
Copyright c©2004 Computer Graphics Society (CGS)

A Framework for User Control on
Stylised Animation of Gaseous Phenomena
Fabian Di Fiore Johan Claes Frank Van Reeth

Limburgs Universitair Centrum
Expertise Center for Digital Media

Universitaire Campus
B-3590 Diepenbeek, Belgium

e-mail: {fabian.difiore, johan.claes, frank.vanreeth }@luc.ac.be

Figure 1: Some snapshots of a barbecue rendered in a ‘cartoon-ish’ style.

Abstract
We present a novel approach to create stylised
animations of gaseous phenomena. Existing
computer-assisted systems employ computational
physics-based approaches which generate 3D
effects. Unfortunately, these effects usually don’t
look like traditional animation, nor can the user
freely design the behaviour of the animation.

Our approach combines benefits from existing
2D and 3D approaches integrating them in an
unusual but effective way. Extending the appli-
cation of particle systems, the particle paths vary
both with time and with the 3D viewing direction.
Rendering features such as smoothly varying
common outlines and speedlines help to preserve
the animator’s artistic style. The incorporation
into a structured 2D modelling and animation
environment enables a stylised animation exhibit-
ing a convincing frame-to-frame coherence and
allows 3D camera movement without aliasing
artefacts.

The provided solution demonstrates how an
animator can remain in full control of a stylised
process for effects animation and how one
framework is suitable for a wide range of effects.

Keywords: gaseous phenomena, stylised
animation, computer-assisted animation, non-
photorealistic rendering, particle systems

1 Introduction
Traditionally, stylised animations exhibit objects
and characters with a hand-drawn look and resem-
ble real life without trying to be an exact copy
of reality. However, characters and objects are
only parts of stylised animation; animated effects
such as water, fire and smoke add realism — in
a stylised manner — and make the whole more
vivid.

The production of high-end feature films counts
with enough resources to enable dedicated pro-
grammers and animators working closely together
in an elaborate process of trial and error to achieve
outstanding effects. In our research, we look for
solutions to be used in smaller-scale productions
where animators have to find their way more inde-
pendently. Except from the traditional animation
channel, we also target stylised effects for virtual
worlds which due to the ever-increasing availabil-
ity of high-bandwidth communications become
more and more common-place.

Nowadays, for our targeted kind of productions
gaseous phenomena are either drawn frame by
frame (usually in short loops) or one has to revert
to 3D computer generated effects and place these
effects as layers over the main scene [1]. Our goals
are quite different, as we want to offer animators
full control over every aspect of a lively animation
and to integrate these effects seamlessly into the
rest of their artwork.

To establish these goals, we present a hybrid
approach that combines existing 2D and 3D tech-

1

Copyright c©2004 Computer Graphics Society (CGS)
niques. On the one hand, necessary 3D informa-
tion is incorporated by letting the animator draw
the animation paths and acceleration curves. This
is necessary to provide for frame-to-frame coher-
ence. On the other hand, structured 2D modelling
and animation techniques are used to preserve the
animator’s creative freedom and to create convinc-
ing 3D-alike animations starting from pure 2D in-
formation.

This paper is organised as follows. We start with
an overview of related work on approaches involv-
ing explicit user control, as well as approaches ex-
ploiting physics based fluid dynamics. Then, mod-
elling and animation in structured 2D is elucidated,
followed by the central theme of our paper, ren-
dering and animating stylised gaseous phenomena.
We end with some clarifying results, our conclu-
sions and topics for future research.

2 Related Work

2.1 User-controlled Behaviour
In stylised animation (and many other cases), re-
alistic behaviour is not always desired, but there’s
a need for fake, yet very impressive or dramatic
effects [2].

An appealing procedural paradigm for stylised
animation of gaseous phenomena is due to Jin-
hui Yu [3, 4, 5]. He constructs cartoon effects by
simulating the hand-drawing process (relying on
reverse-engineering animation practices) through
synthetic, computational means. Although this
system emulates the stylish appearance and look
and feel of traditional animation, little freedom is
preserved for the animator: all cartoon effects are
bound by fixed procedures with no possibility to
influence the behaviour.

For the animated feature film‘The Prince of
Egypt’ Patrick Witting presented a computational
fluid dynamics system to produce smoke, water,
and other effects [1]. Images or animation se-
quences are used to initialise temperature fields
which cause dynamic buoyancy-driven vortices to
evolve. Initially the animation is driven by the
animators, since they are responsible for supply-
ing these images. A major drawback, however,
is that this freedom only counts at the start of
the animation as the animator is limited to set
up the system (i.e. supplying one or more initial
images) after which physically accurate equations
— time-dependent compressible Navier-Stokes —
take over. As a result, the animator only has con-
trol at the start of the animation while the rest of
the animation is guaranteed to be ‘too’ realistic.
Also, this approach is less suited for a stylised car-
toon look, as the sharp outlines get smoothed out
by the diffusion process.

For another feature film, Lamorlette and Fos-
ter published a system to control the behaviour
of physically based fire [6]. They also argue that
physics-based simulations are not well fit for an
artistic environment, as such simulations are too
slow and difficult to control. Hence, they devel-
oped a fire animation system with eight stages
which is built up from single flames modelled on
a natural diffusion flame. This tool is effective be-
cause many stages can either be directly controlled
by an animator or driven by a physics-based mode.
However, the focus of this tool is on just one par-
ticular gaseous phenomenon and involves a quite
elaborate workflow.

Another type of animator controlled behaviour
was described by Treuille et al., who started from
user-specified key frames to direct smoke anima-
tions [7]. There, the animator specifies smoke den-
sity and velocity key frames while an optimisation
process determines the appropriate wind forces
needed to satisfy the constraints. In this approach,
the animator has a lot of control; however, this is
heavily related to the amount of key frames used.
That is, between every two key frames a set of pa-
rameterised forces comes into play to produce a re-
alistic simulation that best matches the animator’s
goals. Consequently, the only guarantee the ani-
mator has is that the animation will pass ‘through’
the defined key frames, but it is unpredictable be-
tween two consecutive key frames.

2.2 Physics-based Realistic Behaviour
Computational fluid dynamics can create convinc-
ing dynamic gaseous simulations. There is a con-
sensus that the Navier-Stokes equations are an ad-
equate model for fluid flow. This set of differential
equations governs the motion of a fluid, express-
ing conservation of mass, linear momentum and
energy for general motions.

Foster and Metaxas were among the first to pro-
duce good-looking results of animated gasses and
fluids using the Navier-Stokes equations [8]. Jos
Stam improved on their results and proposed an
implicit, semi-Lagrangian technique for updating
the grids, resulting in much simpler computations
that were guaranteed to be stable [9]. These algo-
rithms were extended by many researchers, for ex-
ample by Fedkiw et al., optimising the techniques
for simulating smoke [10].

Very recently, Selle et al. described a system to
render smoke in a cartoon style [11]. They dis-
played particles generated by a dynamic fluid flow
simulation (Fedkiw et al. [10]), using depth dif-
ferences in the image buffer to calculate the posi-
tion of cartoon outlines, analogous to Deussen en
Strothotte’s tree rendering algorithm [12]. They
introduced rotated and stretched particles, which
indicate the flow better and obtained good-looking

2

Copyright c©2004 Computer Graphics Society (CGS)
results of smoke colliding with a ceiling. However,
concerning the rendering and compared to our ap-
proach, drawbacks are that aliasing artefacts can
not be avoided (due to an aliased depth buffer), it
is difficult to control varying outline thicknesses,
and viewpoint changes loose frame-to-frame co-
herence.

Such physics-based approaches can produce
very appealing and realistic results. However,
from a stylised animation point of view, an im-
portant drawback is that the user has little influ-
ence on the behaviour of the animation. One may
manipulate some initial parameters (such as vis-
cosity, location, quantity, . . .) but it is extremely
hard to predict if and how the animation is altered
by these changes. Moreover, the high computa-
tion and memory costs make these techniques less
appropriate for an interactive trial-and-error ap-
proach of animators trying to engineer their best
shot.

2.3 Simulated Realistic Behaviour
In contrast to taking resort to computational fluid
dynamics, many approaches use simpler and com-
putationally less expensive methods.

For instance, King et al. presented a technique
to animate amorphous materials on graphics hard-
ware with dedicated texture memory [13]. Object
dynamics are achieved using procedural animation
techniques while texture cycling is used to create
local and global dynamics.

Many other approaches focus on just one par-
ticular gaseous phenomenon, often coupled with
obliged movements. Dobashi et al. propose a
simple, efficient method for animation of clouds
[14]. Cloud evolution is simulated using a cellu-
lar automaton while the dynamics are expressed
by several transition rules. Perlin and Neyret ex-
tendedPerlin Noiseso that shaders that make use
of it can be animated over time to produce flow
textures with a swirling quality [15]. Recently,
Raghavachary and Benitez used several existing
commercial packages to construct a painterly wall
of fire for the animated feature film‘Spirit – Stal-
lion of the Cimmaron’[16].

Contrary to fluid dynamics, simple physics-
based or heuristic approaches offer the user a cer-
tain degree of control and can be rendered quickly.
However, often changes to the implementation
have to be made in order to really control the ani-
mation or to increase the variety of stylised effects.
Eventually, one ends up with a collection of au-
tonomous dedicated systems. Moreover, none of
the discussed approaches seems to be easily adapt-
able to generate qualitative stylised animation.

To summarise, physics-based algorithms and
their parameters are very hard to control and hence
can realise only a crude approximation of the fake

behaviour the animator tries to achieve. Procedu-
ral approaches, on the other hand, deliver the look
and feel of traditional animation, but at the expense
of the animator’s freedom as the fake behaviour is
strongly bound by fixed procedures.

3 Our Approach
Considering traditional hand-drawn animation
from an artist’s standpoint; preserving shapes, get-
ting perspective right and ensuring frame-to-frame
coherence are major problems [17]. Existing soft-
ware to assist traditional animation either lacks
the 3D representation needed to tackle this kind
of shortcomings, or imposes too many constraints
hampering the animation artists’ creativity.

The novelty of our approach lies in how we
combine benefits from 2D and 3D techniques.
Necessary 3D information — required for frame-
to-frame coherence and a correct drawing order —
is incorporated by having the animator draw time
and view-dependent 2D animation paths and ac-
celeration curves. On the other hand, we preserve
the animator’s artistic style by clearly distinguish-
ing between a structured 2D modelling phase and
a separate animation phase. This is similar to the
3D animation process and has been proven to be
very useful for the purpose of creating convincing
3D-like animations starting from pure 2D draw-
ings [18, 19].

3.1 Modelling and Animating in
Structured 2D

This section briefly summarises our previous work
in which we defined a structured 2D method for
automatic in-betweening [18].

Considering 2D animation from a technical
standpoint, two different categories can be distin-
guished: (i) transformations in a plane parallel to
the drawing canvas (theXY plane), and (ii) trans-
formations outside the drawing plane, especially
all rotations around an axis different from theZ-
axis.

The former category of transformations is rela-
tively easy to deal with, whereas the latter is the
main cause of all the trouble in automating the
in-betweening process (i.e. the underlying sub-
problems of silhouette changes as well as self-
occlusion). It is in the latter type of animation
where the 3D structure comes into play that is un-
derlying the objects and characters in traditional
animation (and which is present in the animator’s
— and viewer’s — mind), but which is not present
in the 2D drawings.

To tackle this without introducing too much
3D information, we developed a solution based
on structured 2D modelling and animation tech-
niques. This is implemented as a multi-layered

3

Copyright c©2004 Computer Graphics Society (CGS)
system. At level 0, objects are modelled as sets
of depth-ordered 2D drawing primitives (e.g. sub-
division curves). Level 1 manages and processes
explicit 2D modelling information and is funda-
mental in the realisation of transformations out-
side the drawing plane: for each set of ‘important’
x-y-rotations of the object relative to the virtual
camera, the animator draws a set of ordered 2D
primitives. This is functionally comparable to the
extreme frames in traditional animation [17, 20].
Level 2 incorporates 3D information by means of
3D skeletons or approximate 3D objects, while
level 3 offers the opportunity to include high-level
tools (for example a deformation tool or a sketch-
ing tool).

Multi-level 2D strokes, interpolation techniques
and on-the-fly resorting are used to create convinc-
ing 3D-like animations starting from pure 2D in-
formation. Unlike purely 3D-based approaches,
the resulting animations still have many lively as-
pects akin to 2D animation.

This structured-2D approach (i.e. explicit 2D
modelling and automatic in-betweening) is the
starting-point of our current paper, where we in-
vestigate how to integrate turbulently moving 3D
information, concentrating both on user control
and on flicker-free stylised rendering.

3.2 Modelling Gaseous Phenomena
Incorporating 3D Information: Animation
Flow. For many years, particle systems have
been employed successfully to get flexible simu-
lations/animations representing gaseous phenom-
ena [21]. Particles or particle clusters are being
moved through the animation space according to
certain physics-based laws and directly rendered
to the screen. Recently, Ilmonen and Kontkanen
defined asecond order particle systemas an exten-
sion to the classical particle system in which, be-
sides the visual particles, the particle sources and
force generators are subject to the forces as well
[22].

In our approach we employ a variant of asecond
order particle systemto represent gaseous phe-
nomena. The physics-based laws being respon-
sible for the motion of the particles are replaced
by time and view dependent drawn versions of the
animation path (i.e. trails particles should follow)
and drawn curves representing the particles’ accel-
eration of speed. This way, the animator is able to
create more aesthetically pleasing animations in an
easy and rapid way.

For creating an animation path, the animator just
draws one or more strokes indicating the flow of
particles. In order to achieve convincing 3D-like
animations, time and view-dependent versions of
the path can be modelled. All these different ver-
sions can be regarded as extreme frames [17] and

will be used by our in-betweening method in the
animation phase. Figure 2 depicts an example of
a time-dependent animation path drawn by a user.
As one can see, animation paths can take any free-
form shape the animator is bearing in mind. The
boundaries of this fat free-form shape actually re-
flect the boundaries and movement of the trails that
the visual components are allowed to follow.

Each 2D animation path gets ‘inflated’ to a 3D
trajectory. We use an adaptation of the gesture-
based sketching interface (TEDDY) presented by
Igarashi et al. in which 3D polygonal objects are
constructed by inflating the region surrounding the
silhouette, making wide areas fat and narrow ones
thin [23]. In our approach, we start with two drawn
boundary paths in 2D. For each particle, first a path
is chosen that is some (randomly generated) per-
centage halfway between these two drawn bound-
ary paths. Then, this path is also translated in the
direction perpendicular to the drawing plane, cre-
ating a 3D path. This perpendicular translation is
given by another random value, in such a way that
the volume containing all paths will form a 3D vol-
ume similar to Igarashi’s volumes.

So, the trajectories the particles will follow are
entirely defined by the animator in a familiar way.
Via pure 2D input, necessary 3D information is
generated, which helps preserve the overall shape
and to ensure frame-to-frame coherence.

(a) (b) (c)

Figure 2: Examples of a time-dependent animation
path drawn by the animator. a) Timet0.
b) Timet1. c) Timet2.

In addition, acceleration curves define how the
particles are accelerated on their way along the an-
imation path. This allows the animator better to
control the animation and also permits all kinds
of naturaland ‘unconventional’ behaving anima-
tions which otherwise are too cumbersome or even
impossible using existing approaches. Moreover,
as the system gives instantaneous visual feedback,
the user can ‘polish up’ the animation at runtime.
The acceleration curves attributed to the animation
paths of figure 2 are shown in figure 3.

Finally, some random ‘deviation parameters’
are assigned to each particle, including speed de-
viation, orientation deviation and mass’ influence.
These ‘deviation parameters’ prevent the particles’
flow from looking artificial. As a result, particles
can for example diverge from the trails bounded by
the animation path.

4

Copyright c©2004 Computer Graphics Society (CGS)

(a) (b) (c)

Figure 3: Examples of a time-dependent acceler-
ation curve specified by the animator.
These curves are attributed to the anima-
tion paths of figure 2. a) Timet0. b) Time
t1. c) Timet2.

Structured 2D Modelling Information: Visual
Components. Instead of modelling the amor-
phous structure at once, we have the basic visual
components (flames, drops, puffs, ‘speedlines’,
. . .) drawn by the animator independent of the
animation path. In this way, the animator draws
a stylised repository of the required basic gaseous
components — including view-dependent versions
— which does not depend on the underlying model
and is highly reusable.

Figure 4 shows some extreme frames (i.e. com-
bination of viewpoint and moment in time) of
gaseous components. Notice that neither of
the depicted elements is modelled true-to-nature.
Moreover, depending on the extreme frame, the
same component can change shape, colour, size,
opaqueness, . . .

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Some extreme frames of gaseous com-
ponents. Note that for illustrative pur-
poses all components are enlarged. a–
b) The same flame at different ages. c–
d) Drop of water as seen from different
viewpoints. e–f) Cloud of smoke at dif-
ferent moments in time. g) Foam. h)
Speed line indicating the animation flow.

3.3 Animating Gaseous Phenomena
In the previous section we introduced the incorpo-
ration of 3D information by means of modelled an-
imation paths and acceleration curves, and the sep-
arate modelling of the basic visual gaseous compo-
nents.

This section shows how gaseous phenomena can
be animated in a stylised way using this 3D infor-
mation and repository of gaseous components.
An overview of the rendering process is given in
listing 1.

Draw(frame f)
for each gaseous phenomenon,gi , do

inflateap2D
gi

to a 3D trajectory
read key frame information
generate in-between 3D trajectory,ap3D

gi

generate in-between 2D acceleration curve,ac2D
gi

Process Particles(particlesp3D
gi

)
end for
sort all particlesp3D

g1..gG

Draw Particles(p3D
g1..gG

)

Listing 1: Overview of the drawing process.

Consider an arbitrary gaseous phenomenongi at
frame f .

As explained in previous section, before the ani-
mation, each 2D animation path first gets ‘inflated’
to a 3D trajectory.

During the animation, for each frame, we first
parse the view-dependent and time-dependent key
frame information specified by the animator. Typ-
ically, this information consists of a desired ori-
entation, position and age of the animation path.
This information then gets streamed to our in-
betweening algorithm which creates an in-between
3D trajectory,ap3D

gi
, and an in-between 2D accel-

eration curve,ac2D
gi

.

Next, 3D particles,p3D, are emitted into these
trajectories (listing 2(top)). First,N new parti-
cles are emitted to replace the ones that ‘finished’
the animation. This is a user-controlled option
that can be used to ensure a continuous fluent an-
imation. Then, for each new particlep3D

n , a ran-
dom 2D component,p2D

n is taken from the ani-
mator’s repository. From now on, this structured
2D component is attributed to its 3D counterpart
for its life span. After all new particles have been
added to the current pool of particles, the pool
gets updated. As mentioned in the previous sec-
tion, the process of updating each particlep3D

j ba-
sically resembles the conventional way [21] but in
which user-defined animation paths and accelera-
tion curves are used instead of physics-based or
heuristic methods. Furthermore, we also store the
depth, orientation and position for later use.

Once all particles have been processed for all
animation paths, we need to determine the current
drawing order of all visual components since we
are working with 2D objects which contain no ex-
plicit depth information. This drawing order can
directly be derived from the depth data that we
stored for eachp3D

j in the processing step.

5

Copyright c©2004 Computer Graphics Society (CGS)
Next, for each particle, starting from the back

to the front, an in-between version of the cor-
responding 2D gaseous component is calculated
(listing 2(bottom)). Take for example particlep3D

j .
Given the co-ordinates of its position and orien-
tation in world space, the absolute rotations in
screen space around the vertical (Y) and horizon-
tal (X) axis are calculated. Also, the current point
in time is determined. This information (current
viewpoint, moment in time) is then streamed to
our in-betweening algorithm which creates an in-
between 2D particle,p2D

j , that actually reflects
the animator’s artistic style. After that, we put it
into the right place in screen space. This requires
only affine translations andZ-rotations. As a re-
sult, depending on the viewpoint and moment in
time, eachp2D

j will change shape, position, ori-
entation, colour, size, opaqueness, . . . Finally, the
particle/component is drawn on top of the others.
As a result, we achieve an animation that does not
suffer from temporal aliasing, while reflecting the
user’s style.

Process Particles(particlesp3D)
emitN new particles
for eachnew particle,p3D

n , do
assign random 2D component,p2D

n
addp3D

n to p3D

end for
for eachparticle,p3D

j , do
evolve
store depth
store orientation and position

end for

Draw Particles(particlesp3D)
for eachparticle,p3D

j , do
read orientation and position
generate in-between 2D particle,p2D

j
orient and positionp2D

j in screen space
draw p2D

j on top
end for

Listing 2: Top) The processing procedure of par-
ticles. Bottom) The drawing process of
particles.

Artists can configure a level of detail, depend-
ing on the particular effect they want to achieve
for a specific animation. At the lowest level, the
outlines of each component are shown while at the
highest level outlines are shown only for the most
prominent parts. A common outline is achieved by
first drawing all the outlines of all the particles that
are more or less on the same depth, and afterwards
drawing the interior surface of these particles, ef-
fectively only erasing the outlines where particles
overlap. Note that the particles have been partially
depth-sorted to allow a correct treatment of trans-
parencies. This sorting can be achieved inO(n)
time, because particles in a user-definable depth
range are considered together.

4 Examples
We used the components (and variations of them)
displayed in figure 4 to create a set of example
animations. These examples contain gaseous phe-
nomena (which are structured 2D models) as well
as individual components which in turn are part of
a higher-level structured 2D model (i.e. the scene).

Figure 5 shows some snapshots of a house with
a smoking chimney, taken at different viewing an-
gles. In this example we used components, de-
picting smoke puffs, which gradually (depending
on their age) become larger and fade out. During
the animation, the smoke puffs remain individual
puffs or merge into one another (using blending
operations) [24].

The images depicted in figure 6 depict a closer
look at the barbecue party shown in figure 1.

Some images depicting a garden hose are shown
in figure 7. We also included the possibility to
let procedural approaches (for example, physics-
based) take over (part of) the animation. This
choice is entirely up to the animator and is fully
configurable using the GUI of our program. In this
example, the animator chose the bouncing effect
of the water to be controlled by a physics-based
procedure: once the particles bounce (i.e. arrive
at the end of the trajectory) simple physics rules
take over the animation. At the same time, the vi-
sual components depicting drops of water are re-
placed by foam. Note also that some particles have
been marked as being ‘speedlines’: they’re always
drawn on top of the ‘regular’ particles. In this case
they indicate the flow of the water.

Figure 8 illustrates the ease of use and large-
scale applicability of our approach. It depicts the
word ‘CARTOON’ catching various artistic kinds
of fire: C = traditional fire,A = cartoon fire with
thick outlines,R = smokey fire,T = bluish fire,
first O = cartoon fire with thick outlines, second
O = smokey fire,N = traditional fire.

Each example took an unskilled animator only
few minutes to model the animation paths and
gaseous components. All examples run at an inter-
active frame rate on a commodity personal com-
puter (Pentium IV 3.06 GHz, RADEON 9000).

5 Discussion and Future Work
In this paper, we presented a novel approach to cre-
ate stylised and believable animations of gaseous
phenomena such as water, fire and smoke. We de-
scribed how the animator draws view dependent
and time dependent animation paths and accelera-
tion curves which provide our system with the nec-
essary 3D information to assure a frame-to-frame
coherent animation. Furthermore, we showed how
to retain the artist’s freedom of creativity by ex-
ploiting structured 2D modelling and animation
techniques: instead of modelling the amorphous

6

Copyright c©2004 Computer Graphics Society (CGS)
structure (or all the particles) at once, we have
the basic visual components (flames, drops, puffs,
‘speedlines’, . . .) drawn by the animator indepen-
dent of the animation path.

Consequently, our approach shows how an an-
imator can remain in charge of the entire anima-
tion process and demonstrates how one mecha-
nism supports a complete range of effects. More-
over, the rendering part of our system also works
with other simulation techniques (e.g., [9, 5]) as
input.

In the future we want to explore the suitability
of this technique to other cartoon effects such as
water ripples, explosions, etc. The inflation pro-
cess could also be improved by applying different
densities for the boundaries and centre of the ani-
mation paths. Furthermore, we want to extend the
framework to also support interaction between ob-
jects and effects, such as colour bleeding of fire on
a wall.

Acknowledgements
We gratefully express our gratitude to the Euro-
pean Fund for Regional Development, the Flemish
Government, and the European research project
IST-2001-37116 ‘CUSTODIEV’ which are kindly
funding part of the research reported in this paper.

Furthermore, we would like to thank ‘Xemi’
Morales and Joan Cabot for their artistic advice.

References

[1] Patrick Witting. Computational fluid dynamics in a
traditional animation environment. InProceedings
of SIGGRAPH, pages 129–136, 1999.

[2] Ronen Barzel. Faking dynamics of ropes and
springs. IEEE Computer Graphics and Applica-
tions, 17:31–39, 1997.

[3] Jinhui Yu. A hierarchical flowing water model. In
Proceedings of the 7th National Conference on Im-
agery and Graphics, 1994.

[4] Jinhui Yu and John W. Patterson. A fire model
for 2D computer animation. InProceedings of
Computer Animation and Simulation, pages 49–
60, 1996.

[5] Jinhui Yu. Stylised Procedural Animation. PhD
thesis, University of Glasgow, 1999.

[6] Arnauld Lamorlette and Nick Foster. Structural
modeling of flames for a production environment.
In Proceedings of SIGGRAPH, pages 729–735,
2002.

[7] Adrien Treuille, Antoine McNamara, Zoran
Popovic, and Jos Stam. Keyframe control of
smoke simulations. InProceedings of SIGGRAPH,
pages 716–723, 2003.

[8] N. Foster and D. Metaxas. Modeling the motion
of a hot, turbulent gas. InProceedings of SIG-
GRAPH, pages 181–188, 1997.

[9] Jos Stam. Stable fluids. InProceedings of SIG-
GRAPH, pages 121–128, 1999.

[10] Ron Fedkiw, Jos Stam, and Henrik Wan Jensen.
Visual simulation of smoke. InProceedings of
SIGGRAPH, pages 23–30. ACM, 2001.

[11] Andrew Selle and Alex Mohr. Cartoon render-
ing of smoke animations.NPAR2004: Symposium
on Non-Photorealistic Animation and Rendering,
June 2004.

[12] Oliver Deussen and Thomas Strothotte. Computer-
generated pen-and-ink illustration of trees. In
Proceedings of SIGGRAPH, pages 13–18. ACM,
2000.

[13] Scott A. King, Roger A. Crawfis, and Wayland
Reid. Fast animation of amorphous and gaseous
phenomena. InProceedings of Volume Graphics
(VG99), pages 333–346, March 1999.

[14] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Ya-
mashita, Tsuyoshi Okita, and Tomoyuki Nishita. A
simple, efficient method for realistic animation of
clouds. InProceedings of SIGGRAPH 2000, pages
19–28, 2000.

[15] Ken Perlin and Fabrice Neyret. Flow noise.SIG-
GRAPH. Technical Sketches and Applications.,
page 187, August 2001.

[16] S. Raghavachary and F. Benitez. Painterly
fire. SIGGRAPH. Technical Sketches and Appli-
cations., page 225, 2002.

[17] Preston Blair.Cartoon Animation. Walter Foster
Publishing Inc., ISBN: 1–56010–084–2, 1994.

[18] Fabian Di Fiore, Philip Schaeken, Koen Elens,
and Frank Van Reeth. Automatic in-betweening
in computer assisted animation by exploiting
2.5D modelling techniques. InProceedings of
Computer Animation (CA2001), pages 192–200,
November 2001.

[19] Fabian Di Fiore, William Van Haevre, and Frank
Van Reeth. Rendering artistic and believable trees
for cartoon animation. InProceedings of Com-
puter Graphics International (CGI2003), pages
144–151, July 2003.

[20] J. W. Patterson and P. J. Willis. Computer assisted
animation: 2D or not 2D?The Computer Journal,
37(10):829–839, 1994.

[21] W. T. Reeves. Particle systems - a technique for
modeling a class of fuzzy objects. InProceedings
of SIGGRAPH, pages 359–376, 1983.

[22] Tommi Ilmonen and Janne Kontkanen. The second
order particle system. InJournal of Winter School
on Computer Graphics (WSCG2003), pages 240–
246, 2003.

[23] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko
Tanaka. Teddy: A sketching interface for 3D
freeform design. InProceedings of SIGGRAPH,
pages 409–416. ACM, August 1999.

[24] Harold Whitaker and John Halas.Timing for
Animation. Focal Press, ISBN: 0–240–51714–8,
1981.

7

Copyright c©2004 Computer Graphics Society (CGS)

Figure 5: Snapshots of a house with a smoking chimney, taken at different viewing angles.

Figure 6: These pictures give a closer look at the animation depicted in figure 1.

Figure 7: These pictures depict a stylised rendering of an animated garden hose. This example also demon-
strates the use of ‘speedlines’ to indicate the flow of the water.

Figure 8: a) The word ‘CARTOON’ catching various artistic kinds of fire:C = traditional fire,A= cartoon
fire with thick outlines,R= smokey fire,T = bluish fire, firstO = cartoon fire (thick outlines),
secondO = smokey fire,N = traditional fire.

8

	Introduction
	Related Work
	User-controlled Behaviour
	Physics-based Realistic Behaviour
	Simulated Realistic Behaviour

	Our Approach
	Modelling and Animating in Structured 2D
	Modelling Gaseous Phenomena
	Animating Gaseous Phenomena

	Examples
	Discussion and Future Work

