SCALABLE OPTICAL TRACKING

A Practical Low-cost Solution for Large Virtual Environments

Steven Maesen, Philippe Bekaert
Hasselt University, Belgium
Goal

- Navigating through a large virtual environment as if it was real
- User tracking is required
- Scalable in both size and number of users

Movement controls:

W: forward Q: lean left
S: backward E: lean right
A: left P: prone
D: right C: crouch
<: look left Alt: sprint
>: look right Space: jump
^: look up
V: look down

America’s Army
Limited Range

- Most tracking systems today have a limited range

Optical (OptiTrack)

Magnetic (Nest of Birds)

Mechanical (NASA)
Locomotion

Circulafloor

VirtuSphere

CyberWalk
Redirected Walking

- Fool senses
- Larger VE
- Walking in circles with radius 23m
Related Work

HiBall (UNC CH)
VisTracker (Intersense IS-1200)
HIVE (Miami University)
HiBall (UNC CH)
Our System

- LED ropes arranged in a grid structure
- Parallel X- and Y-lines
- Head-mounted camera facing up
Camera Input

• Why LED ropes?
 - Cheap
 - Easy to place
 - Emit light
 • Easy detection
 • Low camera shutter
 • Less motion blur
 • High update rate
 - Only point lights
 • Faster undistorting
 • Faster line detection
 • Faster processing

• We consider intrinsic and distortion parameters known
 - Calibrated with the ‘GML Toolbox’
System Overview

- **Camera Image**
 - Detection of LED ropes
 - Orientation from Vanishing Points
 - Position with Known Orientation
 - 6 DOF camera pose
Detection of LED ropes

• Detect markers
 – Cluster pixels
 • Average position
 • Subpixel precision
 – Speeds up line detector

• Find line patterns
 – Hough Transform
Line Detection
Hough transform

Slope-intercept
- Lines
- Not stable with big slopes
- Easy analytical intersection

Normal
- Sinusoid
- Can represent all lines
- Difficult analytical intersection

Our parameterization
- Circles
- Can represent all lines
- Easy analytical intersection
Line Detection
Hough transform
• “Using vanishing points for camera calibration” [Caprile ‘90]

• Vanishing point of the line patterns correspond to the direction of the parallel lines

• Rotation can be estimated from 2 ‘vp – direction’ correspondences (e.g. X- and Y-axis on the ceiling)

\[
\lambda_i \begin{bmatrix} u_i \\ v_i \\ w_i \end{bmatrix} = K[R|T] \begin{bmatrix} x_{D,i} \\ y_{D,i} \\ z_{D,i} \end{bmatrix} \quad \lambda_i = \pm \frac{1}{|K^{-1}V_i|}
\]
• Undo known rotation on the LED points
 – Regular grid on plane parallel to camera plane

• Distance to ceiling estimated by known line interdistance

\[\gamma \vec{D} = \beta \vec{D}_2 - \alpha \vec{D}_1 \]

• Translation in X and Y direction relative to previous frame
Results

- Virtual Set-up (8 x 10 x 2.5 meters)

user viewpoint *camera viewpoint*
Results

- Comparison with the ground truth
- Accuracy (RMS error)
 - Orientation
 - 0.02° in Yaw
 - 0.035° in Pitch and Roll
 - Position
 - 4 millimeter
Results

- Lab Set-up (4 x 3 x 2.5 meters)

- Point Grey Flea Camera
 - 1024x768 at 30 fps
 - 1 ms shutter

- Standard laptop
 - 2 GHz CPU, 1 GB RAM

- 11 ms processing time
 - 9.5 ms for LED segmentation
Results

• Comparison with average of 2000 frames in a stationary pose

• Accuracy (RMS error)
 – Orientation
 • 0.16° in Yaw
 • 0.23° in Pitch and Roll
 – Position
 • 5 millimeter in X,Y
 • 8 millimeter in Z
Discussion

- Limit on speed
 - 7,5 m/s or 27 km/h
 - 2700°/s or 7,5 turns/s
 - not humanly possible
- No drift, but also no global pose
 - Global start beacon(s)
- No tracking if ceiling is not visible
 - Combining with inertial tracker
Future Work

- Mono-color infra-red LEDs
 - Lower camera bandwidth / higher fps
 - Faster computation
- Encoding position in LED strip
- Auto compensate for errors in LED placement
- Possible to expand this to ‘natural’ grid patterns, like tiles, ceiling panels, ...
SCALABLE OPTICAL TRACKING
A Practical Low-Cost Solution for Large Virtual Environments

More information: http://research.edm.uhasselt.be/~smaesen/
mailto: steven.maesen@uhasselt.be