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Abstract

The shape and reflectance of complex objects, for use in computer graphics
applications, cannot always be acquired using specializedequipment due to
cost or pratical considerations. We want to provide an easy and cost-effective
way for the approximate recovery of both shape and spatially-varying re-
flectance of objects using commodity hardware.

In this paper, we present an image-based technique for recovering 3D
shape and spatially-varying reflectance properties from a sparse set of pho-
tographs, taken under varying illumination. Our techniquemodels the re-
flectance with a set of low-parameter BRDFs without knowledge of the lo-
cation of the light-sources or camera. This results an a flexible and portable
system that can be used in the field.

We successfully apply the approach to several objects (synthetic and real),
recovering shape and reflectance. The acquired informationcan then be used
to render the object with modifications to geometry and lighting via tradi-
tional rendering methods.

1 Introduction

Many applications in entertainment, augmented/virtual reality, architecture and digital
museums require photorealistic rendering of real-world objects from novel viewpoints
and illumination.

This requires the use of realistic models for all componentsof image synthesis, includ-
ing geometry, light sources, materials and cameras. These models can each be acquired
using specialized equipment such as a 3d-scanner and a gonioreflectometer [10, 11, 14].
But this is generally a time and resource consuming process.We want to provide an easy
and cost-effective way for the approximate recovery of bothshape and spatially-varying
reflectance of objects using commodity hardware. Additionally, we want the setup to be
portable and capable of capturing a wide range of objects.

To this end, we present an image-based method that uses a small number of pho-
tographs of inanimate objects taken from a fixed viewpoint. In each photograph, the
object is lit with an ordinary light source at a different location, however no knowledge
about the location and strength of the light sources is required by the system. With such a



set of photographs, we observe the surface points only with asmall number of illumina-
tion angles. As a result, there is too little data to determine a full bidirectional reflectance
function for each surface point. We address this issue in twoways. First, we limit the
reflectance to a low-parameter model. Secondly, we use the observation that many ob-
jects can be decomposed into a small number of materials [2,9]. We cluster the acquired
samples into groups of similar materials and fit a model to each group.

In our work, we reconstruct both shape and spatially-varying reflectance without
making any additional assumptions by alternating between the optimization of geome-
try, lighting (direction and intensity), diffuse reflectance (albedo) and specular reflectance
each time fixing all other unknowns. In particular, our contributions are

• We allow a wide range of objects to be captured using a standard camera with any
type of lens.

• The system is flexible and portable enough to be used in the field.

• We present an improved optimization approach suited for ourneeds.

We require only a relatively small number of photographs (about 10-15 images for
one object), thereby speeding up the acquisition phase.

After our reconstruction, many editing methods are made possible. In addition to
changes in lighting and viewpoint, the albedo and materials, represented as texturemaps,
can be easily edited using conventional image editing software.

2 Related Work

In traditional photometric stereo algorithms [18,19], thesurface is assumed to be lamber-
tian or spatially uniform. More recent work [1–3, 12] applies non-lambertian models to
photometric stereo. However, most require calibration of the light source, reference ob-
jects [3, 4] or a known reflectance map. Our method works without calibration and prior
knowledge.

Georghiades et al. [1] proposed a method that accommodates for the spatial variation
of the diffuse reflectance, but assumes the specular properties are constant. Our approach
allows both reflectance properties to vary across the surface, permitting the reconstruction
of objects comprised of several materials or a mixture of paints with different reflectance
characteristics.

Goldman et al. [2] describes a photometric stereo method forsurfaces with spatially-
varying reflectance, including both diffuse and specular properties. This method decom-
poses the object’s material into a small number of fundamental BRDFs and recovers both
shape and weight maps for the materials. However, they assume the lighting directions
are known, whereas we recover them from the input images. Additionally, we believe our
BRDF optimization scheme is less sensitive to overfitting due to its non-local nature.

Paterson et al. [13] present a system for capturing the geometry of complex materials
with varying albedo and BRDF. A digital camera with attachedflash is used to sample
the geometry from different angles and illumination. The system however requires the
geometry to be roughly planar.

Image-based BRDF acquisition has already been widely researched. The proposed
methods [10, 11, 14] generally separate the measurement of the BRDF from the shape



estimation: they either use samples with known shape (spherical or planar) or the geom-
etry is obtained using a 3d-scanner. Lensch et al. [9] cluster reflectance samples over a
known surface into groups of similar materials and fit a Lafortune [7] model to each group
in an iterative way. Their method however requires approximate geometry, whereas our
approach reconstructs the surface solely from the images.

We argue that the system we present is simple enough to allow widespread use, de-
pends on a minimum amount of calibration and provides accurate measurements for a
variety of materials and objects.

3 Problem Statement

The input of our system is a set of photographs of an inanimateobject taken under a
single varying distant illuminant. From these images, we seek to reconstruct the shape and
reflectance properties of that object as well as the illumination, ignoring effects such as
interreflection, transparency and translucency. In general, the contribution from indirect
illumination is relatively small and can be ignored.

Our material model is motivated by the observation that realworld variations in ap-
pearance across a surface are often the result of a composition of a small number of
BRDFs [2,4,9]. Therefore, the reflectance of a surface pointis modeled as a diffuse part
and a mixture of the basis BRDFs. The number of BRDFs to solve for is given by the
user.

Lastly, in contrast to most related work, we model our cameraas perspective. This has
many advantages over orthographic cameras: perspective cameras are more common and
hence less expensive. Most researchers therefore approximate an orthographic camera
using a regular camera with a telephoto lens placed at a distance. This solution is still
relatively expensive and also limits the size of objects that can be captured. It is for
example impractical to acquire images of a statue. The use ofan orthographic model also
introduces errors that can be avoided with a perspective model [15]. Perspective cameras
allow different kinds of lenses to be used (e.g. wide-angle,macro lenses). The downside
however is that a calibration step is required for the cameraparameters. On the other
hand, this is a well-studied and understood problem and can be achieved with a minimum
of effort [17].

In the following sections, we describe the representationsused for the geometry and
BRDFs.

3.1 Shape Model

The most commonly used representation of the object surfacein photometric stereo is a
depth functionz(x,y) parametrized by the image plane coordinates [1, 2, 8, 19]. These
depth values can only be indirectly obtained from the shading by first estimating the
normals and integrating. However the normal field is not necessarily integratable. This
can be solved by enforcing integrability [2, 6, 19] or by expanding the depth function
z(x,y) using basis functions [1,8]. The latter methods are better suited when dealing with
a perspective camera model and non-diffuse reflectance.

Our surface representation is inspired by Lee et al. [8]. We discretize the object surface
into a set of triangular elements. We construct these elements by dividing the image
domain into trianglesTi with verticespi. Then, the surface is approximated by triangular



surface patchesSk with verticesPi such thatSi andPi project toTk and pi respectively.
This surface is uniquely specified by allPi, or equivalently the depthsZi associated with
all pi. The surface verticesPi can be expressed in terms ofpi = (xi,yi) andZi as

(
xiZi

f
,

yiZi

f
,Zi),

where f is the focal length of the camera.

3.2 BRDF Model

The surface BRDF is generally represented by a four-dimensional bi-directional reflectance
distribution function. These four parameters are the lightdirection angles (θi,φi) and view-
ing angles (θo,φo). In this work, we restrict ourselves to the isotropic variant where the
angular variation reduces to three dimensions.

Recovering the entire BRDF is not feasible due to the large number of samples re-
quired. We tackle this problem by imposing some parametric model of the reflectance
function. This simplifies to problem to estimating a handfulof parameters [1, 2]. The
lack of generality of such a parametric model also avoids incorrectly incorporating er-
rors made in the estimation of geometry and lighting. We represent our reflectance by the
combination of a lambertian model and a simplified specular Torrance-Sparrow lobe [16]:

fs(θi,θo,φ) = αs
e−v2θ2

a

cos(θi)cos(θo)

with (αs,v) the specular parameters andθa the angle between normal and halfway
vector.

3.3 Lighting Model

Since we consider our light sources to be directional, the color of a pixelI(x) due to light
sourceLi can be expressed as

I(x) = [α(x)+∑
m

ωm fs(αm,n(x),v(x),Li)]∗n(x)T Li (1)

We useα to denote the diffuse reflectance (albedo) for each pixel. The function fs repre-
sents the Torrance-Sparrow BRDF with parametersαm, with associated weightωm. The
normal is denoted asn(x) and viewing direction asv(x).

4 Shape and Reflectance Reconstruction

We acquirek images of the object with different illumination, denoted as Ik. As the
images might contain shadows and saturations, which are notin our model, we need to
mark such pixels as invalid. Saturations are simply determined by thresholding, while
shadowed pixels are found by thresholding the ratio betweenthe pixel intensity and the
albedo (similar to Georghiades et al. [1]). If the variance of a pixel’s reflectance samples is
low, all the samples are removed. This effectively makes that pixel part of the background.



The initial albedo is obtained by sorting the measured reflectance values for each
pixel, resulting in imagesPi whereP0 is the dimmest andPn−1 the brightest and selecting
the imageP with no highlight nor shadow. For a set of 20 images, we found thatP12 is a
robust choice.

Based on the described model, we solve the following minimization problem to deter-
mine shape and reflectance properties

min
α,αm,S,Li,ωm

∑
k,x

|Ik(x)− I(x,α,αm,Z,Li,ωm)|2 (2)

Optimization of this problem is non-trivial: many optimization algorithms can easily
become trapped in local minima and the high dimensionality makes standard algorithms
intractable. We solve this problem in an iterative fashion by decomposing it into a set of
smaller problems first. Such an optimization is also performed by Georghiades et al. [1]
and Goldman et al. [2]. Although this strategy still does notguarantee to converge to the
optimal solution, we have found it gives good results with some modifications.

Our optimization approach is outlined in the next section.

5 Algorithm

Shape and normal optimizationLighting refinement

Brdfs and weights optimization Albedo refinement

Input Images

Figure 1: An overview of the algorithm. The blue arrows show the flow between the
different optimization components. The green arrows indicate the tight coupling between
some components.

Our algorithm is composed of several components, each of which is described in detail
in the following sections. Figure 1 gives an overview of these components.

Initialization. In this phase, we compute an initial estimate for the diffusealbedo as
described in§4 and initialize all depth variables to a arbitrary constantand the specular
BRDF parameters to 0.

We obtain a decent estimate of the light directions from lambertian photometric stereo
[18,19]. This part is further described in section 5.1.

After initialization, the system optimizes the objective function by repeating the fol-
lowing steps:

1. Refine shape.The depth values for our shape model are optimized while holding
the light directions and material attributes constant. We extended the algorithm by Lee et
al. [8] to incorporate BRDFs and added smoothness constraints.

After this optimization, we optimize the normals further per pixel.



2. Update the lambertian albedo.While the other optimization parameters are kept
fixed, we compute a new albedo for each pixel in a linear least squares fashion.

3. Refine the light source directions.We refine the directions and strengths of the
light sources, while holding the other parameters constant. The light source directions are
refined using Newton’s method and their strengths using linear least squares.

4. Optimize BRDF parameters. The BRDF parameters are optimized using an
iterative clustering and fitting procedure, similar to Lensch’s et al. [9] Further details can
be found in Section 5.5.

5. Termination Repeat steps 1-4 until the estimate converges. Each step is guaranteed
to decrease the objective function.

5.1 Initialization

Yuille et al. [19] outline a method to decompose the intensity matrix of M images into
theM light directions and the product of normal and albedo per pixel up to an arbitrary
transformation. Since we are only interested in the light directions, we can use a simpler,
more efficient technique: we perform an eigenvalue analysison JJT and obtain the light
directions from the three eigenvectors with the biggest eigenvalues. This however can
not be expected to work in the presence of shadows, ambient light, specularities and
noise. We therefore sift out all the columns of the intensitymatrix which contain invalid
measurements as described in Section 4.

The results obtained from lambertian photometric stereo are subject to the so-called
bas-relief ambiguity [18,19]. At this point, we can introduce some prior knowledge about
the lighting conditions: most of the light sources will be placed in front of the object. We
therefore rotate the obtained light directions so that the average direction coincides with
the optical axis of the camera. We also introduce a user specified rotation around this axis
to resolve further ambiguities.

5.2 Shape Reconstruction

We now only solve for shape and fix all other parameters. Note that since the normals and
viewing directions are all expressed in terms of the depth atthe verticesZi, i = 0, . . . ,M,
the reflectance functionI(x) is only a function of the depthsZi, Z j andZl of the supporting
triangle:

∑
x

∑
k

|Ii(x)− I(x,S,Lk)|
2 = ∑

x
∑
k

|Ik(x)− I(Zi,Z j,Zl)| (3)

We minimize this equation by successively linearizing the nonlinear function
I(Zi,Z j,Zl) around the previously estimated solution, following Lee etal. [8]. The result-
ing linear equation is then efficiently solved using conjugate gradient. To ensure a smooth
solution, we altered the functional to additionally minimize the laplacian at each vertex.

The shape model gives a fairly coarse representation of the geometry and normals,
therefore we apply an additional normal refinement per pixelusing a multi-scale grid
search: the error is successively computed for a set of normals in a certain radius around
the estimated normal. Each time the best normal is kept and the radius is decreased.



5.3 Albedo Refinement

Note that the optimization is now linear with respect to the albedo and each albedo value is
decoupled from all the others. Hence we can easily solve for it using linear least squares.
This boils down to

α(x) =
∑k Ik(x)−∑mωm fs(αm,n(x),v,Lk)

∑k n(x)T Lk

5.4 Light source Refinement

Note that light source of each frame can be updated independently. We utilize Newton’s
method since the direction of light source is only two dimensional. We found the error
function sufficiently smooth for Newton’s method to work. Toavoid converging to a local
minima in the early steps of the algorithm, we added a prior tothe objective function
such that the pixels, that are believed to be due to a specularhighlight, have a reflection
direction close to the viewing direction. We determine these pixels by thresholding the
difference between the real reflectance and our current estimate of the diffuse reflectance.
This prior creates a smoother error function and aids in a faster convergence.

The strengths are determined in a least squares fashion similar to the albedo refine-
ment.

5.5 BRDF Optimization

The BRDF optimization consists of the split-recluster-fit and project process as presented
by Lensch et al. [9] with some minor modifications: instead ofthe Lafortune model, we
employ a Torrance-Sparrow model. In the fitting step, we alsoweight the reflectance
samples based on the product of incident and outgoing anglesand filter out any samples
with grazing angles (> 80 degrees) to avoid fitting errors. In each iteration, only one
split-recluster-fit step is executed to prevent overfitting.

We believe this procedure to be less sensitive to overfittingthan the segmentation
based method of Goldman et al. [2] because it is inherently a non-local optimization.

5.6 Tight coupling

After some experiments, we observed that a tighter couplingbetween the light refinement
and both normal and BRDF optimization results in a better convergence and further helps
the reconstruction to avoid local minima. The tight coupling is obtained by placing the
light refinement within the error functions of the normal andBRDF optimizations. This
way, the optimizations are performed on the error under the best possible light estimate.

6 Results

To capture our input images, we used a Canon 20D camera with a 17-55mm lens and a
single exposure for each lighting direction. We used a smallhalogen light source for the
lighting. The images are captured at full resolution of the camera (3504x2336), but the
results were computed at a down-sampled resolution (640x480). A typical capture session
consists of 12 lighting directions and takes about 10 min.



Figure 2: Comparison to ground truth. Left: models renderedunder novel lighting condi-
tions not in training set. Right: images under approximately the same lighting condition.

(a) (b) (c) (d) (e) (f)

Figure 3: Input, model and reconstruction for some objects.a) Source Image. b) Re-
covered normal map. c) Recovered albedo. d) Recovered weight map (false color). e)
Spheres shaded with basis BRDFs. f) Model rendered under original illumination.

Most of the examples converged after 8-10 iterations, in about 2-4 hours on a 3Ghz
Pentium 4. Some steps of the algorithm make use of the GPU to accelerate shading and
error computation.

Since our goal is to produce plausible reconstructions, we show a few objects under
different viewpoints and lighting conditions in Figures 4(a) and 2. The relighting results
are compared with real photos taken under similar lighting conditions not present in the
input set. Note the similarity of these images.

Figure 3 shows the different components of the obtained model for a range of objects.
Note that the algorithm estimates detailed normal maps, reflectance properties and light-
ing conditions for each object. A few artifacts still occur in areas where highlights are
observed in most of the input images, such as the neck of the duck. The presence of high-
lights in all of the images causes the shape and normal estimation to overshoot the ideal
solution. The impact of these artifacts on the rerendering and relighting of these objects
is however minor.

The obtained material reconstruction also makes many editing techniques possible.
The obtained BRDFs can be altered, an example of this is shownin Figure 4(b). Addi-
tionally, texture synthesis [5] techniques can be applied on the albedo and weightmaps.



(a) (b)

Figure 4: a) Synthesized views of our reconstructions. b) The ducks material proper-
ties have been changed to a much more specular BRDF by direct manipulation of the
parameters.

7 Discussion and Future Work

We have demonstrated a method that acquires shape and spatially varying BRDFs from
a set of photographs under varying illumination. The fidelity of the reconstructions are
lower than those obtained using methods with more observations or knowledge about
some of the unknowns (lighting, materials or geometry). Nonetheless, we are able to
acquire a range of models that can be reused under different viewing and lighting condi-
tions.

Our approach is able to capture shape and BRDFs using a small number of photos and
without the need for specialized equipment. We only requirea camera and a light source.
This results in a compact and portable setup.

The reconstruction depends on the lighting conditions usedduring acquisition. The
optimization is subject to overfitting if the light sources are too similar or when high-
lights are always observed in the same area. Additional smoothness terms in the objective
function might ameliorate these artifacts.

In future work, we want to investigate methods that take shadows and interreflections
into account. Both contain information that can be used during shape and material recon-
struction.
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