X (Arcmin)

Figure 4.10: Left panel: images generated by two sources. The images of one of the sources
are surrounded by rectangles. The critical lines corresponding to the distances to each source
are visible as well. Right panel: the algorithm which takes only the positional fitness into
account can easily produce solutions which cause the back-projected images to overlap well.
However, the reconstructed sources and lens in general can cause undesired images to be
produced, as is illustrated in this figure.

approach is used. Note that there is still much information available that has not yet
been used. Points in the image plane which are not part of an image of the source,
i.e. the null space, provide additional constraints: if they are projected back onto the
source plane using the correct lens equation, none of these points will lie inside the
source area. Otherwise, an image would be visible at that specific location. Using the
null space was already suggested in [24], but there, only null space points adjacent to
the images were used. This can avoid the acceptance of solutions that produce images
larger than the observed ones, but it obviously fails to avoid the extra images.

To incorporate the information in the null space, two schemes have been explored. In
the first one, a regular grid of null space points is generated and the points which fall
inside an input image are removed. To avoid generating images which lie relatively
far from the other images, and thereby generate more mass than is necessary, the
area in which the null space points are generated should be chosen large enough, i.e.
somewhat larger than the area of the images themselves. After projecting the images
back onto the source plane, their envelope is calculated. This is the smallest convex
polygon enclosing all the back-projected points, and is used as the current estimate of
the source shape. Next, each point in the null space is projected back onto the source
plane and the number of points which lie inside the reconstructed source are counted.
Clearly, one would like this count to be as low as possible, since our objective is to
remove the extra images. Note that by only considering a discrete number of points
in the null space, it is possible that small images are generated which lie in between
null space points.
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Instead of simply using points, one can also divide the null space into a number of
small triangles, similar to the approach in [4]. When these are projected back onto the
source plane, for each triangle the amount of overlap with the reconstructed source
is calculated. The corresponding area of the triangle in the image plane is then used
as this triangle’s contribution to the null space fitness measure. Again, this number
should be as low as possible to avoid generating extra images. The advantage of
this method is that it becomes easier to avoid small undesired images, at the cost of
increased computational complexity.

A small variation of this scheme was implemented to be able to include the null space
fitness measure in the case that one only has point-like images. While in the previous
case, the area in which images could be seen, or in principle could be present (e.g.
behind a bright galaxy), is typically excluded from the input grid, the approach here
is not to do this. The point images of a source are projected back onto the source
plane, and again the envelope of these points is calculated. The number of back-
projected triangles of the null space grid that overlap with this shape is then used
as an estimate of the amount of images that the source produces. Again, this value
should be as low as possible.

Using the null-space is a natural way to avoid the introduction of unnecessary sub-
structure in the lens mass distribution, as this typically produces extra images. It
therefore has somewhat the same effect as a prior on the smoothness of the mass
distribution, but is based on a simple observational argument.

4.4.4 Critical lines

In many cases it is obvious that images are not intersected by a critical line, i.e.
that all points of an image have the same parity. This means that when the images
are not merging, one would like to avoid critical lines intersecting the images in the
reconstruction. It is easy to detect if a critical line intersects an image: one simply
needs to calculate the sign of the magnification at each image point. Only if this
is the same for all image points, no critical line intersects the image. In practice,
the magnification signs of neighboring points are compared and the fitness measure
simply counts the number of pairs for which the signs change. Using a fitness measure
which disfavors such solutions can help avoid the genetic algorithm being trapped in
a sub-optimal region of the solution space. While this method worked well in the
case of Cl 0024+1654, applying the same method to SDSS J1004+4112 was far less
successful.

Figure 4.11 illustrates the problem. In the left panel, the black regions mark two
images of a single galaxy, and the points in each image should all have the same
parity. For the constructed solution, the critical lines are shown and they clearly do
not intersect the input images, meaning that no parity changes will be present in an
image and that the solution will not be penalized. When the proposed mass map
is used to project the images back onto the source plane, the situation in the right
panel arises. Clearly, when the envelope of the back-projected images (gray area) is
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Figure 4.11: Illustration of the problem with the original fitness measure to penalize situa-
tions in which a critical line crosses an image. Suppose two input images (left panel, black)
are known not to be intersected by a critical line. The critical lines of a certain trial solution
indeed do not intersect the input images, so all the points in the input images will have the
same parity. However, when the images are projected onto the source plane (right panel),
the envelope of both images is in fact intersected by a caustic, causing a critical line to
intersect the current prediction of the images (left panel, gray).

considered, a caustic does intersect this region and correspondingly when this shape
is used to predict the images, a critical line will intersect an image as can be seen
in the left panel. By not specifying precisely what type of solution one is interested
in, the existing criterion can easily lead the genetic algorithm towards a sub-optimal
reconstruction.

Instead of calculating the magnification information at the location of the images, the
value of the magnification is now calculated on a relatively coarse grid covering the
region of interest. This is used to create a rough estimate of the critical lines, which in
turn are projected onto the source plane to provide an estimate of the caustics. The
intersection of the caustics with the source shape is calculated and the total length is
used as a fitness measure, a lower value indicating a better fitness.

4.4.5 Time-delay information

When time delay information is available for a number of images of a single source, one
would like to use this information to constrain the allowed region in the solution space
even further. By calculating the lensing potential at the image points for which time
delay information is available, in principle equation (2.12) can be used to compare
the predicted time delays with the observed ones. However, to do so, one needs to
know the position β of the source. While the source position may be estimated once
a good overlap of the images has been reached, this is in general not possible while
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the genetic algorithm is still evolving, and certainly not near the start, when the trial
mass maps are still quite random and the images are projected onto very different
regions.

Having tested a number of possible fitness measures, we found that the following one
works very well. Suppose that there are N images θi with corresponding points in
the source plane βi. It is possible that time delay information is not available for
all images, so let us call T the set of image indices for which time delay information
is at hand. The measured time delay between image i and j will be called ∆tobs,ij .
Explicitly stating the β dependence in the time delay function:

t(θ,β) =
1 + zd
c

DdDs

Dds

(
1
2

(θ − β)2 − ψ(θ)
)
,

the fitness measure is then given by:

∑
i∈T

∑
j∈T
j 6=i

N∑
k=1

N∑
l=1

(
[t(θi,βk)− t(θj ,βl)]−∆tobs,ij

∆tobs,ij

)2

. (4.3)

Again, a lower value implies a better fitness of the trial solution.

4.5 Performance considerations

Calculating a reconstructed mass distribution of a lensing system, simulated or real,
requires the evolution of a population of genomes, and for each genome one or more
fitness values should be calculated. For this reason, it can be expected that the
method is relatively slow. To still yield results in an acceptable amount of time (e.g.
a few days), this section describes a number of measures that were taken. Appendix E
provides a more general overview of what was implemented for this dissertation.

4.5.1 Matrix representation

As was described earlier, the equations to calculate the source positions, the deflection
angle derivatives or lens potential values, are linear in the unknown masses Mi of the
Plummer basis functions. These equations therefore lend themselves to a representa-
tion in matrix form. This makes it easy to use optimized functions to calculate the
result of the multiplication of a row of one matrix, with another column vector. In the
implementation of the algorithm this operation and others, like multiplying a vector
with a constant, were implemented using the Intel Integrated Performance Primitives
library1.

When a grid is used to represent the null space or to calculate an approximation of
the critical lines, several quantities may need to be calculated for the same points.

1http://software.intel.com/en-us/intel-ipp/
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For example, if the same null space grid is used for two sources at a different redshift,
the deflection angle at the points in the grid will be the same. When calculating
the positions of these points in the source plane however, different values will be
obtained because of different values of Dds/Ds for these two sources. Since this is a
straightforward rescaling of the deflection angles and the deflection angles themselves
require a more computationally intensive matrix multiplication, it is advantageous to
only calculate the deflection angle once. In the case of the two null space grids, this
would mean that only the points of one grid would be used to calculate the deflection
angle since the second grid simply uses the same points. Care has been taken in the
implementation to make sure that no such duplicate computations occur. This not
only reduces the computational load, but also improves the memory requirements.

4.5.2 Floating point precision

Where real-valued numbers are necessary, the calculations in the genetic algorithm
happen entirely using 32-bit floating point numbers, instead of using the common
64-bit, “double precision” representation. By doing so, not only does the calculation
happen faster, it also requires less memory for storage of the data. Use of 32-bit
floating point numbers is possible by scaling the relevant quantities appropriately.
As none of the fitness measures depend on the exact scale used, for example in the
positional fitness measure the size of the source is used as a length scale, this can
easily be done.

4.5.3 Distributed computation

All the genomes in a population need to have their fitness measures evaluated before
they can be ranked accordingly. The fitness measures of one genome do not depend on
the other genomes, so this fitness calculation allows for parallelism. For this reason,
the genetic algorithm was written in such a way that the fitness computation can
be distributed over any number of CPUs, connected to each other by a computer
network. A simple load-balancing procedure was implemented so that faster CPUs
receive more genomes to evaluate.

4.5.4 CUDA

Graphical cards that are present in recent computers often contain a so-called Graph-
ical Processing Unit, or GPU, that can be programmed. Furthermore, such GPUs
allow a large amount of parallelism. Since the genetic algorithm itself benefits from a
parallel implementation, one may wonder if a speedup of the evaluation of genomes
can occur if this is implemented on the GPU instead. Unfortunately, trying to use the
GPU for this would require some redesign of the genetic algorithm software and even
so, implementing the fitness measures above on the GPU may prove to be difficult.
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For another aspect of the genetic algorithm however, it was relatively straightforward
to use the GPU. More precisely, the CUDA2 programming language for NVidia GPUs
was used for this implementation. In a multi-objective genetic algorithm, the non-
dominated sort procedure requires one to evaluate which genomes dominate a specific
genome, and which genomes are dominated by this genome. Each genome should
therefore be compared to every other genome, with respect to each fitness measure.
For a larger population size (e.g. ten thousand genomes), this step itself can become
the bottleneck in the genetic algorithm, rather than calculating the fitness values.
However, comparing each pair of genomes to each other is something that can easily
occur in parallel. Although in principle this can be distributed over a number of
CPUs, in this case a GPU-based implementation was done. For large population
sizes, this reduced the time spent in this step of the algorithm by about a factor of
four.

4.6 Simulations

Although many galaxy lenses are currently known and even more and more cluster
lenses are detected, inverting such a lens does not provide one with objective infor-
mation about how similar the reconstruction is to the true mass distribution, as the
latter remains unknown. For this reason, simulations are used to find out how well
the algorithm works. A projected mass distribution is generated and for a certain
set of sources at different distances, the images are calculated using the ray tracing
procedure. Then, using the images of each source as input, the algorithm tries to find
a compatible mass map and at the same time, the source positions are predicted. By
comparing the reconstructed mass density to the one used to calculate the images,
one immediately obtains a grasp on which features of the lensing mass have been
recovered.

4.6.1 Many extended images

In the first tests, many sources producing many images were used. The mass distri-
butions of the lenses in these simulations were created by randomly adding a number
of Plummer distributions. The number of sources, their positions and redshifts were
also chosen at random. A wide variety of these gravitational lens systems were used
to test the algorithm. In the example that we present below, a lens with mass of the
order of 1015M� was positioned at z = 0.45 while the redshifts of the sources were
sampled from a uniform distribution in the interval [1.2, 4.0].

In this example, the relevant angular diameter distances were calculated using a
standard CDM cosmology, with a matter density Ω = 1 and a Hubble parameter
H0 = 70 km s−1 Mpc−1. For these settings, the angular diameter distance between

2http://www.nvidia.com/object/cuda home.html
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Figure 4.12: Left panel: the mass distribution of the input lens used in the simulation. The
total lens mass within a radius of 1.5 arcmin, which is slightly further out than the position
of the outermost image, is 0.95× 1015 M�. Right panel: the positions and shapes of the 15
sources used in the simulation within the source plane.

an observer at redshift z1 and a source at redshift z2 is given by

D(z1, z2) =
2c
H0

1
1 + z2

(
1√

1 + z1
− 1√

1 + z2

)
.

In figure 4.12, we show the mass distribution and the positions and shapes of the
sources. The total mass of the lens within a radius of 1.5 arcmin, which is slightly
further out than the position of the outermost image, is 0.95 × 1015M� and the
number of sources in this simulation is 15. This configuration was used to generate
the images shown in the left panel of figure 4.13, which in turn serves as input for
the inversion algorithm. The resolution of this image is 1024 × 1024 pixels. Critical
lines and caustics for a source at redshift z = 2.5 are presented in the right panel of
figure 4.13, in which the source positions are also indicated. The genetic algorithm
then constructs a lens solution that projects images of a single source onto overlap-
ping regions in the source plane, using only the overlap fitness measure as described
above. For this particular simulation, the fitness converged for a grid containing
about 400 Plummer mass distributions. As explained before, multiple applications
of the inversion algorithm yield different solutions. Still, each solution manages to
produce overlapping back-projected images and, while this is in no way enforced by
the algorithm, the positions of the back-projected images are very close to the true
source positions.

After applying the inversion routine 25 times and averaging the individual solutions,
we obtained the final solution presented in the left panel of figure 4.14. This figure
shows a striking resemblance to the left panel of figure 4.12. Clearly, the mass dis-
tribution of the lens is retrieved with very high accuracy. The fitness values of the
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Figure 4.13: Left panel: the images used as input for the inversion routine in the simulation.
The resolution of this image is 1024 × 1024 pixels. Right panel: the critical lines (dotted
lines) and caustics (full lines) of the lens for a source at redshift z = 2.5. The crosses indicate
the positions of the sources.

25 individual solutions and of the averaged solution are shown in the left panel of
figure 4.15. Since averaging the individual solutions suppresses random generation-
to-generation fluctuations, which can even prevent the solutions from further lowering
the fitness value, and enhances their common traits, the averaged solution even out-
performs each individual solution. When the images of figure 4.13 are projected back
onto the source plane, we obtain the situation shown in the right panel of figure 4.14.
The back-projected images overlap very well and are close to the true source posi-
tions. The critical lines and caustics of the averaged solution for a source at redshift
z = 2.5 are shown in the right panel of figure 4.15, which can be compared with the
right panel of figure 4.13. Again, the resemblance is striking. In the left panel of fig-
ure 4.16, we show the absolute value of the difference between the mass distributions
of the input lens and of the averaged solution. In the right panel of figure 4.16, the
standard deviation of the 25 individual solutions is presented. The first quantity is a
measure for the quality of the fit, the second measures the disagreement between the
individual solutions.

For a circularly symmetric lens, only the total mass enclosed within the radius of
the outermost image can be determined. The lens employed in the simulation is
not spherically symmetric but one can still surmise that we do not have a very good
handle on the mass outside the outermost image. In figure 4.17, we show the circularly
averaged density profiles of the input lens and of the averaged solution. As expected,
both agree excellently with each other within the inner ∼ 1.5 arcmin, which is about
the position of the outermost image. Outside that radius, the density is no longer
well constrained by the data and the profile of the best lens solution drops below that
of the input lens. For the averaged solution, the mass enclosed within a radius of 1.5
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Figure 4.14: Left panel: the average of 25 individual solutions for the simulation. The total
mass of this averaged lens solution within a radius of 1.5 arcmin is 0.96 × 1015 M�. This
figure can be compared with the left panel of figure 4.12. Right panel: the positions of the
back-projected images within the source plane for the averaged solution of the simulation.
The true source positions are marked with crosses. This figure can be compared with the
right panel of figure 4.12.
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Figure 4.15: Left panel: the fitness values of the 25 individual solutions compared with the
fitness value of the averaged solution for the simulation. The averaged solution is clearly
superior to the individual reconstructions. Right panel: the critical lines and caustics for
a source at redshift z = 2.5 of the averaged solution in the simulation. This figure can be
compared with the right panel of figure 4.13.
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Figure 4.16: Left panel: the absolute value of the difference between the mass distributions
of the input lens and of the averaged solution of the simulation, relative to the maximum
mass density of the input lens. Right panel: the standard deviation of the 25 individual
solutions of the simulation, relative to the maximum mass density of the input lens.

arcmin is 0.96×1015M� which can be compared with the input lens, which comprises
a mass of 0.95× 1015M� within the same radius.

The implementation used for this simulation employs a population of 250 genomes.
The calculations were done in a distributed manner, using sixteen Intel R© XeonTM

2.4 GHz processors of a computer cluster. Depending on the number of sources,
creating a single solution may require several hours. To give a specific example, the
25 solutions used in the simulation were created in four days.

4.6.2 Few sources and null-space

If many sources are available, the previous example has shown that much of the lens
mass distribution can be expected to be recoverable. While such data is currently
available (e.g. [10]) and more of these systems are likely to be discovered in the future,
they are currently far outnumbered by systems containing a handful of images of only
one or a few sources.

As explained before, if the original procedure was used to determine the mass distri-
bution of the lens, extra images were predicted, leading to the identification of the
null space as an additional source of information. In the example below, we use the
sources and the lens mass density shown in figure 4.18. The sources have an elliptical
shape and are positioned at z = 2.5 and z = 1.5 respectively; the lensing mass is
located at z = 0.45. Again, we use a standard CDM cosmology with a matter density
Ω = 1 and a Hubble parameter H0 = 70 km s−1 Mpc−1 for simplicity. As can be
derived from the caustic structures, each source produces five images, the positions
of which are displayed in the left panel of figure 4.10. The critical lines corresponding
to both redshifts are also indicated in this figure. The images of the source at z = 1.5
are surrounded by small squares.
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Figure 4.17: The circularly averaged density profiles of the input lens (full line) and of the
averaged solution (dotted line), normalized to the critical density for a source at redshift
z = 2.5. Within a radius of 1.5 arcmin, which coincides with the position of the outermost
image, both profiles agree very well. Outside this radius, the density of the averaged solution
is not constrained very well by the data and drops below that of the input lens.
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Figure 4.18: Left panel: mass distribution of the input lens (placed at redshift 0.45) used
in the first simulation of the few sources situation. The value of Σcr was evaluated at
redshift 2.5. Middle panel and right panel: the two sources, placed at redshifts 2.5 and
1.5 respectively, used in the first simulation, together with the caustic structures at these
redshifts.
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Figure 4.19: Left panel: when the null space is taken into account, this mass distribution
was obtained after averaging twenty individual solutions. Comparing this to the left panel of
figure 4.18 shows that much of the general appearance is retrieved. Middle panel and right
panel: the reconstructed sources lie close to the true source positions (indicated by crosses).
When these figures are compared to the middle and right panels of figure 4.18, it is clear
that much of the same caustic structure is present in the reconstruction.

Using the positional and null-space fitness measures, it is now straightforward to
generate solutions which indeed only produce the input images. Averaging twenty
such solutions yields the mass density and reconstructed sources shown in figure 4.19.
Comparing this figure with figure 4.18, one immediately notices the striking resem-
blance. This proves that our method is capable of reproducing, at least qualitatively,
the mass density distribution of a gravitational lens based on the positions, redshifts,
and shapes of very few images and on null space information. The peaks in the re-
constructed mass density appear to be somewhat stronger than those of the input
lens. The reconstructed sources are very similar in shape to the true sources and
their positions lie very close to those of the input sources. The reconstructed sources
are, however, more extended than the input sources. The caustic structure presented
in the middle and right panels of figure 4.19 are strikingly similar to but also more
extended than those of the input lens, presented in the middle and right panels of
figure 4.18. In this example the method using null space triangles was used, based on
a regular 64× 64 grid, covering an area of 3.3× 3.3 arcmin2.

It is interesting to take a look at the difference in mass densities between original
and reconstructed lens. The left panel of figure 4.20 shows that the mass density
around the peak positions is not reconstructed very well. Inspecting the right panel
of the same figure, which displays the standard deviation of the individual solutions,
it is clear that precisely these regions differ strongly among the solutions. When the
reconstructed source and lens are used to reproduce the images, the result shown in the
left panel of figure 4.21 is obtained. The ten input images are indeed reproduced and
the critical lines closely resemble those of figure 4.10 (left panel). One cannot ask more
from any lens inversion algorithm. The right panel of figure 4.21 shows the circularly
averaged mass density, centered on the mass density peak at (0.5,−0.5). This plot
visualizes once more the overestimated mass density in that region, although the same
general features are clearly present in both original and reconstructed profile. When
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Figure 4.20: Left panel: the difference between the true mass density and the average solution,
relative to the critical mass density for a source at redshift 2.5. This clearly shows that the
true shape of the mass density peaks cannot be determined accurately. Right panel: standard
deviation of the twenty individual reconstructed mass densities. Individual solutions clearly
disagree about the exact shape of the mass density around the peak positions.

the total mass of the lens is calculated, the agreement is excellent within a radius of
1 arcmin, differing by only a few percent from the true mass, as is shown in figure 4.22.
Beyond that radius, the difference starts to increase, again indicating that using only
the strong lens effect, one cannot obtain a firm handle on the mass density outside
the radius of the outer images.

One might argue that a system with two sources and ten images still provides a
relatively large number of constraints. For this reason, let us now turn to a simple
five-image system, created by an elliptical mass distribution. The source and its
corresponding images are depicted in the left panel of figure 4.23. The redshifts of
the source and the lens are 2.5 and 0.45 respectively.

In this case, the inversion algorithm seems to easily produce solutions causing a critical
line to intersect the two rightmost images. To avoid this, the brightness overlap and
positional overlap were used as two separate fitness measures. Since their combination
can be seen as a weighting scheme, decoupling them allows a broader search in the
model space. Afterwards, the genetic algorithm was indeed able to consistently find
solutions which reproduce the input images. After averaging ten solutions obtained
using a moderately subdivided grid, the results shown in the center panel of figure 4.23
were obtained. This clearly resembles the true situation, although the source is again
larger. If the grid is subdivided further, this results in the situation depicted in
the right panel of figure 4.23, showing more complex critical lines and corresponding
caustic structure.

These examples clearly show the effect of the mass sheet degeneracy, as the recon-
structed sources are in each case larger than the input sources. In fact, in these
examples the degeneracy was broken artificially: the algorithm did not yet support
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Figure 4.21: Left panel: the reconstructed source and lens of figure 4.19 generated these
images and critical lines. The correspondence with the left panel of figure 4.10 is striking.
Right panel: the circularly averaged mass densities of input lens and reconstruction, as seen
from the mass density peak at (0.5,−0.5).
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Figure 4.22: Left panel: total mass within a specific radius for both input lens and recon-
struction, as seen from the origin. Clearly, the total mass is estimated well within a radius of
1 arcmin. Right panel: the amount of disagreement in total mass within a specific distance
from the origin. Again, within a radius of 1 arcmin the agreement is very good.
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Figure 4.23: Top row: the source used in the simulation of a gravitational lens system with
an elliptical mass distribution, relative to the caustic structure. This situation creates five
images, which are used as the input of the inversion routine. Center row: the reconstructed
source, relative to the predicted caustics when using a moderately subdivided grid and
averaging ten individual solutions. Note that the source and the caustic structure are more
extended than their original counterparts. Bottom row: similar to the center row, but using
a finely subdivided grid. The fitness measures did not improve considerably compared to
the situation in the center row.
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a mass sheet basis function at the time, so the mass distribution was assumed to
be zero outside the region in which the algorithm would search. However, the input
mass maps in these examples, being composed of relatively wide Plummer functions
and a NSIE distribution respectively, still contain some mass outside this region. The
presence of the mass sheet degeneracy can also be seen in the right panel of figure 4.21.

4.6.3 Point-like images & mass sheet basis function

That the point-based fitness measure yields good results can be seen in figure 4.24.
The input mass distribution can be seen in the left panel of this figure and consists of
three NSIE mass distributions. The reconstruction can be seen in the right panel of
this figure, and is the average of 30 individual solutions. In this inversion procedure,
the algorithm was allowed to use a mass sheet basis function, but in the end result
this is negligible. The left panel of figure 4.25 shows the true source positions as
crosses, together with the reconstructed source positions. It should be noted that an
offset of (5.5,−3) arcsec was added to the reconstructed sources for easy comparison.
Except for this offset, which is of course not observable, the reconstructed source
positions are remarkably accurate. This indicates that the scale of the source plane is
determined correctly, meaning that in this case the available data successfully break
the mass sheet degeneracy. The importance of taking the overall scale of the source
plane into account can be seen in the right panel of this figure. If an inversion is done
using an absolute distance scale, an incorrect mass sheet is recovered. Especially in
the beginning of the genetic algorithm, using an appropriate scale will be important
as projecting the points onto a smaller general area by means of a considerable mass
sheet will otherwise lead to an improved fitness measure. This can cause the genetic
algorithm to get stuck in a local optimum.

A variation of this mass distribution shows how the presence of a mass sheet can be
recovered, but that the mass sheet basis function is necessary to do so. Figure 4.26
shows the true mass distribution in the left panel, consisting of a scaled version
of the mass distribution in figure 4.24, to which a sheet of constant density was
added. When only Plummer basis functions are used, the result in the center panel
is obtained. Clearly, this does not look like the input mass distribution at all. There
are two causes of this undesirable behavior. First, the algorithm will have to try to
mimic the effect of a mass sheet using the Plummer basis functions which is a rather
difficult task, depending on the amount of constraints available. The second problem
is that the subdivision scheme will be less effective. Since the mass sheet holds most
of the mass, the subdivision procedure will not be successful at refining the grid in
the central region. When the algorithm is instructed to not only use the Plummer
basis functions, but a mass sheet basis function as well, the result is much improved
as can be seen in the right panel of the figure.

In the previous examples, the input mass distribution and images were self-generated,
so it is possible that some bias is still present in the reconstructions. It would certainly
be interesting to see how well the algorithm performs on data generated by somebody
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Figure 4.24: Left panel: mass distribution of the input lens, used to test the algorithm
that works with point images. This lens is actually a superposition of three NSIE mass
densities. Right panel: the reconstructed mass map, which is the average of 30 individual
reconstructions, shows much resemblance to the input mass distribution of the left panel.
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Figure 4.25: Left panel: comparison of the input source positions and the reconstructed
source positions, i.e. the back-projected point images. Apart from the offset of (5.5,−3)
arcsec which was added to the reconstructed positions, the agreement is very good. Right
panel: when the scale of the source plane is not used in calculating the overlap between
the back-projected points, but an absolute distance scale is used instead, this is the result.
Clearly, an incorrect mass sheet basis function has been recovered.
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Figure 4.26: Left panel: true projected mass density of a lens used to test the inversion
procedure. The mass distribution consists of a few relatively small perturbations on top of a
sheet of mass. Center panel: when the original procedure is applied to the images produced
by the input lens, it is not successful in creating an acceptable mass map (see text). Right
panel: when a sheet of mass is added as a basis function, the algorithm again is able to create
acceptable reconstructions of the projected density.

else. The author of the LensPerfect software, Dan Coe, made the input images and
mass map of one of his own tests available. The input mass map is actually a model
of the lensing cluster Abell 1689, and can be seen in the left panel of figure 4.27.
The envelope of the outermost images used in the inversion can be seen as a thick
black line. One can therefore only hope to constrain the mass distribution inside this
region. The result that was obtained with the LensPerfect method can be seen in the
right panel of this figure, and clearly shows much resemblance to the input mass map
inside the region covered by the images.

The result of the point-based inversion procedure is shown in figure 4.28. For this test,
the region in which mass should be recovered was chosen relatively large compared
to the size of the images. To suppress unnecessary fluctuations, the null space fitness
measure was included as well. The result shown in this figure arises from taking the
average of 40 individual reconstructions. The left panel of the figure shows the ob-
tained mass map as a contour map, in which the positions of the images are indicated
as well. The right panel of the figure shows the same result, now using the same color
scale as the LensPerfect images for easy comparison. Clearly, the method described
here also performs well on these data, at least when only the region within the thick
black line is considered. The fact that outside that region the density differs more
and more as one looks further away from the center, is due to the use of the mass
sheet basis function.

4.7 Automatic redshift determination?

One may wonder if it is also possible to let the genetic algorithm determine automat-
ically the redshift of one or more sources, if this data is unknown. For this purpose,
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Figure 4.27: Left panel: input mass map used to test the LensPerfect lens inversion method.
The thick black line indicates the envelope of the outermost images. Right panel: the mass
distribution recovered by the LensPerfect method. Inside the region marked by the black
line, there is clearly a good resemblance (images from [19]).
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Figure 4.28: Left panel: after averaging 40 individual solutions, this is the obtained mass map
if the point-based fitness measure and null space fitness measures are used. The locations
of the input images are indicated as well. Right panel: the same result as in the left panel,
now using the same color scheme as in figure 4.27. The method described here clearly also
provides a good recovery off the mass distribution inside the region bounded by the outermost
images.
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the genetic algorithm was modified so that the Dds/Ds fraction of the sources with
unknown redshift was also present in each genome, and correspondingly could be
optimized.

The results were disappointing however. Even when the images of a source with
unknown redshift were located close to images with a known redshift, it was difficult
to predict if the determined distance fraction would be recovered accurately.
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Applications

The previous chapter explained how a genetic algorithm is used to derive a mass map
that is compatible with a given set of observations. In this chapter, the inversion
procedure shall be applied to some existing strong lensing systems.

5.1 Cl 0024+1654

5.1.1 Introduction

One of the most spectacular examples of strong gravitational lensing can be seen in
the cluster lens Cl 0024+1654, shown in figure 1.1. Using recent observations with
the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST), one
can easily see that five well resolved images depict a single source, but even before
these five images were identified, it was clear that three arc segments were caused by
a gravitational lens effect [60].

This strong lensing information was first used in [52]. The authors of this work noted
that these arc segments do not obey the so-called length theorem [64], implying that
no simple elliptical lens model can be used. They show that if perturbations by cluster
members are added, the observed arc lengths can indeed be reconstructed. In [107], a
more advanced reconstruction technique was used, consisting of a smooth lens model
perturbed by some smaller galaxies and a non-parametric source model. Whereas
previous work suggested that the main cluster potential was offset from the largest
galaxy, these authors find that these positions, in fact, agree well.

After the first HST images clearly revealed the presence of five images, more lensing
studies followed. The new, well resolved images were used in [20] to study the source
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itself, a blue galaxy containing some interesting dark features and a bar-like structure.
In [103] the images were used to find the parameters describing elaborate lens and
source models. Their algorithm constructs the complete image plane based on a set of
source and lens parameters and compares the result with the HST observations. They
find that the mass distribution is dominated by a smooth dark matter component with
a considerable core radius, centered at a position near the largest cluster member.

Much of the earlier mass uncertainties originated from the poorly established source
redshift. In [11] a spectroscopic redshift of 1.675 was finally measured and was used
in a new inversion. The authors found that the image positions can be accurately
reproduced using a model which traces the locations of the brightest cluster members.
In [48], a non-parametric method is used to invert the lens, using both strong and
weak-lensing data. In the strong lensing region, the retrieved mass profile closely
resembles the result of [11], but according to [99], the associated velocity dispersion
is too high to correspond to the measured value of 1150 km s−1 [27].

Below, the procedure which makes use of the positional information of the images in
the lensing system, the null space and which avoids critical lines to intersect the images
shall be used to reconstruct the mass distribution of Cl 0024+1654. No information
about the positions of cluster members is used. The content of this section is based
on [70].

5.1.2 Input

The images of sources A and B as described in [48] are used, at redshifts of 1.675 and
1.3 respectively. The redshift of the lens itself is 0.395 and angular diameter distances
were calculated in a flat cosmological model with H0 = 71 km s−1 Mpc−1, Ωm = 0.27
and ΩΛ = 0.73. The inversion procedure constructs the lensing mass distribution in
a square shaped area of 1.3 arcmin by 1.3 arcmin, centered on the brightest cluster
galaxy. To avoid predicting images which are located relatively far away, the null
space grid measured 3 arcmin by 3 arcmin, centered on the same galaxy. Initially,
a uniform grid of 15×15 is used to place the Plummer basis functions on, and the
grid is refined until approximately 800 basis functions are used (no mass sheet basis
function was used). After this, the finalizing step is executed on a uniform 64×64
grid. Below we shall see that this leads to a very good source reconstruction.

The gravitational lens creates several large images of source A, a blue galaxy. A part
of the source is mapped onto five easily identifiable sub-images, as can be seen in
figure 5.1. The high resolution ACS images allow several corresponding features to
be identified (up to twelve features in some images), which will be used to calculate
how well the back-projected images overlap. It is assumed that no other images of the
source are present, so that only the five images themselves are excluded from the null
space for this source. Source B only has two images, the third one most likely being
occluded by the central cluster members. The complete images are used to estimate
the source size, but only a single point in each image is used to measure how well
the images overlap when projected back onto the source plane (measured relative to
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Figure 5.1: The image parts of the five images of source A which were used in the recon-
struction, labeled in the same way as in the work [48]. Due to the extended nature of these
images, several corresponding features are easily identified. The images shown here are not
displayed on the same scale.

the estimated size of the source). In this case, not only the images themselves were
excluded from the null space, but also the region in which the central cluster members
reside. This allows the algorithm to predict an unobserved third image anywhere in
that region. For both sources it is assumed that no critical lines intersect the images
which are used. Here, the critical line fitness which penalizes parity changes inside
an image is used.

5.1.3 Results

The mass map shown in the left panel of figure 5.2 was obtained after averaging
28 individual solutions. This number is dictated by the computer time it takes to
generate the individual solutions and by the fact that after averaging together 15
solutions or more, the average solution does not change significantly. The largest
fraction of the rather steep mass distribution coincides with the position of the central
cluster members. The central image of source A is located between two density peaks,
which resembles the situation shown in the ACS images. These facts can be clearly
seen when the retrieved mass contours are drawn on top of the observed situation,
as is shown in figure 5.3. This same figures also illustrates the remarkable accuracy
with which the two cluster galaxies enclosing the image at (0.5,−0.3) arcmin are
retrieved. We would like to stress again that these were retrieved automatically; no
prior information about the presence of these galaxies was used. It is these galaxies
that cause the middle image of the three arc segments to be compressed, thereby
causing the violation of the length theorem. The mass inside a circular region of
radius 0.5 arcmin, centered on (0.075,−0.075) arcmin is found to be 1.60× 1014M�.
This region is enclosed by a dotted line in figure 5.3.

When the input images of source A are projected back onto the source plane, a
consistent source is produced, as can be clearly seen in figure 5.4. The size of the
source is approximately 2.5 arcsec (corresponding to 21 kpc). This is larger than
both the value of 1 arcsec mentioned in [20] and the value of 0.5 arcsec mentioned
in [48], but the general appearance does agree very well with both works. We shall
come back to this size difference later. The retrieved source positions and caustics
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Figure 5.2: Left panel: after averaging 28 individual reconstructions, this is the resulting mass
map for Cl 0024+1654 predicted by our procedure. The positions of the input images of
source A are also indicated in this figure. The critical density used in this figure corresponds
to a redshift z = 3. Right panel: the standard deviation of the individual reconstructions
shows that the different solutions tend to disagree about the exact shape in the central
part of the mass distribution. In particular, this figure suggests that the mass peak around
(0.2,−0.2) arcmin in the left panel should not be regarded as an actual feature.

at z = 1.675 are depicted in the left panel of figure 5.5. If these sources are used
to calculate the image positions, the results shown in the right panel of figure 5.5
are retrieved. From this image it is clear that the multi-objective genetic algorithm
succeeded in generating solutions which only predict one extra image (for source B)
and which do not have critical lines intersecting the input images.

On closer inspection of the resulting mass map in figure 5.2, there seems to be an
intriguing feature at (0.2,−0.2) arcmin. At this location the mass map shows a
clear peak, but in the ACS images no cluster member can be seen at this location
(figure 5.3). Could this be evidence of dark matter in this cluster? Inspecting the
standard deviation of the individual solutions helps to shed some light on this matter.
As can be seen in the right panel of figure 5.2, the individual solutions do not agree
well on the exact shape of the central part of the mass distribution. In fact, the
largest uncertainty is located precisely around the position of this mysterious peak,
which suggests that we should be very careful when trying to interpret this feature.

5.1.4 Monopole degeneracy

From the discussion about the monopole degeneracy, we already know that features
in between the images can easily be manipulated. It was also explained that using
basis functions of this type, one can build a more complex mass distribution that,
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5.1. Cl 0024+1654

Figure 5.3: The contours of the retrieved mass map in the left panel of figure 5.2 are shown
on top of the ACS image of the central cluster region (north is up, east is left). The lensing
mass is found to be concentrated around the largest cluster galaxy and the central image A5
is found to be located between two mass peaks, which also resembles the observed situation.
The positions of the two galaxies in the south-east region are retrieved very accurately as
well. Note that this image also suggests that there is a density peak labeled P in a region
where very few cluster light originates. The total mass in the region bounded by the dotted
line is found to be 1.60×1014M�. The area displayed in this figure is approximately 1.3×1.3
arcmin2.
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Figure 5.4: When the images shown in figure 5.1 are projected back onto the source plane,
these source shapes are retrieved. Each figure shows the same region in the source plane,
approximately 3 arcsec by 3 arcsec in size.
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Figure 5.5: Left panel: this figure shows the predicted position of source A and B as well
as the caustics corresponding to the redshift of source A. Source B is enclosed by a small
square. Right panel: when the sources of the left panel are projected onto their image planes,
these image positions arise. The image of source B which is closest to the origin was not
part of the input; the model predicts an image at this location. Other than this image, no
additional images were predicted.

104



5.1. Cl 0024+1654

when added to an existing gravitational lens reconstruction, will produce an equally
acceptable solution. Using the recovered mass distribution of Cl 0024+1654 we shall
illustrate this below.

The region of interest is subdivided into a number of square-shaped grid cells. For
each grid cell, the distance from its center to the nearest image is calculated. If
this distance is relatively large compared to the size of the grid cell – e.g. at least
four times as large – a basis function is associated to this cell. The distance to the
nearest image is used as the unit length; the width of the non-negative part ΣA is set
proportional to the size of the grid cell. This implies that for a specific basis function,
all the images lie in the area within which the total mass of the basis function is zero.
Since the lens equation for a circularly symmetric basis function only depends on the
total mass within a specific radius, in this case the lens equation at the position of
the images will be unaffected when such a basis function is added to the existing mass
distribution. Similarly, when all the basis functions on the grid are considered, the
lens equation at the location of the images will not be influenced, independent of the
precise weight values of the basis functions. Everywhere else, the lens equation will
indeed be modified, meaning that extra images may be predicted, depending on the
precise weight values used.

In the case of Cl 0024+1654, it then becomes immediately clear that the peak at
(0.2,−0.2) arcmin can easily be removed by creating a degenerate solution. Even by
adding a single basis function with an appropriate width and height to the existing
solution, the feature can be eliminated. It can also automatically be removed using the
grid-based procedure described above, as can be seen in the left panel of figure 5.6. In
this example, a 32 by 32 grid was used, and the weights were determined by a genetic
algorithm. The goal of the optimization was to keep the gradient of the resulting
mass map as low as possible. To obtain a smooth result, the procedure was repeated
for twenty of such grids, each with a small random offset. As can be seen in the
figure, this does not only remove the peak at (0.2,−0.2) arcmin, but also reduces the
overall steepness. Also note that one of the peaks between which the central image
of source A originally resided, has been erased almost entirely. The resulting mass
map, consisting of one smooth component and two perturbing components, at least
qualitatively resembles the models used by [52] and [107]. The right panel of figure 5.6
shows the critical lines at the redshift of source A, as well as the images predicted
by the new solution. Because this newly created solution does not modify the lens
equation in the regions of the images and because no extra images are created, the
fitness values are exactly the same as those of the solution in figure 5.2. For this
reason, both mass maps are equally acceptable solutions.

5.1.5 Discussion

One of the recent gravitational lensing studies of this lens, is that of [48], which used
both strong and weak lensing data. The strong lensing mass of 1.60 × 1014M� is
less than the value of (1.79 ± 0.13) × 1014M� found in their study, but it is still in
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Figure 5.6: Left panel: if the grid based method to redistribute mass is applied to the mass
map shown in the left panel of figure 5.2, this new distribution is obtained. The peak at
(0.2,−0.2) arcmin has automatically been removed and the overall distribution has become
less steep. Right panel: the mass distribution in the left panel predicts the images shown
in this figure, which are indistinguishable from the images in figure 5.5 (right panel). The
critical lines on the other hand, do display some changes, reflecting the modifications to the
lens equation.
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Figure 5.7: This plot shows the differences between the mass distributions in figure 5.2 and
figure 5.6. Clearly, the structure has been altered in a way which does not display any
particular symmetry.
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5.1. Cl 0024+1654

Figure 5.8: The density profile in the circular region indicated in figure 5.3 is described by
the dotted curve. If this profile is scaled down by a factor of five and a mass sheet is added
to keep the strong lensing mass constant, the the profile described by the thick black line
is obtained. In the strong lensing region, it clearly resembles the profile shown in the work
of [48], suggesting that the results shown here differ mainly by the mass-sheet degeneracy.
This figure also clearly shows that the strong lensing mass estimate from this work differs
from the one in [48].

good agreement. We mentioned earlier that our size estimate for source A is higher
than found in other works. This is a well-known consequence of a generalized version
of the mass sheet degeneracy. As was discussed earlier, this degeneracy is hard to
break for lensing systems with only a handful of sources, even if these have different
redshifts. Like the original mass sheet degeneracy, the generalized degeneracy leaves
the observed images identical but the reconstructed sources are scaled versions of the
original ones while the density profile of the lens becomes less steep.

The relation with the inversion of [48] can be revealed by comparing the predicted
source sizes. The size of source A in our inversion is five times larger than in their
work, thereby identifying the scale factor in the mass-sheet degeneracy. When we
downscale our mass reconstruction by a factor of five and add a constant sheet of
mass in such a way that the total strong lensing mass of 1.60× 1014M� is unaffected,
the circularly averaged density profile in figure 5.8 is obtained (thick black line). This
clearly shows much resemblance to the profile found in [48] in the strong lensing
region. Note that since our reconstruction procedure only looks for mass in a region
which is 1.3× 1.3 arcmin2 in size, the profile will quickly drop to zero beyond the
range shown in the figure.

After this inversion was performed, new multiply imaged systems were identified in
[114]. Not only does this work reveal the presence of the third image of source B close
to the position predicted by the model shown here, the mass profile therein closely
resembles the profile of figure 5.8.
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When the monopole degeneracy was applied to the case of Cl 0024+1654, a simple
optimization routine was used to remove substructure from the previously obtained
mass distribution. However, there is no general rule as to how the mass map may be
modified. For example, with some extra effort the existing mass map could have been
transformed into one which followed the light more closely, or which corresponded
better to the available X-ray data [80]. The only constraints which matter in this
respect are the absence of unobserved images and possibly dynamic measurements.
Image positions, fluxes and time delays are completely unaffected by this type of
degeneracy, which allows you to redistribute matter in any number of ways. This
freedom is illustrated in figure 5.7, which depicts the differences between the two
mass distributions shown here.

5.2 SDSS J1004+4112

5.2.1 Introduction

The lensing cluster SDSS J1004+4112, located at a redshift of 0.68, can be seen in
figure 5.9 and was revealed by the presence of a multiply imaged quasar as reported by
[47]. The lensing system was first identified as a quadruply imaged quasar, but later
a fifth central image of the quasar was detected [45] and spectroscopically confirmed
[44]. Three multiply imaged galaxies were identified in HST/ACS images in [100] and
time delay information for three of the quasar images was measured by [33], improving
the earlier reported time delay between the two closest quasar images in [34]. This
work did not only only invalidate earlier proposed models of the lensing system (e.g.
[78], [110]), which predicted shorter time delays, it also confirmed that microlensing
is the cause of the strange magnification patterns in the quasar images, present both
in optical [87] and X-ray [65] measurements. With its separation of 14 arcsec, the
multiply imaged quasar in SDSS J1004+4112 has held the record for being the widest
lensed quasar for a number of years. The discovery of SDSS J1029+2623, a multiply
imaged quasar with a separation of over 22 arcsec [46] broke this record recently. The
statistics of multiply imaged quasars by clusters are studied in [41].

5.2.2 Input

Figure 5.10 shows the image systems that were used in the inversion of SDSS J1004+4112,
using the same labeling as [100]. There are five spectroscopically confirmed images
of a quasar at redshift 1.734, labeled Q1-Q5. Corresponding to the time delay mea-
surements of [33], we used a time delay of 40.6 days between Q2 and Q1, and a time
delay of 821.6 days between Q3 and Q1. No magnification information was used, as
the quasar image magnifications are influenced by microlensing, introducing a large
uncertainty. The positions of the quasar images were set to those reported in [45].
Four, possibly five images are present of a galaxy at redshift 3.332, labeled A1-A5,
with image A5 being marked as uncertain by [100]. The third system used consists of
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Figure 5.9: Image taken with the Hubble Space Telescope of the lensing cluster
SDSS J1004+4112. Around the central elliptical galaxy, one can easily spot four bright
images of the same quasar. As can be seen in figure 5.10, other multiply imaged systems
exist as well. The color image was taken from the Space Telescope Science Institute (STScI)
archive a.

ahttp://hubblesite.org/newscenter/archive/releases/2006/23/image/a/
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Figure 5.10: The multiple image systems which are used in the inversion of
SDSS J1004+4112, using the same labeling as [100] (north is up, east is left). Five im-
ages of a quasar (Q1-Q5) are available, as well as four, possibly five images of a galaxy
marked A1-A5, and two images of a second galaxy marked B1-B2. Between B1 and Q3 and
to the left of B2 are two images of a third galaxy marked C1-C2 in [100], but this system
was not used as no redshift is currently available.

two images of a galaxy at redshift 2.74, marked B1-B2. Note that another galaxy with
two images was identified in the aforementioned work, but because of its unknown
redshift, it was not used in the inversion. Angular diameter distances were calculated
in a flat cosmological model with H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and ΩΛ = 0.73.
Using the redshift information described above, this fixes the Dds/Ds ratios for the
lensing systems, which is required input information in our method. The inversion
results described below were first shown in [71].

5.2.3 Results

Unless noted otherwise, the uncertainties reported here specify a 68% confidence level.

First inversion

Since image A5 was marked as uncertain, the first inversion does not include it. The
algorithm was instructed to look for mass in a square region, 35 arcsec wide, roughly
centered on image Q4. The null space fitness measure was based on a square region,
60 arcsec wide, subdivided into a 64 by 64 grid. For each source, the image regions
were excluded from the null space, and for systems A and B, the central cluster region
was excluded as well, allowing the algorithm to predict the locations of the central
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images of these systems. The null space is a relatively large region, but this avoids
the introduction of unnecessary substructure at the edge of the mass reconstruction
region, that would cause images to appear at larger distances. The critical line fitness
was based on a square shaped region, 40 arcsec wide, subdivided into a 64 by 64 grid.
After each inversion, a finalizing step was performed, as described earlier. This causes
some minor modifications to be made to the mass map, to improve the positional and
time delay fitness measures. Contrary to the case of Cl 0024+1654, no explicit mass
redistribution step will be performed here.

The average solution of 28 individual inversions predicts the source positions and
caustics shown in the left panel of figure 5.11. The source position of galaxy A
is marked by a dashed rectangle, the position of galaxy B is marked by a dotted
one. When these sources and the reconstructed lens are used to predict the image
configurations, the result in the right panel of the same figure is obtained. The
critical lines and caustics in these figures are calculated for the redshift of the quasar.
The mass map itself is shown in the left panel of figure 5.12, with most of the mass
in the same region as the brightest cluster galaxy (BCG). The standard deviation
of the individual reconstruction can be seen in the right panel of the same figure,
showing that the precise distribution of mass in the central region differs between the
individual reconstructions. Figure 5.13 shows the average profile and its standard
deviation. The large core clearly differs from the NFW-like behavior that one might
expect.

When inspecting the right panel of figure 5.11, one sees that the average solution
predicts central images of galaxies A and B. The predicted position of the central
image of galaxy A coincides with the location of image A5, although the predicted
shape is far less extended. Figure 5.14 shows the central region of the cluster, after
subtracting the central cluster members using the GALFIT software [82]. In each of
the filters, one can clearly see the central image of the quasar in the upper-left region.
Image A5 can clearly be seen in the F555W and F814W images. Since the other
constraints predict a central image of galaxy A at this location and since it indeed
resembles a mirror image of A1, we feel confident that this is in fact the central image
of galaxy A.

Second inversion

Including the central image of galaxy A will provide additional information that will
lead to a different inversion since its true shape is different from the one predicted by
the first inversion. For this reason, a second inversion was performed in which image
A5 was added as an observational constraint. The rest of the constraints are the
same as in the first inversion. Figure 5.16 shows the source and image configurations
obtained in this case, using the average solution of 28 individual reconstructions. The
central image of galaxy A is now clearly more extended than in the first inversion.
When the images of galaxies A and B are projected back onto their source planes,
the source shapes in figure 5.15 are reconstructed. The back-projected images of each
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Figure 5.11: Left panel: when the input images are projected back on to the source plane
using the average of 28 individual solutions, these source positions are obtained. Galaxy A
is surrounded by a dashed rectangle, galaxy B by a dotted one. The caustics correspond to
the redshift of the quasar. Right panel: when the sources and caustics of the left panel are
used to predict the images and critical lines using the average solution, this configuration is
obtained.
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Figure 5.12: Left panel: average mass map of 28 individual solutions when image A5 is not
taken into account. Most of the mass is found to coincide with the region of the BCG. The
critical density was calculated at the redshift of the quasar. Right panel: standard deviation
of the individual solutions, showing that the precise distribution near the center of the cluster
is somewhat uncertain.
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Figure 5.13: The circularly averaged profile of the inversions when image A5 is disregarded,
together with the standard deviation.

Figure 5.14: The central part of the cluster after removing the contribution of the central
cluster members using GALFIT. The central quasar image can clearly be seen in each filter,
in the upper left part of the image. Below and to the left of it, image A5 can be seen in
the F555W and F814W images. More to the right, an extra object can be seen, where the
inversion predicts the central images of galaxies B and C.
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Figure 5.15: When using the model resulting from the second inversion to project the galaxy
images back onto their source planes, these images are obtained. Note that image A4 is not
shown here, as it is occluded by a cluster galaxy. The size of galaxy A is approximately 4
kpc, the size of galaxy B is approximately 2.5 kpc.

source clearly resemble each other, illustrating that a good positional fitness has been
achieved. The estimated size of galaxy A is approximately 4 kpc, the size of galaxy
B approximately 2.5 kpc.

The effect of the inclusion of image A5 can best be seen in the average mass map, as
shown in the left panel of figure 5.17. Now, the mass distribution has clearly become
much steeper in the central region, although some disagreement still remains between
the individual solutions (right panel). A comparison with the visible matter can be
seen in figure 5.18. The effect on the mass density can also be clearly seen in the
circularly averaged profile, shown in the left panel of figure 5.19. It would definitely
be interesting to see how much the resulting mass map resembles a NFW distribution;
a fit to such a profile will be performed below.

When calculating the total mass within 60 kpc, corresponding to the region of the
quasar images, and 110 kpc, the region bounded by the images of galaxy A, we
find results of 2.5 × 1013 M� and 6.1 × 1013 M� respectively. These values can be
compared to the findings of [110], who also find 2.5× 1013 M�, and of [100], who find
6× 1013 M�. This illustrates that the mass within the images is well constrained.
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Figure 5.16: Left panel: when the average of 28 individual solutions is used to reconstruct
the source plane when image A5 is included as a constraint, this result is obtained. The
dashed box again indicates galaxy A, the dotted one galaxy B. Right panel: the sources and
caustics in the left panel correspond to these images and critical lines. In this case, the
central image of galaxy A is indeed more elongated. The critical lines and caustics again
correspond to the redshift of the quasar.
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Figure 5.17: Left panel: average mass density of the 28 individual solutions. When image
A5 is included, the central region clearly needs to be much steeper. Right panel: standard
deviation of the individual solutions. The precise mass distribution in the central region
differs somewhat among the reconstructions. The critical density again corresponds to the
critical density at the redshift of the quasar.
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Figure 5.18: The average solution resulting from the second inversion is shown as a contour
map on top of the ACS image. Most of the mass clearly lies in the same area as the central
cluster members. The mass peak in the north-west part of the figure is not significant, as it
can easily be redistributed. The dashed line indicates the orientation of the BCG.

5.2.4 Fitting a NFW profile

The NFW density profile [76] is described by:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
,

in which ρs is a density scale factor and rs is a characteristic radius. The density scale
can be expressed in terms of cvir, which relates rs to the virial radius rvir through rvir =
cvirrs. The virial radius itself is defined as the radius within which the mean density
equals ∆vir times the mean matter density at the redshift of the halo. This virial
overdensity ∆vir stems from the spherical collapse model, and for a flat cosmological
model it can be approximated by (e.g. [13], [14])

∆vir ≈
18π2 + 82x− 39x2

Ω(z)
,

in which x = Ω(z)− 1 and Ω(z) is defined as the ratio of the mean matter density to
the critical density. Through lens inversion one recovers the projected density:

ΣNFW(R) =
∫ ∞

−∞
ρNFW(R, z)dz, (5.1)

for which an analytical expression can be calculated (e.g. [111]):

ΣNFW(x) =


2rsρs

(x2−1)

(
1− 2√

1−x2 arctanh
√

1−x
1+x

)
(x < 1)

2rsρs
3 (x = 1)

2rsρs
(x2−1)

(
1− 2√

x2−1
arctan

√
x−1
1+x

]
) (x > 1)

,
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Figure 5.19: Left panel: average profile and standard deviation of the resulting mass dis-
tributions. The dashed line shows the best fit NFW profile. Right panel: when only the
mass density at the location of the images is taken into account, this is the resulting best
fit NFW. The center of the profile lies very close to Q5, as does the center of the BCG. The
orientation is very similar to that of the BCG (dashed line), and corresponds to the general
alignment of the cluster members [78].

in which x = R/rs.

Naively performing a fit of the profile in the left panel of figure 5.19 to a projected
NFW profile, yields the best fit profile described by the dashed line in the same figure.
One then finds rs = 41.2+1.5

−1.3 arcsec, and cvir = 5.37+0.14
−0.12. Although this seems to

correspond well to the values found by [79], who reported rs = 39+12
−9 arcsec and cvir =

6.1+1.5
−1.2 (90% confidence) based on Chandra X-ray observations, the uncertainties

found in this way are far too low. As explained previously, using the monopole
degeneracy it is possible to redistribute the mass in between the images, without
affecting any of the observable properties of the lensing system. This means that the
uncertainty of the circularly averaged profile is actually much larger than obtained
by simply calculating the standard deviation of the individual profiles. In turn, this
translates to larger uncertainties on the parameters of the fit.

Since the mass distribution in between the images is not well constrained, it is inter-
esting to see how much the density at the location of the images themselves constrains
the NFW parameters. First, we calculated the average density and its standard de-
viation at the location of each image. Then, an elliptical generalization of ΣNFW was
fitted to these data points. An axis ratio f was introduced in the projected NFW
profile by setting R = (fx2 + y2/f)1/2 in equation (5.1). We prefer this substitution
over R = (x2 + (y/q)2)1/2 that would correspond to an axisymmetric NFW instead
of a triaxial one, because the circularly averaged profile in the first case corresponds
closely to the profile of a symmetric NFW with the same rs and cvir parameters. This
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allows the obtained values to be compared directly to fits to the circularly averaged
profile. After fitting the elliptical generalization of ΣNFW, the values rs = 58+21

−13

arcsec and cvir = 3.91 ± 0.74 are obtained. The best fit NFW is shown in the right
panel of figure 5.19. Its orientation corresponds to that of the BCG and to the general
configuration of the cluster members as reported in [78].

5.2.5 Predictions

In [100] a lens model was used to predict the redshift of galaxy C, of which the two
images lie between B1 and Q3, and to the left of B2 respectively (see figure 5.10).
Doing the same using the average model discussed above, we find that the back-
projected images nearly overlap for a Dds/Ds ratio of 0.64, corresponding to a red-
shift of 3.35, slightly higher than the reported redshift of 2.94. After the inversions
were completed, we have learned that the authors of the aforementioned work have
now spectroscopically confirmed the redshift of galaxy C to be 3.288 (T. Broadhurst,
private communication).

The right panel of figure 5.16 contains a prediction for the central image of galaxy
B, lying to the right of image A5. Inspecting figure 5.14 again, there indeed seems
to be an object at that location, which is especially clear in the F435W and F555W
filters. It is important to note however that the model also predicts that the central
image of galaxy C mentioned above, is located at almost the same location as the
central image of galaxy B. For this reason, the object that can be seen in figure 5.14,
is possibly a superposition of the central images of these two galaxies.

The predicted flux ratios for the quasar system – relative to the flux of Q1 – are
shown in table 5.1 and are compared to the flux ratios from other works. Although
no magnification information was used in the inversion, the general trend of the
predictions matches the observations. Also note that the relatively large uncertainties
show that the non-parametric technique can accommodate a wide number of flux
ratios, without taking microlensing into account.

Finally, the model presented here predicts a time delay of slightly over 1300 days
between images Q1 and Q4 of the quasar. This is still consistent with the constraint
presented in [33] which specifies that this delay should be over 1250 days. The Q1-Q5
time delay is predicted to be of the order of 1900 days.

5.2.6 Discussion

The system under study only provides a few sources at different redshifts, which, in
principle, still allows a generalized version of the mass sheet or steepness degeneracy
[69]. It is for this reason that the available time delay information is of particular
importance here, as it helps to break the degeneracy. The fact that the degeneracy
is broken well can be seen in the low dispersion in the outer regions of the surface
density (right panels of Figs. 5.12 and 5.17) which is of the order of Σ/Σcr ≈ 0.05,
indicating that in the genetic algorithm a similar mass sheet basis function is found
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5.2. SDSS J1004+4112

Prediction CASTLES1 I2005 F2008
Image F160W F555W F814W
Q1 1 1 1 1 1 1
Q2 1.03± 0.38 0.6486 1.0864 1.3428 0.732 0.724
Q3 0.54± 0.19 0.4487 0.4529 0.4656 0.346 0.592
Q4 0.29± 0.11 0.3191 0.6138 0.2489 0.207
Q5 0.032± 0.029 0.0114 0.00024 0.0047 0.003

Table 5.1: The predicted flux ratios of the quasar images, compared to data from the CAS-
TLES project, [45] and [33] respectively. Note that only in this last work, the combined effect
of the intrinsic variability of the source and the time delay has been taken into account. The
general trend of the predicted values matches the observations, even though no magnifica-
tion information was used in the inversion. The uncertainties show that this non-parametric
inversion method can create a wide variety of flux ratios, even without having to consider
microlensing.

in each individual reconstruction. It is interesting to compare the mass map of the
second inversion to the mass map obtained by [93]. The outer contours of their
reconstruction show a remarkably circular structure, causing a similar effect as the
mass sheet basis function used in our work. The contour steps in that figure would
correspond to Σ/Σcr = 0.22, indicating that a similar mass density will be found near
the edges of image system A as the inversion shown here.

Note that in the reconstruction of the projected mass density, relatively large struc-
tures seem to exist to the north and south of images A3 and A4. As already suggested
by the large associated standard deviations, one should not place much confidence in
the displayed shape of these features, as the mass in those regions can easily be re-
distributed without affecting any of the observable properties of the lensing system
using the monopole degeneracy. For the same reason it is extremely difficult to make
reliable statements about the nature of substructure that may be present near the
cluster center. One can only hope to make reliable predictions about the projected
density at the location of the images themselves, illustrating the need for lenses with
many multiply-imaged systems. Furthermore, to probe the core regions of clusters,
central images are of particular importance as is nicely illustrated by the difference
in profiles between the two inversions shown in this article.

When studying the constraints provided by the density at the image locations, we
find that the resulting best fit NFW bears great resemblance to the general cluster
configuration. As is often the case (e.g. [54]) the fit has a very similar orientation
as that of the central galaxy, which in this case also follows the general distribution
of the cluster galaxies. In a recent study, the fact that lensing clusters are often
over-concentrated was discussed [77]. Although the circularly averaged profile indeed
suggests that this may be the case in this cluster as well, the more reliable two-
dimensional fit yields an estimate of the concentration which is compatible with the

1http://www.cfa.harvard.edu/castles/
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expected value cvir ∼ 4 [79][14].
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–6–
Conclusion

This dissertation describes a method to extract information about the mass distribu-
tion in a gravitational lens system. The method is a so-called non-parametric lens
inversion procedure, as it allows the mass distribution to have a wide variety of fea-
tures, and no specific shape of the mass distribution is assumed. To do so, a large
number of basis functions are used, the weights of which are determined by a genetic
algorithm. The procedure uses Plummer basis functions, but is has been verified that
Gaussian basis functions yield similar results; square shaped basis functions appear to
be less suitable as they quickly cause complex caustic structures. With this in mind,
it is interesting that in [49] the point was made that when basis functions overlap,
the introduced correlation reduces the effective number of degrees of freedom.

Such a genetic algorithm allows one to specify the desired properties of a solution with
great flexibility. One only has to be able to tell which trial solution is better than
another, no assumptions about differentiability or even continuity of a goodness-of-fit
measure are required. Using what is called a multi-objective genetic algorithm one
can even specify different kinds of these fitness measures, which should be optimized
simultaneously. In the context of gravitational lensing, this allows one to use several
types of observations: the positions of the images, the region where no images are
seen, i.e. the null space, and time delays between the images for example. In prin-
ciple it should also be possible to extend this method to the weak lensing regime by
adding a fitness measure based on the predicted and measured shear, but this requires
further testing. The fitness criteria described here are based on physically motivated
arguments only, apart from the assumption that there is no mass structure outside
the square shaped region specified by the user, no assumptions are present.

The examples based on simulations shown in this thesis, illustrate that these types of
information can be used to learn about the lensing mass distribution. What exactly
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can be learned depends on the information at hand, as degeneracies play an important
role in lens inversion. For example, in tests using the few-sources situation, in the
beginning it was not clear why the size of the sources could not be retrieved. After
all, the presence of two sources should break the mass sheet degeneracy. Of course,
it is the generalized mass sheet degeneracy which is responsible for this.

The mass sheet degeneracy allows a scaled source to correspond to the same images,
as long as one rescales the lens mass distribution and adds a specific sheet of mass,
and is undoubtedly one of the most famous degeneracies in lensing. It was shown
in this dissertation that this degeneracy can be generalized to multiple sources, even
with different scale factors. An important fact is that rescaling a source is directly
coupled to the mass density at the location of the corresponding images. This means
that rescaling sources will necessarily alter the substructure of the lens. Therefore, it
is actually the prior information about the smoothness of the mass distribution which
breaks this degeneracy when there are multiple sources. In the method described here,
overlapping Plummer basis functions are used, which implicitly determine a level of
smoothness.

Another important degeneracy, here called the monopole degeneracy, allows one to
easily redistribute mass in between the images without changing any of the observable
properties of these images. This makes it clear that the amount of images and their
coverage of the image plane are an important factor, as one can only hope to learn
about the mass density at the location of these images. The importance of the local
density of the images was also mentioned in [19], but was not linked to the monopole
degeneracy. The monopole degeneracy seems to be under-appreciated: the only direct
application that can be found is in [113], where circularly symmetric modifications of
power-law models for PG 1115+080 were explored. Yet it is clear that the degeneracy
is an important aspect of any gravitational lens inversion, as it can be used to intro-
duce or remove many kinds of features, and can greatly enhance any uncertainties
involved.

These two degeneracies alone already make the need for lensing systems with a great
multitude of images clear. The method can also be applied to few-sources systems,
as was done for the lensing clusters, Cl 0024+1654 and SDSS J1004+4112. In this
case however, one has to be very careful when interpreting the results. For instance,
it was explicitly shown using the recovered mass distribution of Cl 0024+1654 that it
can easily be modified significantly and still yield the same predicted images.

In working with genetic algorithms, it has become clear that one has to be quite
specific about what constitutes a good solution and what does not. Otherwise, the
algorithm may evolve towards a solution which performs excellently according to its
fitness measure, but which does not have the desired properties at all. A clear example
is the prediction of extra images in systems with few images, if the null space is not
used as an extra constraint.

The images in gravitational lens systems clearly encode information about the mass
distribution of the lens, and genetic algorithms can help in extracting this information.
The results can be expected to be most accurate when the image plane is sampled
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well, but a general idea of how the mass is distributed can be obtained in few-sources
systems as well, given that all the information present is used effectively.
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–B–
Deflection of a light ray

To determine the physical path of a light ray, we have to find the solutions which
extremize the light travel time:

t =
1
c

∫ O

S

n(r)dσ

=
1
c

∫ O

S

dσ − 1
c

∫ O

S

2Φ(r)
c2

dσ

Suppose that the path is described by r(λ), in which λ ∈ [λS , λO] and the positions
of source and observer are given by:

rS = r(λS)

rO = r(λO).

The integral above then becomes

t =
1
c

∫ λO

λS

n (x(λ), y(λ), z(λ))

√(
dx
dλ

)2

+
(

dy
dλ

)2

+
(

dz
dλ

)2

dλ,

in which x(λ), y(λ) and z(λ) are the components of r(λ). We can rewrite this expres-
sion as

t =
1
c

∫ λO

λS

L

(
x(λ), y(λ), z(λ),

dx
dλ
,

dy
dλ
,

dz
dλ

)
dλ

in which
L(x, y, z, ẋ, ẏ, ż) = n(x, y, z)

√
ẋ2 + ẏ2 + ż2.
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Note that in this expression ẋ indicates the variable for which dx
dλ shall be substituted

in the integral.

Searching for a path for which δt = 0 is then equivalent to solving the differential equa-
tions which originate from the Lagrangian L. Working this out for the x-component
yields:

d
dλ

(
∂L

∂ẋ

)
=
∂L

∂x

⇔ d
dλ

n(r(λ))
dx
dλ

1√(
dx
dλ

)2
+
(

dy
dλ

)2

+
(

dz
dλ

)2
 =

∂n

∂x
(r(λ))

√(
dx
dλ

)2

+
(

dy
dλ

)2

+
(

dz
dλ

)2

.

Note that: √(
dx
dλ

)2

+
(

dy
dλ

)2

+
(

dz
dλ

)2

=
∣∣∣∣dr

dλ

∣∣∣∣ .
Similar expressions can be obtained for the y- and z-components, so that in general
one can write:

d
dλ

(
n(r(λ))

dr

dλ
1∣∣dr
dλ

∣∣
)

= ∇n(r(λ))
∣∣∣∣dr

dλ

∣∣∣∣
⇔
(

∇n(r(λ)) · dr

dλ

)
dr

dλ
1∣∣dr
dλ

∣∣ + n(r(λ))
d

dλ

(
dr

dλ
1∣∣dr
dλ

∣∣
)

= ∇n(r(λ))
∣∣∣∣dr

dλ

∣∣∣∣
⇔ [∇n(r(λ))− (∇n(r(λ)) · T (λ)) T (λ)]

∣∣∣∣dr

dλ

∣∣∣∣ = n(r(λ))
dT

dλ
.

In this expression we used

T (λ) =
dr

dλ
1∣∣dr
dλ

∣∣ .
It is clear that T (λ) is a vector tangent to the path, with unit length.

Since Φ � c2 one finds:

dT

dλ
= − 2

c2
[∇Φ(r(λ))− (∇Φ(r(λ)) · T (λ)) T (λ)]

∣∣∣∣dr

dλ

∣∣∣∣
= − 2

c2
∇⊥Φ(r(λ))

∣∣∣∣dr

dλ

∣∣∣∣ .
In this equation, ∇⊥Φ is the projection of ∇Φ on the plane perpendicular to the path
in a specific point.

Integrating the expression above then yields the result:

T (λO)− T (λS) = − 2
c2

∫ λO

λS

∇⊥Φ(r(λ))
∣∣∣∣dr

dλ

∣∣∣∣ dλ
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⇔ T S − TO =
2
c2

∫ O

S

∇⊥Φ dσ.
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–C–
Angular diameter distances

C.1 Introduction

In the research domain of gravitational lenses, one often has to supply angular di-
ameter distances to perform specific calculations. Unfortunately, there is no way to
measure such distances directly, but they have to be calculated from the observed
redshifts of astronomical objects.

Below, an isotropic and homogeneous universe described by the Friedmann-Robertson-
Walker (FRW) metric

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(k = +1, 0 or − 1),

will be assumed to describe our universe well.

C.2 Angular diameter distances in a FRW metric

Figure C.1 shows an observer in Euclidean space, looking at an object at distance D,
perpendicular to the line of sight and subtending an angle ∆θ. When the angle is
small, the following relation holds:

d ≈ ∆θD.

This is exactly the way an angular diameter distance in a general metric is defined:
the size of the object (at the time the light we receive now was emitted) must equal
the corresponding angle time the angular diameter distance.
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∆θ
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d
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Figure C.1: Euclidean space
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t e
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Figure C.2: FRW geometry

In a general FRW metric, the situation we are interested in is depicted in figure C.2.
The coordinate system is chosen in such a way that the observer is at the origin, the
object lies on a surface of constant φ and the radial coordinate of the endpoints is r.
Note that the coordinates of the object being viewed are fixed.

Suppose that the light rays emitted at a time te are received by the observer at this
instance, t0. The proper size of the object at te is simply

d = a(te)r∆θ.

On the other hand, the angular diameter distance D is defined in such a way that the
relation

∆θD = d

holds, which yields the following expression for the angular diameter distance:

D = a(te)r.

The radial coordinate r can be calculated by noting that a light ray traces a null
geodesic, so that the light rays emitted towards the observer obey the following equa-
tion:

c2dt2 = a(t)2
dr2

1− kr2
.

This leads to the following relations, depending on the specific geometry:

c

∫ t0

te

dt
a(t)

=
∫ r

0

dr′√
1− kr2

=


sin−1 r (k = 1)
r (k = 0)
sinh−1 r (k = −1)

.

At this point, it should be clear that to actually calculate angular diameter distances,
we have to know the evolution of the distance scale a(t).
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C.3 Dependence on cosmological parameters

The evolution of the distance scale in the FRW metric, is described by the following
equation:

ȧ(t)2 − 8πG
3

ρ(t)a(t)2 + kc2 = 0.

Assuming that the total energy density ρ can be split into three parts: the energy
density of the vacuum ρv, the energy density of matter ρm and the energy density of
radiation ρr. The previous equation can then be rewritten as follows:

ȧ(t)2 − 8πG
3

[ρv(t) + ρm(t) + ρr(t)] a(t)2 + kc2 = 0. (C.1)

The adiabatic expansion of the universe, provides additional information:

d
(
ρa3
)

= − p

c2
da3

⇔
(
ρ+

p

c2
da3
)

+ a3dρ = 0.

For matter, the energy density is dominated by the mass of the matter and the
pressure can be set to zero:

pm = 0

Assuming that matter, radiation and vacuum energy density evolve independently,
the following relations hold:

da3

a3
= −dρm

ρm

⇔ ln a3 = − ln ρm + constant

⇔ a3ρm = constant

⇔ a(t)3ρm(t) = a3
0ρ0m,

In which a0 = a(t0), the current scale factor of the universe. This way, we find an
expression for ρm(t) in terms of a(t):

ρm(t) =
(
a0

a(t)

)3

ρ0m.

For radiation, the equation of state is

pr =
1
3
ρrc

2,

leading to the following relation:

ρr(t) =
(
a0

a(t)

)4

ρ0r.
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If the energy density of the vacuum is constant (corresponding to a true cosmological
constant Λ), the relation

ρv(t) = ρ0v

holds, corresponding to the following equation of state:

pv = −ρvc2.

Using these relations, equation (C.1) can be rewritten as follows:

ȧ(t)2 − 8πG
3

[
ρ0m

(
a0

a(t)

)3

+ ρ0r

(
a0

a(t)

)4

+ ρ0v

]
a(t)2 + kc2 = 0.

Introducing the critical energy density

ρc =
3

8πG
H2

0

and writing
Ω =

ρ

ρc
,

this yields:

ȧ(t)2 −H2
0

[
Ω0m

(
a0

a(t)

)3

+ Ω0r

(
a0

a(t)

)4

+ Ω0v

]
a(t)2 +

kc2

H2
0

H2
0 = 0

Dividing the equation by a2
0 results in the expression(

ȧ(t)
a0

)2

−H2
0

[
Ω0m

(
a0

a(t)

)3

+ Ω0r

(
a0

a(t)

)4

+ Ω0v

](
a(t)
a0

)2

+
kc2

H2
0a

2
0

H2
0 = 0,

which can be simplified by introducing

R(t) =
a(t)
a0

and

Ω0k = − kc2

H2
0a

2
0

.

This way, we obtain

Ṙ(t)2 −H2
0

[
Ω0mR(t)−3 + Ω0rR(t)−4 + Ω0v

]
R(t)2 − Ω0kH

2
0 = 0

⇔ Ṙ(t)2 −H2
0

[
Ω0m

R(t)
+

Ω0r

R(t)2
+ Ω0vR(t)2 + Ω0k

]
= 0.
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Evaluating this expression at t0, one gets the following relation:

Ω0m + Ω0r + Ω0v + Ω0k = 1,

since

R(t0) =
a(t0)
a0

= 1

and

Ṙ(t0) =
ȧ(t0)
a0

= H0.

Parametrizing our ignorance of H0 by h:

H0 =
h

TH
where TH = (100 km s−1 Mpc−1)−1

and introducing

T =
t

TH
,

the evolution of an FRW universe is described by:(
dR
dT

)2

− h2

[
Ω0m

R(T )
+

Ω0r

R(T )2
+ Ω0vR(T )2 + Ω0k

]
= 0.

Previously, the vacuum energy density was assumed to be constant, but more generally
we can write:

pv = wρvc
2.

It is an easy exercise to obtain the following expression when using this modified
equation of state:(

dR
dT

)2

− h2

[
Ω0m

R(T )
+

Ω0r

R(T )2
+

Ω0v

R(T )1+3w
+ Ω0k

]
= 0 (C.2)

From this expression one easily sees that

dT
dR

=
1

h
√

Ω0m

R + Ω0r

R2 + Ω0v

R1+3w + Ω0k

,

which can be used to rewrite the integral at the end of the previous section:

c

∫ t0

te

dt
a(t)

= cTH

∫ T0

Te

dT
a0R(T )

= c
TH
a0

∫ R(T0)

R(Te)

dR
R

dT
dR

⇔ c

∫ t0

te

dt
a(t)

= c
TH
a0

∫ R(T0)

R(Te)

dR
R

1

h
√

Ω0m

R + Ω0r

R2 + Ω0v

R1+3w + Ω0k

.
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Noting that

R(Te) =
a(te)
a0

=
1

1 + z

where z is the observed redshift of the astronomical object, this can be written as

c

∫ t0

te

dt
a(t)

=
c

h

TH
a0

∫ 1

1
1+z

dR
R

1√
Ω0m

R + Ω0r

R2 + Ω0v

R1+3w + Ω0k

⇔ c

∫ t0

te

dt
a(t)

=
c

h

TH
a0

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2

. (C.3)

C.3.1 Flat space (k = 0)

In the k = 0 (and therefore Ω0k = 0) case, the radial coordinate r is simply given by

r = c

∫ t0

te

dt
a(t)

,

from which one finds:

r =
c

h

TH
a0

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w

.

Substituting this into the expression of the angular diameter distance, we get:

D =
cTH
h

a(te)
a0

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w

⇔ D =
1

1 + z

cTH
h

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w

C.3.2 Curved space (k 6= 0)

Using the definition of Ωk0

Ω0k = − kc2

H2
0a

2
0

,

we can express a0 as follows:

a0 =
cTH
h
|Ω0k|−

1
2 .

In the k = +1 case, the radial coordinate can be calculated in the following way:

sin−1 r =
c

h

THh

cTH

√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2
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⇔ sin−1 r =
√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2

⇔ r = sin

[√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2

]
.

In this case, the angular diameter distance is given by:

D = a(te)r =
a(te)a0

a0
r

=
1

1 + z

cTH

h
√
−Ω0k

sin

[√
−Ω0k

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2

]
.

A similar calculation for the k = −1 case yields:

D =
1

1 + z

cTH

h
√

Ω0k

sinh

[√
Ω0k

∫ 1

1
1+z

dR√
Ω0mR+ Ω0r + Ω0vR1−3w + Ω0kR2

]
.

C.4 Summary

It is easy to generalize these results to obtain an expression for the angular diameter
distance between objects at redshifts z1 and z2 (z1 < z2):

D(z1, z2) =
1

1 + z2

cTH
h

×



1√
−Ω0k

sin

[√
−Ω0k

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR+ Ω0r + Ω0vR

1−3w + Ω0kR
2
)− 1

2

]
(k = +1)

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR+ Ω0r + Ω0vR

1−3w
)− 1

2 (k = 0)

1√
Ω0k

sinh

[√
Ω0k

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR+ Ω0r + Ω0vR

1−3w + Ω0kR
2
)− 1

2

]
(k = −1).
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–D–
Circularly symmetric mass

distribution

The expression for the deflection angle for a general projected mass distribution Σ is:

α̂(ξ) =
4G
c2

∫
Σ(ξ′)(ξ − ξ′)
|ξ − ξ′|2

dξ′.

In case the mass distribution Σ(ξ) is circularly symmetric, this equation can be sim-
plified. Choosing the x-axis parallel to ξ, one has:

ξ − ξ′ = ξex − ξ′(ex cosϕ+ ey sinϕ)

in which ϕ is the angle between ξ′ and the x-axis and ξ′ is the length of the same
vector.

In taking the integral, the y-component will average out to zero. Supposing that the
projected density Σ is circularly symmetric:

α̂(ξ) = ex
4G
c2

∫ ∞

0

dξ′
∫ 2π

0

dϕ
(ξ − ξ′ cosϕ)ξ′Σ(ξ′)
ξ2 + ξ′2 − 2ξξ′ cosϕ

.

Calling α̂(ξ) = α̂(ξ)ex, the expression above becomes:

α̂(ξ) =
4G
c2
ξ

∫ ∞

0

dξ′Σ(ξ′)ξ′
∫ 2π

0

dϕ
1

ξ2 + ξ′2 − 2ξξ′ cosϕ

− 4G
c2

∫ ∞

0

dξ′Σ(ξ′)ξ′2
∫ 2π

0

dϕ
cosϕ

ξ2 + ξ′2 − 2ξξ′ cosϕ
.
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Considering first ∫ 2π

0

dϕ
1

ξ2 + ξ′2 − 2ξξ′ cosϕ

and calling eiϕ = z, one has:

dϕ =
dz
iz

cosϕ =
z + z−1

2

⇒
∫ 2π

0

dϕ
1

ξ2 + ξ′2 − 2ξξ′ cosϕ
= − 1

iξξ′

∮
dz

z2 − z
(
ξ
ξ′ + ξ′

ξ

)
+ 1

= − 1
iξξ′

∮
dz(

z − ξ
ξ′

)(
z − ξ′

ξ

) .
For the singularity z = ξ

ξ′ , the residual is

Res

(
z =

ξ

ξ′

)
=

1
ξ
ξ′ −

ξ′

ξ

. (D.1)

The singularity z = ξ′

ξ has residual

Res

(
z =

ξ′

ξ

)
=

1
ξ′

ξ −
ξ
ξ′

. (D.2)

Since the integration path is a circle with unit radius in the complex plane, one has
to use residual (D.1) when ξ < ξ′ and residual (D.2) when ξ > ξ′.

Now consider ∫ 2π

0

dϕ
cosϕ

ξ2 + ξ′2 − 2ξξ′ cosϕ

and again use the substitution eiϕ = z. One then finds:∫ 2π

0

dϕ
cosϕ

ξ2 + ξ′2 − 2ξξ′ cosϕ
=

1
2i

∮
(z + z−1)dz

z(ξ2 + ξ′2)− ξξ′(z2 + 1)
= − 1

2iξξ′

∮
(z2 + 1)dz

z
(
z − ξ

ξ′

)(
z − ξ′

ξ

) .
The singularity at z = 0 then gives:

Res(z = 0) = 1. (D.3)

For the singularity z = ξ
ξ′ , the residual is:

Res

(
z =

ξ

ξ′

)
=

ξ2

ξ′2 + 1
ξ
ξ′

(
ξ
ξ′ −

ξ′

ξ

) =
ξ2 + ξ′2

ξ2 − ξ′2
(D.4)

and for the z = ξ′

ξ singularity, one finds the residual

Res

(
z =

ξ′

ξ

)
=
ξ′2 + ξ2

ξ′2 − ξ2
. (D.5)
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In case ξ < ξ′ one has to use residuals (D.3) and (D.4), if ξ > ξ′ residuals (D.3) and
(D.5) should be used.

One then finds the expression:

α̂(ξ) =
4G
c2
ξ

∫ ξ

0

Σ(ξ′)ξ′dξ′
∫ 2π

0

dϕ
ξ2 + ξ′2 − 2ξξ′ cosϕ

+
4G
c2
ξ

∫ ∞

ξ

Σ(ξ′)ξ′dξ′
∫ 2π

0

dϕ
ξ2 + ξ′2 − 2ξξ′ cosϕ

− 4G
c2

∫ ξ

0

Σ(ξ′)ξ′2dξ′
∫ 2π

0

cosϕdϕ
ξ2 + ξ′2 − 2ξξ′ cosϕ

− 4G
c2

∫ ∞

ξ

Σ(ξ′)ξ′2dξ′
∫ 2π

0

cosϕdϕ
ξ2 + ξ′2 − 2ξξ′ cosϕ

= −8πG
c2

ξ

∫ ξ

0

Σ(ξ′)ξ′
1
ξξ′

1
ξ′

ξ −
ξ
ξ′

dξ′ − 8πG
c2

ξ

∫ ∞

ξ

Σ(ξ′)ξ′
1
ξξ′

1
ξ
ξ′ −

ξ′

ξ

dξ′

+
8πG
c2

∫ ξ

0

Σ(ξ′)ξ′2
1

2ξξ′

(
1 +

ξ′2 + ξ2

ξ′2 − ξ2

)
dξ′ +

8πG
c2

∫ ∞

ξ

Σ(ξ′)ξ′2
1

2ξξ′

(
1 +

ξ2 + ξ′2

ξ2 − ξ′2

)
dξ′

= −8πG
c2

ξ

∫ ξ

0

Σ(ξ′)ξ′dξ′

ξ′2 − ξ2
− 8πG

c2
ξ

∫ ∞

ξ

Σ(ξ′)ξ′dξ′

ξ2 − ξ′2

+
8πG
c2

∫ ξ

0

Σ(ξ′)ξ′2
1
ξξ′

ξ′2

ξ′2 − ξ2
dξ′ +

8πG
c2

∫ ∞

ξ

Σ(ξ′)ξ′2
1
ξξ′

ξ2

ξ2 − ξ′2
dξ′.

The second and fourth terms cancel, and adding the two other terms gives:

α̂(ξ) =
8πG
c2

∫ ξ

0

Σ(ξ′)
ξ′3

ξ − ξξ
′

ξ′2 − ξ2
dξ′

=
8πG
c2

∫ ξ

0

Σ(ξ′)
ξξ′
(
ξ′2

ξ2 − 1
)

ξ2
(
ξ′2

ξ2 − 1
) dξ′

=
8πG
c2ξ

∫ ξ

0

Σ(ξ′)ξ′dξ′.

Finally, one obtains the following expression:

α̂(ξ) =
4GM(ξ)
c2ξ

in which

M(ξ) = 2π
∫ ξ

0

Σ(ξ′)ξ′dξ′
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is the projected mass within a radius ξ. Since, by construction, one has

ex =
ξ

ξ

one can write:

α̂(ξ) =
4GM(ξ)ξ
c2ξ2

.
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–E–
Implementation

The work described in this dissertation would not have been possible without writing
supporting software. Below, a brief overview can be found of some of the major
components and utilities. All software was programmed in the C++ programming
language.

E.1 MOGAL

To make experimenting with genetic algorithms easier, a separate Multi-Objective
Genetic Algorithm Library (MOGAL) was written. To write a genetic algorithm,
the user only has to implement a representation of the genome, fitness measures,
reproduction rules etc. In short, only the code that is specific to the problem under
study needs to be implemented. The fitness calculation can be done either locally
on a single CPU, or can be distributed over a number of CPUs, as desired by the
user starting the genetic algorithm. As described in the text, the non-dominated sort
routine necessary in a multi-objective algorithm, will be done on the GPU using the
CUDA language if possible.

E.2 GRALE

The GRAvitational LEns (GRALE) library contains the essential components for
simulating gravitational lens systems, and for inverting them, i.e. it contains the
implementations of the genetic algorithms described in the dissertation. In case one
has to write a very specific program, this library can be very useful. For most purposes

143



Appendix E. Implementation

however, the tool GRALESHELL can be used, a program which allows one to easily
access much of the functionality of the GRALE library without having to write a
C++ program.

To visualize the result of a lens inversion, it may be useful to calculate the deflection
field and its derivatives on a fine grid in the lens plane. The end result of an inversion
can be quite complex, being the average of several individual inversion which consist
of many hundreds of basis functions. For this reason, such a calculation can be done in
a distributed way if the user desires so. Each CPU will then calculate these quantities
for a specific part of the lens plane.

E.3 GRALESHELL

For most purposes, a text-mode shell around the GRALE library called GRALESHELL
can be used. It contains commands to simulate gravitational lens systems. The user
can specify several simple lens types, like the isothermal sphere models or the Plum-
mer model, or can create a composite lens, i.e. a lens consisting of a superposition of
several of these models, translated and rotated with respect to each other. Commands
are available to visualize such a lens, using a 3D plot or a profile plot for example. Sev-
eral source shapes can be used: a circular source, an elliptical one, a polygon shaped
one, or even a pixelized source. The listing below shows a few example commands for
simulating gravitational lenses.

l e n s /new/ n s i e 1272.46 1300 0 .8 1 .5
l e n s / save mylens . l en sdata
l e n s p l a ne /new/ l o c a l −40 −40 40 40 1024 1024
l e n s / p r o f i l e m a s s p r o f i l e . txt 40 0 0 ∗ ∗ no

s r cp l ane /new 1746.22 878 .63
sourc e s /add/ e l l i p s e 0 10 5 1 30 1 .1 0 .6 yes
imgplane /new/ l e n s p l ane
imgplane / p l o t / gnuplot images1 . gnuplot yes yes yes yes X Y yes
imgplane / t imedelay 0 10 5

To invert gravitational lens data, the program contains commands to specify the input,
to specify the grid on which the basis functions should be placed, and to perform the
actual inversion. In the last step, the user can choose between an inversion which
uses only the local CPU and one which is executed in a distributed way. The listing
below shows a few commands which can be used to invert lensing data.

imgdata/new/ po in t s
−24.72085695 −87.40427296
27.49850916 14.17810948
24.20549548 29.67064975
end
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E.4. Point selection utility

imgdata/ l i s t /add 1785 1233.52

imgdata/new/ po in t s
−7.309501299 −76.20927696
23.88425492 12.48020577
12.98410719 15.79977737
end

imgdata/ l i s t /add 1775.42 1114 .7

g r id /new/ uniform 0 0 250 15
i n v e r t / g r id / l o c a l 1117 .87 0 po in tove r l ap 256 ∗ ∗ ∗ ∗ ∗ ∗ ∗ yes
l e n s / save inv1 . l en sdata

E.4 Point selection utility

In some cases it may be helpful to identify matching points in different images of
the same source. For this reason, a point selection utility was created, of which a
screenshot can be seen in figure E.1. The tool allows the user to select points in the
input images, or points can be selected in the source plane if an initial reconstruction
is available. This last feature can be helpful to identify additional features, since they
may be more easily identified if the images are projected back onto the source plane,
where they should originate from the same source.

E.5 GRALE Editor

To make it easier to select different images in real observed lenses as input for the
inversion routine, the GRALE Editor was written. It allows one to load one or more
FITS1 images, using the World Coordinate System (WCS) information stored therein.
As it is often easier to identify images in a color picture, the user can also load a PNG
or JPG image and place it on top of a FITS image. If this picture has the same
dimensions, i.e. it has the same pixel width and height, it is transformed to match
the FITS image. If this is not the case, the user can select points in the FITS image
which should match points in the PNG or JPG image and allow the program to
compute the necessary transformation. Figure E.2 shown an overlay of a color image
of the cluster Abell 1689 onto a FITS image of the same cluster which was made in
this way.

The program allows the user to select points which should belong to different images
in a system. It can also be specified which points should correspond to each other, like
in the point selection utility, albeit somewhat less advanced. Time delay information
can also be added to a specific point. Points can also be triangulated, allowing one

1Flexible Image Transport System. A file format used to store astronomical observations.
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Appendix E. Implementation

Figure E.1: Screenshot of the point selection utility. The right shape is the image as seen
in the image plane. When an initial reconstruction is used to project the image back onto
the source plane, this results in the shape on the left. Different images can be selected by
means of the tabs at the top. Each color indicates a different point group, i.e. it identifies a
point in several images that should originate from the same point in the source plane.
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to manipulate grids which can be used for the null space fitness or critical line fitness
for example. Figure E.3 shows points selected in two images of the same blue galaxy
in the gravitational lensing cluster Cl 0024+1654.
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Figure E.2: The GRALE Editor was used to overlay a color image of the Abell 1689 cluster
onto a FITS image of the same cluster.
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Figure E.3: This figure shows two images of the same blue background galaxy in the lensing
cluster Cl 0024+1654, in which points were selected to be used in the inversion routine.

149



Appendix E. Implementation

150



Bibliography

[1] H. M. Abdelsalam, P. Saha, and L. L. R. Williams. Nonparametric Reconstruc-
tion of Abell 2218 from Combined Weak and Strong Lensing. AJ, 116:1541–
1552, October 1998.

[2] C. Alcock, R. A. Allsman, D. R. Alves, T. S. Axelrod, A. C. Becker, D. P.
Bennett, K. H. Cook, N. Dalal, A. J. Drake, K. C. Freeman, M. Geha, K. Gri-
est, M. J. Lehner, S. L. Marshall, D. Minniti, C. A. Nelson, B. A. Peterson,
P. Popowski, M. R. Pratt, P. J. Quinn, C. W. Stubbs, W. Sutherland, A. B.
Tomaney, T. Vandehei, and D. Welch. The MACHO Project: Microlensing Re-
sults from 5.7 Years of Large Magellanic Cloud Observations. ApJ, 542:281–307,
October 2000.

[3] J.-P. Beaulieu, D. P. Bennett, P. Fouqué, A. Williams, M. Dominik, U. G.
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