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Abstract

With the increasing interest in mobile devices such as smartphones and tablets, more sensitive data than
ever is being transmitted over wireless links. In this thesis, the impact of this trend on the privacy of
wireless network users is investigated. More specifically, existing attacks on wireless networks that are
still practically viable today are demonstrated, and new attacks on protocols that are considered secure
are explored. These matters are handled respectively in a case study and a feasibility study. For the
case study, numerous experiments were conducted to test the practicability of existing attacks, and to
estimate the security of different protocols. The feasibility study resulted in a new attack on Apple
devices that can be performed in context of WPA-Enterprise authentication. Finally, in both studies,
mitigation techniques are discussed that users can implement in order to protect their privacy.

i



Acknowledgements

First of all, I would like to thank my promotor Peter Quax, my co-promotor Wim Lamotte, Bram
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Chapter 1

Introduction

Since the establishment of the first Wi-Fi 802.11 standard by the Institute of Electrical and Electronics
Engineers (IEEE) in 1997, the technology has grown to a worldwide scale. According to a recent study
by Strategy Analytics, global shipments of Wi-Fi enabled devices grew 19% in 2013 reaching 1.9 billion
units [61]. This trend is not surprising, as many consumers and enterprises are attracted to the many
advantages of wireless networking. A first advantage is the cost-efficiency of this technology. Enterprises
and consumers do not have to install wall jacks and wiring to provide internet access. Instead, one or
more wireless Access Points (APs) are often installed that provide ubiquitous access to network resources.
Furthermore, Wi-Fi operates in the Industrial, Scientific and Medical (ISM) band, which means no license
is required for its usage. A second advantage is mobility: in wireless networks, there is no need to tether
a device to a cable in order to access network resources. This is principally useful for handheld devices
such as smartphones. As the average smartphone usage grew 50 percent in 2013 according to a study
by Cisco [14], this further proves that wireless networking is becoming increasingly popular.

Despite all advantages, wireless networking is a double edged sword. Many of these networks are not
properly secured, which may lead to the exposure of privacy sensitive data to cyber criminals. This is
especially true for public hotspots, which are often unencrypted open networks. In March 2014, Troels
Oerting, head of Europol’s cybercrime centre, warned that there is a growing number of attacks being
carried out via public Wi-Fi [51]. Even when a proper confidentiality protocol is used, care must be
taken that the protocol has no known security vulnerabilities.

In this thesis, we will focus on the privacy aspect of various protocols in context of Wi-Fi networks. The
main research question is: “To what degree does wireless networking impact the privacy of its users?”.
Related questions that we can ask ourselves are: “Are known attacks on older Wi-Fi security protocols
still viable today?”, and “Are the latest Wi-Fi security protocols strong enough to protect the privacy of
the user?”. These questions will be answered in a combination of a case study, where we investigate which
known Wi-Fi vulnerabilities can be practically exploited by an attacker today, and a feasibility study,
where we examine the feasibility of novel attacks on modern Wi-Fi security protocols. Both studies are
supplemented with background information that is required to understand the discussed attacks in each
chapter.

For our case study, the practicability of attacks was verified by means of experiments, where we performed
these attacks on test subjects or devices. Sections detailing such experiments are denoted with the
“Experiment: ” prefix in the table of contents. However, not all of the existing attacks were verified, as
this would not be possible within the given time contraints. Examples of existing attacks that were not
verified are attacks on WEP and WPA-Personal. WEP is a very old, deprecated security protocol that
already has been extensively researched, whereas WPA-Personal is common and considered secure since
existing attacks on WPA-Personal are usually related to brute-force and side-channel attacks. Therefore,
the choice was made to focus on open networks (hotspots) and WPA-Enterprise networks, where the
existing attacks are more interesting.

The feasibility study focused on finding new ways to attack wireless networks. Given the plethora of
authentication methods available in WPA-Enterprise, the choice was made to focus on this technology
as this would increase the odds of finding a new vulnerability. A new vulnerability was indeed found in
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the WPA-Enterprise implementation of Apple devices, which led to a publication that was submitted
and accepted to WiSec 2014.

We will begin this thesis by discussing open network privacy in Chapter 2. This chapter is supplemented
briefly with the role of application layer security in open networks. In Chapter 3, we will discuss 802.11i
wireless networks and various attacks on its security mechanisms. Elements from this chapter are required
for understanding Chapter 4, which details some of the most popular 802.1X authentication methods in
the context of wireless network privacy. Chapter 5 will cover a novel WPA-Enterprise implementation
vulnerability that we discovered in Apple devices, and finally we will form a conclusion and discuss
possible future work in Chapter 6.

2



Chapter 2

IEEE 802.11 wireless networks

IEEE 802 is a family of standards for Local Area Networks (LANs) and Metropolitan Area Networks
(MANs) that deals with the Data Link and Physical layer of the Open Systems Interconnection (OSI)
model (see Figure 2.1) [55].

Figure 2.1: OSI model excluding the Session and Presentation layer

The Physical layer is the lowest layer of the OSI model, and encompasses protocols for sending and re-
ceiving raw bits between two communicating entities over a physical medium. In essence, these protocols
provide the functionality to convert signals such as voltages and radio waves to digital data and vice
versa. For example, the 802.11 standard for wireless LAN communication specifies the use of radio waves
between 2.412 GHz and 2.484 GHz for a total of 14 channels as shown in Figure 2.2.

Figure 2.2: 802.11 channels[64]

Directly above the Physical layer is the Data Link layer, which consists of the Medium Access Control
(MAC) sublayer and the Logical Link Control (LLC) sublayer. Data Link layer packets transmitted over
the network are also called “frames”. The MAC sublayer provides host addressing, delimiting of frames,
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access control and error protection. The LLC sublayer acts as an interface between the MAC sublayer
and the Network layer, and provides flow control functionality [28].

The protocol for the MAC sublayer and Physical layer of wireless LANs is defined in the IEEE 802.11
standard, which is a subset of the IEEE 802 family. In order to understand the concepts described in
this thesis, it is essential to have a good understanding of this standard.

2.1 The 802.11 architecture

The 802.11 standard defines a set of components that can be used in a Wireless Local Area Network
(WLAN) environment: [28]

• Station (STA): A Station is defined as a single addressable unit within the WLAN network. Any
device that is capable of sending and / or receiving a 802.11 message can be considered an STA.
Examples are 802.11 capable smart phones, laptops, desktops, or any other device equipped with
a wireless Network Interface Controller (NIC).

• Basic Service Set (BSS): The BSS is an abstract definition of a set of multiple STAs. The coverage
area within which these STAs can communicate is called the Basic Service Area (BSA).

• Distributed System (DS): The DS is a component that connects multiple BSSs together to form a
network with increased coverage. This allows communication from STAs in one BSS to STAs in
another BSS.

• AP: An AP is a special case of the STA that allows access to the DS in a wireless manner. There
can be only one AP within a BSS. Other STAs must associate to an AP in order to access network
resources.

• Extended Service Set (ESS): The ESS is defined as the set of BSSs that make up the same logical
network. An ESS is identified by the Service Set Identifier (SSID), which informally is the network
name that users see on their device when connecting to an AP.

• Independent Basic Service Set (IBSS): An IBSS is a BSS that forms a self-contained network in
which no access to a DS is available.

Figure 2.3 gives an overview of the aforementioned architectural components.

Figure 2.3: IEEE 802.11 architecture overview[37]

2.2 802.11 frames

When considering the data link layer section of 802.11 packets, we refer to 802.11 frames. The 802.11
specification defines a specific format for these frames, so that they can support various features. Some
of these features are interesting with regard to privacy, and were implemented in a fuzzing tool that was
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developed in context of this thesis. This tool will be discussed in Section 2.5.6. Figure 2.4 shows the
structure of a generic 802.11 frame [28].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Frame
Con-
trol

Dura-
tion /

ID
Address 1 Address 2 Address 3

Seq
ctrl

Address 4
QoS
ctrl

HT control Frame body (variable 0-7951) FCS

Figure 2.4: 802.11 frame structure and field sizes in bytes

The Frame Control field is special, because it consists of several subfields. These subfields are illustrated
in Figure 2.5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Protocol
Version

Type Subtype To DS
From
DS

More
frag

Retry
Pwr

Mgmt
More
Data

Prot Order

Figure 2.5: Frame Control subfields in bits

The fields in 802.11 frames are transmitted from left to right over the network, and each field has a
unique purpose [28, 22]:

• Protocol: Denotes which version of the 802.11 protocol is used. The standard claims that the
version number will only increment if a fundamental incompatibility exists between a new revision
and the prior edition of the standard. At the time of writing, the latest standard was released in
2012, and no other version than “version 0” exists [28].

• Type: Indicates the frame type of the 802.11 frame. There are three types of frames: Management
frames (00), Control frames (01), and Data frames (10). The last possible value (11) is reserved,
and is therefore not used.

• Subtype: Contains the subtype of the 802.11 frame. Each type has a different set of subtypes,
and each subtype serves a different purpose. Table 2.1 gives an overview of the subtypes that are
relevant to this thesis. We will discuss the features of these frames in the coming sections.

• To-DS: Bit that indicates whether the frame is destined for the DS.

• From-DS: Bit that indicates whether the frame originated from the DS.

• More Fragments: When a large frame is split over multiple fragments, each nonfinal fragment has
this bit set to “1”.

• Retry: Indicates whether the frame is a retransmission of a previously sent frame.

• Power Management: If set to “1”, this bit indicates that the STA is in power saving mode. A “0”
means that the STA is active. An AP cannot enter power saving mode.

• More Data: Indicates that data for an STA that was in power saving mode is buffered at the AP.

• Protected Frame: Specifies whether the content of the frame is encrypted with any data link layer
encryption algorithm.

• Order: This bit serves a dual purpose: when Quality of Service (QoS) is not used and this bit is
set to “1”, frames will be delivered in strictly ordered manner. In the context of QoS frames, the
bit indicates whether the frame has a High Throughput (HT) Control field.
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• Duration/ID: The Duration/ID field serves different purposes depending on the Type and Subtype
fields of the frame. It is sufficient to know that this field is used to reserve the wireless channel for
a certain duration to avoid interference of other STAs.

• Address 1: Contains the MAC address of the final recipient or Destination Address (DA) of the
frame. In other words it contains the address of the packet’s final destination.

• Address 2: Contains the MAC address of the initial sender or Source Address (SA) of the frame.

• Address 3: Contains the MAC address of the intermediary recipient of the frame.

• Sequence Control: The Sequence Control field is split in two parts: the first four bits denote the
Fragment Number, and the remaining 12 bits specify the Sequence Number. The former speaks
for itself: if the frame is fragmented, this value indicates the fragment number. The latter number
is incremented with every transmitted frame.

• Address 4: Contains the MAC address of the intermediary sender of the frame.

• HT Control: The HT Control field was added in the 802.11n standard, and is used in the context
of high-throughput communication. The features that this field provides are beyond the scope of
this thesis.

• Frame body: The frame body is variable in size and contains the payload from higher-layer proto-
cols.

• FCS: The Frame Check Sequence (FCS) field contains a 32-bit Cyclic Redundancy Check (CRC)
over all fields of the MAC header and frame body. This value can be used at the receiving STA to
check for errors in the frame.

Now that we have a good understanding of the fields in an 802.11 frame, we will take a look at the
different types of frames.

2.2.1 Management frames

When a user wants to connect to a wired network, they must first find a wall jack. The wall jack must be
enabled, and the user must plug in the network cable before network resources can be accessed. These
matters are trivial in a wired network, but in a wireless network this is not the case, because there are
neither wall jacks nor network cables. The 802.11 standard defines “Management Frames”, which were
created with the purpose of emulating the physical access procedure for wired networks on a wireless
network. We will now briefly discuss all relevant Management Frames, each of which defines and uses a
new set of mandatory or fixed length fields, and optional or variable length fields in the frame body of
a generic 802.11 frame.

• Beacon frames are optionally sent by the AP within the BSA at a certain interval, in order to
advertise the presence of an ESS. They are the wireless equivalent to wall jacks in a wired network.
Figure 2.6 shows the frame body of a Beacon frame. Here we can see the addition of the following
mandatory fields:

– Timestamp: Contains the number of microseconds that the AP has been active. This value
can be used to synchronise STAs within a BSS.

– Beacon interval: Denotes the number of time units between two subsequent beacon transmis-
sions.

– Capability information: Gives the capabilities of an STA, including privacy, service set, radio
measurement capabilities, and more.

– SSID: Contains the length of the SSID of the network, followed by the SSID itself.
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Type value Type description Subtype value Subtype description

00 Management 0000 Association Request

00 Management 0001 Association Response

00 Management 0010 Reassociation Request

00 Management 0011 Reassociation Response

00 Management 0100 Probe Request

00 Management 0101 Probe Response

00 Management 1000 Beacon

00 Management 1010 Disassociation

00 Management 1011 Authentication

00 Management 1100 Deauthentication

01 Control 1011 Request to Send (RTS)

01 Control 1100 Clear to Send (CTS)

01 Control 1101 Acknowledgement (ACK)

10 Data 0000 Data

Table 2.1: Table of Type / Subtype field combinations in 802.11 frames

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Timestamp
Beacon
interval

Capability
info

SSID (variable)

· · · Optional fields · · ·

Figure 2.6: Beacon frame body fields in bytes

• Probe Request and Probe Response frames: When an STA wants to join an ESS, it will first
send a Probe Request frame to share its supported rates (and any optional information), and check
whether any AP with the SSID provided in the Probe Request is in range. A Probe Request with a
wildcard SSID may also be transmitted, in which case all in-range APs will respond, regardless of
the ESS they belong to. Figure 2.7 illustrates the frame body of Probe Requests. The transmission
of a Probe Request may happen in three occasions:

– The user explicitly configured the device to join a (cloaked) network.

– The Probe Request was sent periodically to check the presence of a network that is already
in the Preferred Network List (PNL) of the device.

– The user requests a list of available in-range APs.

A Probe Request is always answered with a Probe Response from the AP. The format of a Probe
Response is identical to the format of a Beacon frame. However, Probe Responses are unicast to
the STA that sent the Probe Request, while Beacons are always broadcast to the entire BSA.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SSID (variable) Supported rates (variable)

Figure 2.7: Probe Request frame body fields in bytes

• Authentication and Deauthentication frames: There are two types of authentication in 802.11:
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open system authentication and shared key authentication. Authentication frames, which are shown
in Figure 2.9, are exchanged to establish the authentication type. Authentication in wireless
networks can be compared to enabling a certain wall jack in wired networks.

Open system authentication is defined as a null authentication algorithm, which means any STA
requesting authentication will be accepted by the AP. In this case, the Authentication frame
exchange is only used to identify the STA.

Shared key authentication is only used when Wired Equivalent Privacy (WEP) was selected as the
authentication algorithm. WEP will be discussed in detail in Section 3.1. When the STA requests
shared key authentication, the AP will respond with a random challenge text. The STA needs to
encrypt this challenge text with a given shared WEP key, and transmit it back to the AP. If the
AP can successfully decrypt the challenge response, the authentication is complete, and the AP
will send a success message to the STA (see Figure 2.8).

Figure 2.8: 802.11 shared key authentication [29]

Finally, the Deauthentication frame can be transmitted by an STA or AP in order to deauthenticate
and disassociate1 the other party. A deauthentication is always immediately performed upon receipt
of a Deauthentication frame, and functions independently of the used authentication method. The
format of a Deauthentication frame body is given in Figure 2.10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Authentica-
tion alg.
number

Authentica-
tion trans.

seq. no.
Status code Challenge text (variable)

Figure 2.9: Authentication frame body fields in bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reason code

Figure 2.10: Deauthentication frame body fields in bits

• Association Request and Association Response frames: after Authentication is completed,
the final step is association between the STA and the AP. Association is performed to join a wireless
network, and can be compared to plugging in the network cable in a wired network. The format of
an Association Request is given in Figure 2.11. Here we can see the addition of the Listen Interval
field, which indicates how often an STA listens for Beacon frames by the AP.

Upon receiving the Association Request, the AP will respond with an Association Response (see
Figure 2.12). The AP will assign an Association ID (AID) to the STA as part of the association.

1Since authentication is a prerequisite for association, a deauthentication will also result in a disassociation.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Capability
information

Listen
interval

SSID (variable) Supported rates (variable)

Figure 2.11: Association Request frame body fields in bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Capability
information

Status code AID Supported rates (variable)

Figure 2.12: Association Response frame body fields in bytes

• Reassociation Request and Reassociation Response frames are used in the context of roam-
ing, and are similar to Association Requests and Association Responses. In fact, Association
Responses and Reassociation Responses are identical, and the only difference between Association
Requests and Reassociation Requests is that the MAC address of the currently associated AP is
given in the Reassociation Request. This allows the transfer of association information from the
old AP to the new AP. The frame body of a Reassociation Request is illustrated in Figure 2.13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Capability
information

Listen
interval

Current AP MAC SSID (variable)
Supported rates

(variable)

Figure 2.13: Reassociation Request frame body fields in bytes

• Disassociation frames are identical to Deauthentication frames, the difference being that Disas-
sociation frames end the association relationship, whereas Deauthentication frames end both the
association and authentication relationship.

2.2.2 Control frames

Control frames offer features regarding the delivery of data frames. Examples of such features are
reservation of the wireless medium, reliability, and power management.

• RTS and CTS frames: RTS frames are optionally sent by an STA before the transmission of a
large unicast data frame in order to reserve the wireless medium for the duration specified in the
Duration field. CTS frames are sent as a response to the RTS frame. After receiving the CTS
reply, the STA can begin sending the large packet, and other STAs are alerted to hold off for the
duration specified in the CTS frame.

The RTS/CTS mechanism essentially prevents collisions with hidden nodes (see Figure 2.14), and
the retransmission of a large data frame as a consequence [68]. The format of these frames is similar
to the generic 802.11 frame (see Figure 2.15 and Figure 2.16).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Frame
Control

Duration Receiver MAC Transmitter MAC FCS

Figure 2.15: RTS frame structure and field sizes in bytes
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Figure 2.14: The hidden node problem: node A and node C are too far apart to hear each other

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Frame
Control

Duration Receiver MAC FCS

Figure 2.16: CTS frame structure and field sizes in bytes

• ACK frames are used to positively acknowledge the reception of a certain frame to the sender of
that frame. The structure of an ACK frame is identical to that of a CTS frame, except the Subtype
field is set to “1101”.

2.2.3 Data frames

Data frames sent over an 802.11 network carry higher-level protocols in the Frame Body field. The
structure of a data frame is identical to the generic frame structure (see Figure 2.4), except the Type
field is set to “10”, and the Subtype field is set to “0000”. If the STA has QoS service support, the
Subtype is set to “1000”. Details of the 802.11 QoS mechanisms are outside the scope of this thesis.

2.3 802.11 authentication and association

When an STA wants to join a wireless network, a combination of management frames from Section 2.2.1
must first be exchanged with the AP.

As a first step, the AP may advertise itself to all in-range STAs by sending Beacon frames. However, this
step is not a requirement, since some APs implement SSID cloaking2. In addition to the Beacons sent
by the AP, STAs may periodically send broadcast Probe Requests or a list of Probe Requests directed
towards one specific SSID in order to discover in-range networks.

When the STA decides to join a network, the first step is to send an Authentication frame. Here, one can
choose between open authentication and shared authentication. Open authentication can be used with
any cryptographic protocol. Shared authentication however, must be used in conjunction with WEP.

As a final step, the STA will request to join the network by sending an Association Request frame. The
AP will assign an AID to the STA, and reply with an Association Response. If the network does not use
an encryption protocol (open network), the STA can immediately begin transmitting data frames (see
Figure 2.17). When encryption is enabled, another authentication procedure must be performed before
network resources may be accessed.

2Cloaked APs do not send Beacons and only reply to Probe Requests containing their SSID in an attempt to hide the
SSID from an attacker. However, this security measure can be easily circumvented by sniffing the Probe Request from a
legitimate client.
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Figure 2.17: 802.11 open network authentication

2.4 NIC modes

A NIC used to connect with 802.11 networks can be configured to operate in several modes. Some of
these modes are frequently used in the discussed attacks from this thesis, namely:

• Infrastructure mode: The NIC will act as a client STA connecting to an AP. Only packets destined
for the MAC address of this NIC, excluding management and control frames, are passed on to
higher layers of the protocol stack.

• Monitor mode: In monitor mode, the NIC will promiscuously capture packets from all in-range
802.11 devices. This includes management and control frames.

• Master mode: The NIC will act in a similar way as infrastructure mode, but as an AP instead of
a client STA.

Not all manufacturers support the same set of modes for their NICs. Additionally a NIC might behave
slightly differently depending on the chipset and manufacturer.

2.5 Attacks on open 802.11 wireless networks

Given that communication over open 802.11 wireless networks is unencrypted, many attacks can naturally
be performed in this context. In this section, these attacks will be detailed, and their applicability today
is verified through a number of experiments.

2.5.1 Passive MITM

The passive Man-In-The-Middle (MITM) attack is one of the simplest attacks on 802.11 networks. Here,
an attacker configures their NIC to operate in monitor mode. This can be achieved with standard Linux
tools such as iwconfig and airmon-ng.

Because the NIC is in monitor mode, and because open 802.11 networks do not use any form of encryption,
it is possible for an attacker to sniff all transmitted packets within range of the NIC on a specific channel.
Sniffing on the monitor mode interface can be done with tools like Ettercap and Wireshark.
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2.5.2 Experiment: passive MITM with Snoopy

A tool called “SnooPy” was developed to capture data in an automated fashion while performing a
passive MITM. The tool provides the following features:

• Interface to MySQL for logging data to disk by using Structured Query Language (SQL) transac-
tions.

• Capture and logging of 802.11 management frames (Associations, Probe Requests).

• MAC address logging of in-range STAs and APs.

• Profiling of the network type of an AP (open network, 802.1X network or 802.11i network) based
on the packets sent to and from this AP.

• Capture and logging of 802.1X frames.

• Parsing of Hyper Text Transfer Protocol (HTTP) streams to extract sensitive data. This data can
be logged to disk. To protect the privacy of the test subjects, data is obfuscated before it is logged
to disk.

Upon execution, SnooPy creates a monitor mode interface for a wireless NIC using airmon-ng. Then
both the original interface (e.g. wlan0) and the monitor mode interface (e.g. mon0) are sniffed. The
regular interface is used for sniffing HTTP traffic, whereas the monitor mode interface is used for sniffing
802.11 management frames. This has the advantage that, in an active MITM attack (Section 2.5.4), the
regular interface will see decrypted packets, but no management frames when spoofing a cryptographically
secured network. On the contrary, the monitor mode interface will see management frames, but it will
not see decrypted data packets.

2.5.3 Active MITM

When an attacker is able to trick an STA into associating to an AP under their control, the attacker is
an active MITM. Contrary to a passive MITM, traffic is destined directly for the attacker’s AP. This
kind of attack is also known as the Evil Twin attack, Karma attack or Rogue AP attack.

To make matters worse, many devices nowadays connect automatically to an AP that is in the PNL of
the user. Furthermore, recall from Section 2.2.1 that Probe Requests are sent at regular intervals. These
Probe Requests can be intercepted by an attacker to learn which SSIDs are in the PNL of the user, and
a rogue AP can consequently be set up dynamically to perform an active MITM attack. For this reason,
users should remove unused open networks from their PNL, so that automatic exploitation of this attack
can be prevented.

Despite the fact that many mitigation strategies have been explored by researchers [54, 47, 67], the
experiment that we will discuss in Section 2.5.4 shows that the Evil Twin attack is still viable today.

2.5.4 Experiment: active MITM with hostapd spoof

In a first experiment, we attempted to use a combination of Python and Scapy3 to send fake Probe
Responses to devices. However, we noticed that the time required to send a Probe Response was too
large, causing some devices to drop the packet. For this reason, we made modifications to the hostapd

tool to fit our needs.

hostapd is a user space software access point written in C by Jouni Malinen. It uses the nl80211

driver to create a master mode interface for data traffic and a monitor mode interface for transceiving
management frames [10]. This implementation performs much better when compared to the Python +
Scapy implementation.

To provide internet connectivity to our software AP, we used iptables to route packets from the hostapd
interface to an internet enabled interface and back. We used dnsmasq to set up our own Domain Name

3Scapy can be downloaded from http://www.secdev.org/projects/scapy/.

12

http://www.secdev.org/projects/scapy/


13

Server (DNS) and Dynamic Host Control Protocol (DHCP) server. The commands used to configure
this setup are shown in Listing 2.1.

# $1: hostapd interface

# $2: internet enabled interface

# Set IP address of hostapd interface

ifconfig $1 up 10.0.0.1 netmask 255.255.255.0

# Disable power management

iwconfig $1 power off

# Enable IPv4 forwarding

sysctl -w net.ipv4.ip_forward=1

# Start dnsmasq of required

if [ -z "$(ps -e | grep dnsmasq)" ]

then

dnsmasq

fi

# Clear previous iptables configuration

iptables --flush

iptables --table nat --flush

iptables --delete-chain

iptables --table nat --delete-chain

# Route packets to internet enabled interface and back

iptables --table nat --append POSTROUTING --out-interface $2 -j MASQUERADE

iptables --append FORWARD --in-interface $1 -j ACCEPT

# Start hostapd

hostapd <conf_file>

killall dnsmasq

Listing 2.1: hostapd spoof setup script

Our modified hostapd has a number of additional options that may be specified in a hostapd configu-
ration file:

• safespoof=[0,1]: When safespoof is enabled (1), the AP will send a Deauthentication frame
after successful association to disconnect the STA4. This feature was implemented to prevent a
victim from sending application data over our AP, or in other words: to protect the privacy of test
subjects.

• specific=[0,1]: Specifies whether to answer all Probe Requests (0), or only the Probe Requests
containing our SSID (1).

• answer broadcast probereq=[0,1]: If enabled (1), broadcast or wildcard SSID Probe Requests
are answered with Probe Responses containing SSIDs of popular, free hotspots. Examples of such
hotspots in Belgium are FON BELGACOM, TELENETHOTSPOT, and TELENETHOMESPOT.

• cycle spoof ssids=[0,1]: If enabled (1), the fake AP will store SSIDs from Probe Requests in
a circular array. When a broadcast Probe Request with a wildcard SSID is received, one SSID is
then chosen from this list for the Probe Response. This feature was implemented because some
devices remove an SSID from the list of scanned networks quickly if the AP fails to respond timely

4When spoofing an 802.1X secured network, we will deauthenticate the STA after a successful EAP exchange. 802.1X
and EAP will be discussed in Section 4
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to a broadcast Probe Request. Duplicate entries in the circular array are ignored, so the more
popular a network is, the more it will be used in response to broadcast Probe Requests.

• cycle probe response types=[0,1]: Specifies whether to cycle between advertising the network
as open, Wi-Fi Protected Access (WPA)-Enterprise, or WPA-Personal secured (1). If disabled,
only the security protocol configured in the configuration file is advertised.

• ssid blacklist=[list]: Allows the user to specifiy a comma-seperated list of SSIDs that may
not be spoofed.

We performed a number of experiments on different locations, where we used the hostapd spoof tool to
investigate the current feasibility of an Evil Twin attack. The SQL queries that were used to determine
the results are shown in Table 2.2. Here, “Notable subjects” calculates the number of devices that sent a
reasonable amount of Probe Requests. We consider these devices in range. The number of “Vulnerable
subjects” is calculated by checking which devices associated to an open network (type = 0) during the
experiment.

Description SQL Query

Subjects SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM ProbeRequests

GROUP BY mac) AS c;

Notable subjects SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM ProbeRequests

GROUP BY mac HAVING COUNT(*) > 5) AS c;

Vulnerable subjects SELECT COUNT(*) FROM (SELECT DISTINCT mac FROM AssociationRequests

WHERE mac IN (SELECT mac FROM ProbeRequests GROUP BY mac HAVING COUNT(*)

> 5) AND ssid in (SELECT DISTINCT ssid FROM APs WHERE type = 0)) AS c;

Table 2.2: SQL queries used to calculate feasibility of the Evil Twin attack

The results of this experiment are shown in Table 2.3. Note that the percentage of vulnerable subjects
is highly dependent on when a subject is considered “notable”. We can conclude that 212 out of 1317
devices (16%) are vulnerable to the attack.

Location Duration Subjects
Notable
subjects

Vulnerable
subjects

Percentage
vulnerable

Test 1: UHasselt 1h26m12s 673 380 58 58
380 = 15%

Test 2: EDM Research Center 1h33m05s 61 41 1 1
41 = 2%

Test 3: Public transport 1h35m02s 794 314 78 78
314 = 25%

Test 4: Public transport 0h44m16s 196 85 11 11
85 = 13%

Test 5: UHasselt 1h35m08s 890 497 64 64
497 = 13%

Table 2.3: Evil Twin attack test outside lab environment

2.5.5 Experiment: fingerprinting AP authentication modes

Recall from Section 2.2.1 that devices send Probe Requests on a regular basis, and that they connect
automatically to known SSIDs. This connection is only initiated when the authentication mode advertised
by the AP matches the authentication configuration in the device. We can exploit this behavior to
determine the authentication mode of a targeted SSID remotely.

To exploit this knowledge in practice, the hostapd spoof tool was extended to cycle between an SSID
spoofed as open network, WPA-Enterprise network, and WPA-Personal network. SnooPy was extended
to sniff the relevant packets that determine whether the STA tried to connect to our rogue AP. If the
STA attempted to connect, we know that our currently guessed authentication mode for the SSID was
correct. This knowledge is required for the “Vulnerable subjects” SQL query from Table 2.2 (SSID type).
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The categorisation of three authentication types (open, enterprise, and personal) was made because we
found that devices make no distinction between a WPA-TKIP and a WPA2-CCMP network.

2.5.6 Experiment: 802.11 vulnerability fuzzing with Scapy

When testing a possible 802.11 protocol vulnerability based on an assumption, it might be interesting to
interact with a 802.11 standard compliant device to verify whether the vulnerability is indeed present.
Similarly it might be worth looking at vendor specific vulnerabilities that result from incompliance to
the 802.11 standard.

In both of the above scenarios, there is a need for a tool that allows easy creation and manipulation of
802.11 packets. Altough many tools such as rfakeap, fakeap.pl, and airbase-ng could be used for
this purpose, they are designed for specific attack scenarios. Using these tools as a prototype tool is
difficult, because packets need to be crafted in a byte-per-byte fashion. Some of these tools are written
in C, which is also an inconvenience in terms of lines of code and compilation time.

For these reasons we developed a prototype tool that can emulate a fake AP completely in software and
manipulate packets on the fly5. This fake AP appears to client devices as if it were legitimate. The tool
was written in Python and uses the Scapy library for flexible packet manipulation. Scapy supports a
very wide range of network protocols natively, and is therefore ideal for this purpose6. On the command
line, we can invoke the tool with:

prototype.py [-h] [--interface INTERFACE] [--ap AP] [--mac MAC]

[--mode MODE] [--dns DNS] [--specific SPECIFIC]

Arguments that may be provided are:

• -h: Display help.

• --interface <if>: A monitor mode interface. The default is mon0.

• --ap <ssid>: SSID of the spoofed AP.

• --mac <mac>: MAC address to be used by the AP. By default the tool uses the MAC address of
the specified interface.

• --mode <mode>: Specifies whether the tool relies on an external program to handle management
and control frames (--mode 0) or whether this is done entirely with Scapy (--mode 1). Mode 1 is
slower but allows more control and fuzzing potential.

• --dns <dns>: Address of the DNS server that is communicated to STAs upon association.

• --specific <specific>: Indicates whether the AP should only reply to Probe Requests directed
towards the specified SSID (--specific 1) or to all Probe Requests (--specific 0).

The tool is capable of associating with multiple STAs. However, routing Application Layer packets using
this tool was not implemented, because we found this to be very slow. This is due to the fact that the
Scapy library dissects7 all packets in user space. Nevertheless, the tool is useful for vulnerability fuzzing
in layers below the Network layer of the OSI model. The vulnerability that we will discuss in Chapter 5
was in fact found using this tool.

2.6 Application layer security

When it comes to privacy, the Application Layer of the OSI model contains a lot of sensitive data.
Browsing the web, exchanging Facebook messages, and performing online banking transactions are some
examples of activities that are highly privacy-sensitive, and have become part of everyday life.

5This tool will become available for download at http://www.nostack.net/.
6After completion of our prototype tool, a similar tool that uses Python and Scapy was released at GitHub by Dan

McInerney on February 8 2014. This tool can be found at https://github.com/DanMcInerney/fakeAP/blob/master/

fakeAP.py
7In Scapy lingo, dissecting a packet means identifying all involved protocols and fields on all layers of the OSI model.
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In the event that an attacker successfully launches an active MITM attack on a device, all this sensitive
data will be routed to the attacker. However, this does not necessarily mean that a user’s privacy has
been fully compromised, since the application data may be encrypted with a secure protocol. In practice,
this encryption is often performed on the Transport Layer to protect the encapsulated application data,
and the most notable protocol for this purpose is Transport Layer Security (TLS). This protocol was
previously known as Secure Sockets Layer (SSL).

In this section we will briefly see how TLS works. In addition we will discuss some attacks on TLS.

2.6.1 Transport Layer Security

TLS is a cryptographic protocol that is used to provide privacy and data integrity between two communi-
cating entities [18]. Because it runs on the Transport Layer of the OSI model, the protocol is transparent
to applications. A common usage for TLS is the secure transportation of HTTP data.

The first step in establishing a secure channel is to perform the TLS handshake between the two com-
municating entities. In this process, a secret key is exchanged that will be used to encrypt subsequent
communication. The handshake is performed as follows: [18]

1. The client sends a ClientHello message to the server. Hello messages are used to exchange security
enhancement capabilities between client and server. For example, the Hello message may indicate
which cryptographic algorithms and TLS version will be used. In addition, the ClientHello contains
a random nonce, which we will denote as ClientHello.random.

2. The server replies with a ServerHello message, which also contains a random value ServerHello.random.
Following the ServerHello message, the server sends a Certificate message which contains the cer-
tificate of the server. This certificate will be used by the client to check whether the public key of
the server is authentic. Optionally, the server may ask the client for a certificate as well, so that
both entities are mutually authenticated. Finally, the server sends a ServerHelloDone message,
which concludes the hello-message phase of TLS.

3. The client sends a random 48-byte pre master secret to the server, encrypted with the server’s
public key. Both entities then calculate the shared secret key or TLS master secret as follows:

master secret = PRF(pre master secret, “master secret”,

ClientHello.random + ServerHello.random)[0..47]
(2.1)

4. The client and server send each other a Finished message, indicating the completion of the TLS
handshake.

2.6.2 Certificate authenticity

To verify whether a public key belongs to a certain name, a certificate that was issued by a trusted
entity must be validated by the TLS peer. This trusted entity can be a Certificate Authority (CA). The
certificate that this CA presents may itself be signed by another CA higher up in the hierarchy, in which
case the CA is an intermediate CA. The user must traverse the hierarchy of CAs until a trusted one is
found. This “certification path” is shown in Figure 2.18. [24]

16



17

Figure 2.18: The certification path or chain of trust [25]

2.7 Attacks on TLS

Despite the fact that TLS is considered secure when setup correctly, attacks may be performed on the
protocol under certain conditions. These conditions include misconfigurations on the client or server, or
old versions that are installed on the TLS server. In this section we will discuss some attacks that follow
from these mistakes.

2.7.1 Fake certificates

On of the simplest attacks on TLS is to provide a fake certificate once an active MITM attack has been
performed. A fake certificate can be generated in the same way as any normal certificate using openssl:

openssl genrsa -des3 -out fake.key 1024

openssl req -new -key fake.key -out fake.csr

openssl x509 -req -days 365 -in fake.csr -signkey fake.key -out fake.crt

Listing 2.2: Commands to generate a fake certificate

As an example, suppose the attacker presents this certificate when a victim user visits facebook.com

over HTTP Secure (HTTPS). The user’s browser will not be able to verify the certificate, resulting in a
warning message. However, a recent study by Google indicated that in 70.2% of the cases, the user will
simply click through this warning message [5]. Therefore, providing a fake certificate would be a viable
attack against an unsuspecting user.

2.7.2 SSLstrip

SSLstrip is a MITM tool for intercepting HTTPS connections, presented by Moxie Marlinspike at Black
Hat DC 2009 [42, 34]. Using this tool, an attacker can force a user’s User Agent (UA) to access a web
page with HTTP instead of HTTPS. The attack is performed in the following way:

1. The attacker becomes an active MITM using any method. For example, the attack described in
Section 2.5.3 can be performed.

2. HTTP traffic is intercepted by the SSLstrip tool.
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3. All <a href="https://" > Uniform Resource Locators (URLs) are rewritten to <a href="http://"

>. Additionally, a map is kept of which URLs were changed. SSLstrip can also rewrite other fields,
such as the Location HTTP header, which is used in HTTP redirects, and the Set-Cookie header,
which is used for configuring cookies on the client browser.

4. When the victim device makes a HTTP request for an URL that was mapped, the request is proxied
as HTTPS to the server.

With the above exploit, the server does not notice any difference, since it sees the HTTPS requests as
expected. The client however, will send data over an unencrypted HTTP channel to the SSLstrip tool,
where data can be logged to disk.

SSLstrip can be mitigated by using HTTP Strict Transport Security (HSTS), a mechanism that forces
the browser to use HTTPS by means of a preloaded list of websites or a trust-on-first use HSTS header
[23, 31].

2.7.3 Experiment: SSLstrip

We conducted an experiment to test the current effectiveness of SSLstrip on high profile websites, in
combination with the active MITM attack described in Section 2.5.3. The setup of this experiment is
nearly identical to the setup from Section 2.5.4. The only difference is that we run SSLstrip using the
commands shown in Listing 2.3. These commands ensure that all HTTP traffic is routed to SSLstrip on
port 10 000, so that secure links can be stripped.

iptables -t nat -A PREROUTING -p tcp --destination-port 80 -j REDIRECT --to-port 10000

python2 ./sslstrip/sslstrip.py -l 10000 -k -w /dev/null

Listing 2.3: SSLstrip in combination with the active MITM attack

From the results of our experiment we concluded that SSLstrip is still very effective in active MITM
attacks today. Table 2.4 shows that many high profile websites are still vulnerable to the SSLstrip
attack. The reason why they are vulnerable is because these websites have not been incorporated yet in
the preloaded HSTS list of UAs, or because they do not send a HSTS header.

Website
Chrome

35.0.1916.38
Safari

9537.53
Firefox
29.0.1

Internet Explorer
11.0.9600.17107

google.com 3 3 3 3

accounts.google.com 7 7 7 3

login.live.com 3 3 3 3

facebook.com 3 3 3 3

twitter.com 7 7 7 3

bnpparibasfortis.be 3 3 3 3

kbc.be 7[ 7[ 7[ 7[

belfius.be 3 3 3 3

[ This website uses Javascript obfuscation to force the browser to a HTTPS link, which is a technique
to defeat SSLstrip. The interested reader can read more about this technique at the following blog:
http://securityweekly.com/2012/12/defending-against-ssl-strippin.html.

Table 2.4: Websites vulnerable to SSLstrip

Note that these results assume that no HSTS header was obtained yet from the target website. In other
words, only websites in the HSTS preloaded list are not vulnerable. Internet Explorer performed the
worst in this experiment, because this browser does not support HSTS.
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2.7.4 BREACH attack

BREACH is a compression side channel attack on SSL that was introduced at Black Hat USA in 2013.
The attack can be executed under the following conditions: [43]

• The attacker can inject chosen plaintext in a user’s requests.

• The web server uses HTTP compression (gzip / deflate).

• The web server reflects user data on a webpage via query string parameters.

• The web server serves a secret such as a Cross-Site Request Forgery (CSRF) token or session key.

An active MITM can exploit the BREACH attack by repeatedly sending requests to the web server and
observing the results that are returned after compression. Because the deflate compression algorithm
uses a combination of Huffman encoding and the LZ77 algorithm [17], repeated byte sequences are not
repeated in the output. This allows an attacker to guess the secret by observing the length of the output.

As an example, suppose the victim is currently assigned a session key PHPSESSID=1a79a4d60de6718-

e8e5b326e338ae533. The attacker injects the string PHPSESSID=a in the request, and this string is
compressed and reflected back in the output. Next, the attacker injects PHPSESSID=b, and so on. Because
compression is used, we know the shortest output will be the correct guess, e.g. PHPSESSID=1 will be
shorter than PHPSESSID=a. Using this method, secret can be guessed byte per byte.

2.7.5 Heartbleed bug

The Heartbleed bug is a recently discovered vulnerability that affected OpenSSL versions 1.0.1 to 1.0.1f.
The attack uses crafted Heartbeat Extension packets to trigger a buffer over-read that leaks memory
contents of the server. Consequently, an attacker may obtain the server’s private key and decrypt any
data sent to this server through an active MITM attack. [41]

2.7.6 HSTS bootstrap MITM vulnerability

A HSTS policy can be honored by the UA in two ways. A first possibility is that the policy is incorporated
in a preloaded list on the UA. However, this list is very short, and therefore many high profile domain
names do not have their policy registered8 [31].

The second possibility is that the UA receives a Strict-Transport-Security HTTP Response header
over a valid secure channel before it will honor a HSTS policy. This is a typical example of the “trust
on first use” principle. An attacker can intercept the HTTP Response header in an active MITM attack,
and remove the header to prevent the browser from honoring the HSTS policy [23].

8For example, the Google Chrome HSTS preloaded list can be found at https://src.chromium.org/viewvc/chrome/

trunk/src/net/http/transport_security_state_static.json. This list does not contain high profile domains such as
facebook.com, ing.be, bnpparibasfortis.be, etc.
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Chapter 3

Wired Equivalent Privacy and IEEE
802.11i

The MITM attacks described in Section 2.5 can be performed on open networks because of the lack of
user privacy. For this reason, the WEP encryption protocol was developed. This protocol was intended
to provide privacy equivalent to wired networks. Even though the 802.11 standard specifies that WEP
may be used to increase confidentiality of data, it is known to be a very insecure protocol and is currently
deprecated for this reason [28].

To address the issues discovered with WEP, the IEEE proposed the 802.11i standard, which describes
new security features that may be used by 802.11 devices. In this section, we will discuss the workings
of both WEP and the newer algorithms described in the 802.11i standard.

3.1 WEP mechanisms

Standard 64-bit WEP takes a secret key k, composed of a root key kr of 40 bits and an Initialization
Vector (IV) of 24 bits. The root key is typically shared among the users of the network, whereas the IV
is randomly generated and different for every packet. The secret key is used as the seed for the Rivest
Cipher 4 (RC4) stream cipher. RC4’s Pseudo-Random Generation Algorithm (PRGA) generates a key
stream which is XORed with the concatenation of the plaintext frame body and an Integrity Check Value
(ICV). This ICV is designed to protect the frame against tampering, and is calculated as a 4-byte CRC
checksum of the frame body.

The result of the WEP operation is called the encrypted data or ciphertext. The IV and KeyID1 are
concatenated with the ciphertext and sent over the network (see Figure 3.1). At the receiving side, this
process is reversed to yield the original plain-text data frame.

Figure 3.1: WEP encryption algorithm [37]

1WEP allows usage of multiple root keys. Which one is used is determined by this KeyID field.
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3.2 Attacks on WEP

The mechanism described in Section 3.1 has numerous flaws. In this section we will discuss how these
flaws can be exploited in order to compromise the privacy of users.

3.2.1 Replay attack

From Section 3.1 we can observe that WEP does not have the ability to ensure that a message originated
from the claimed sender. This ability, known as data authentication, is a crucial security component
to prevent packet injection attacks by an attacker [28]. Hence, the protocol is inherently vulnerable to
replay attacks.

Since an IV may be reused freely, and since there is no sequence number to check for replayed packets,
an attacker can replay frames to generate extra traffic. This is commonly done with Address Resolution
Protocol (ARP) Requests, as these packets can be easily distinguished based on their destination MAC2

or fixed size. Once the ARP Request has been replayed, an ARP Response will be sent in reply to the
ARP Request, and hence extra traffic will be generated.

3.2.2 ChopChop attack

The ChopChop attack was introduced by a man with the pseudonym “KoreK” on an internet forum.
An attacker can perform the ChopChop attack to decrypt an encrypted WEP packet. This also implies
that a keystream can be recovered. However, the root key cannot be recovered using this method.

The attack can be summarized as follows: [58, 19]

1. The attacker authenticates and associates to the network.

2. A packet is sent to the AP by a legitimate client. Before encryption by the RC4 algorithm, an ICV
was appended to the plain-text data.

3. The attacker sniffs this packet, and “chops off” the last byte of encrypted data. Denote R as the
plain-text value of this truncated byte. The remaining bytes Q will now have an invalid ICV.

4. The attacker guesses R. Since the ICV is calculated with the CRC32 error detection algorithm
instead of a secure algorithm, the attacker can modify the ICV to be valid based on the knowledge
of R 3.

5. The packet is transmitted to the AP. If the attacker’s guess for R was correct, the AP will forward
the message to its destination. Otherwise, the packet will be silently discarded. In the latter case,
we know the attacker’s guess for R was incorrect, and step 4 is repeated with a new value for R.

The above process can be repeated until n bytes of the keystream have been recovered. Note that step 1
is optional in case that a vulnerable AP sends a Disassociation packet if a valid packet is received from
an unauthenticated STA. This Disassociation packet can be used to determine whether the guess for R
was correct.

3.2.3 Fragmentation attack

The fragmentation attack described by Andrea Bittau can be performed to obtain a keystream from an
encrypted WEP packet. In summary, the attacker first guesses part of the keystream, and then reuses
this keystream to inject crafted packets of arbitrary length using 802.11 fragmentation. Next, when
this packet is forwarded by the AP, it can be sniffed again. A larger keystream can then be recovered,
because the attacker knows the plain-text data of their injected packet [11]. Note that contrary to the
ChopChop attack (see Section 3.2.2), this attack cannot be used for decrypting any given WEP packet,

2Recall from Section 3.1 that only the frame body is encrypted, and that the frame header is visible to anyone.
3The reason why this can be done even though the ICV is encrypted, is outside the scope if this thesis. The fol-

lowing website provides an intuitive explanation for the interested reader: http://www.aircrack-ng.org/doku.php?id=

chopchoptheory&DokuWiki=ecfe066435c4bfc667f4417abc7e6079
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because each packet has a different keystream. The fragmentation attack focuses on injecting packets of
arbitrary length.

As an example, suppose the attacker sniffs a random packet P . In Chapter 2 we saw that all packets are
encapsulated with LLC. The LLC/Subnetwork Access Protocol (SNAP) header is 8 bytes in length and
contains almost always constant fields. Therefore, 8 bytes of the keystream can be recovered.

In the next stage, the attacker can inject their own packets using these 8 bytes of recovered keystream.
Since the ICV is 4 bytes, and since there may be a maximum of 16 fragments in 802.11, this means
4 · 16 = 64 bytes of arbitrary data may be sent by the attacker. At this point the attacker could inject a
long broadcast frame to recover more bytes of the keystream and repeat the process.

3.2.4 RC4 related attacks

Aside from WEP, the RC4 itself has some vulnerabilities that can be exploited. These vulnerabilities
are all of cryptographic nature, and will therefore not be discussed in this thesis.

3.3 WPA and WPA2

In response to the security vulnerabilities that were found in WEP, the IEEE created an amendment
to the 802.11 standard named 802.11i. The 802.11i amendment defines new security protocols that use
Robust Security Network Associations (RSNAs). An RSNA is an authentication or association between
a pair of STAs that includes the 4-Way Handshake, which will be discussed in this section. If the entire
network allows only RSNAs, that network is named a Robust Security Network (RSN).

More specifically, the new protocols that were introduced in 802.11i are Temporal Key Integrity Protocol
(TKIP) and Counter mode Cipher block chaining Message authentication code Protocol (CCMP). TKIP
is a cipher suite which enhances WEP, but also maintains backwards compatibility [26]. When this
protocol is used, the network is said to be secured by WPA in consumer terms. CCMP is a more secure
protocol that uses Advanced Encryption Standard (AES), and is labeled WPA2 in consumer terms.

3.4 The 4-Way Handshake

Before either TKIP or CCMP may be used, the STAs participating in the communication must perform
the 4-Way Handshake. The 802.11i standard states that the 4-Way Handshake: [26]

• Confirms that a common shared secret named the Pairwise Master Key (PMK) exists on both
peers.

• Confirms that this PMK is actual.

• Is used to derive Pairwise Transient Keys (PTKs) from the PMK. A PTK is used to encrypt unicast
data.

• Installs the Group Transient Key (GTK) in the participating STA and AP. The GTK is used to
encrypt broadcast data.

• Confirm the ciphersuite selection.

The 4-Way Handshake is performed by exchanging a series of 802.1X EAPOL-Key frames. This type of
frame will be discussed in Section 4.3. Figure 3.2 shows the exchange of EAPOL-Key messages between
STA and AP. Here we can observe the following steps: [26]

1. The AP transmits a random value ANonce to the STA.

2. The STA also generates a random value SNonce, and derives the PTK as follows:

PTK = PRF-X(PMK, “Pairwise key expansion”,Min(AA,SPA)||Max(AA,SPA)||
Min(ANonce, SNonce)||Max(ANonce, SNonce))

(3.1)
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Where AA is the AP MAC address and SPA is the STA MAC address. The PTK itself consists of
three keys: the first 128 bits make up the Key Confirmation Key (KCK), the second 128 bits form
the Key Encryption Key (KEK), and the remaining bits are used as the Temporal Key (TK). In
summary, these keys are used for the following purposes:

• The KCK is used as a secret key for calculating the Message Integrity Code (MIC), which
provides data origin authenticity.

• The KEK is used to encrypt the GTK in the next step.

• The TK is used for the actual encryption of data.

Finally, the STA sends the MIC and SNonce to the AP.

3. Using the received SNonce, the AP performs step 2 to derive the PTK and to acknowledge that
there is no MITM by checking the MIC. Then a GTK is generated as a random number, encrypted
with the KEK, and sent to the STA.

4. The STA acknowledges reception of the GTK, completing the 4-Way Handshake.

One of the authentication methods that is typically used in home networks is WPA-Pre-Shared Key
(PSK), also known as WPA-Personal. Here, the user configures a password that must be entered when
access to network resources is desired. From this password, a PSK is derived as: [30, 26]

PSK = PBKDF2(password,SSID, ssidlen, 4096, 256) (3.2)

Where 4096 is the number of iterations and 256 is key bit size4. The resulting PSK of this algorithm
is used as the 256 bit PMK. Note that this PMK is secret, and that it is never transmitted over WPA-
Personal networks.

Another method to derive the PMK that is used in enterprise networks is WPA-Enterprise. This method
will be discussed in detail in Chapter 4. For now, let us only consider WPA-Personal.

3.5 Temporal Key Integrity Protocol

TKIP is a protocol that was designed to prevent the various security exploits that were possible in WEP
(see Section 3.2) while maintaining backwards compatibility with the same hardware that supports WEP.
It provides the following improvements to WEP: [26]

• A MIC is added to provide data origin authentication and integrity protection over the DA, SA,
Priority field, and plain-text data by using the Michael algorithm. The protection provided by the
Michael algorithm can be circumvented as we will see in Section 3.7, but most APs that support
TKIP provide countermeasures to prevent exploitation by an attacker.

• TKIP uses a TKIP Sequence Counter (TSC) to prevent replay attacks.

• Instead of one root key, a cryptographic mixing function is introduced that mixes a TK, the
Transmitter Address (TA), and TSC. Hence, every packet uses a different key. This key is composed
of a 24-bit IV and 104-bit RC4 key.

The TK that is used in the mixing function is derived from a secret Session Key (SK), which can be
established on the STA and AP by performing the 4-Way Handshake from Section 3.4.

3.6 CCMP

CCMP is a cipher suite that uses the Counter mode with CBC-MAC (CCM) mode of the AES encryption
algorithm. This mode is defined in Request For Comments (RFC) 3610, and as the name implies it uses

4The PBKDF2 algorithm performs multiple iterations in order to prevent brute-force attacks against weak passwords,
as more iterations increase the time required to calculate a PSK.
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Figure 3.2: The 4-Way Handshake [62]

Counter (CTR) mode for encryption and Cipher Block Chaining Message Authentication Code (CBC-
MAC) for authentication and integrity. AES uses a 128-bit key size and a 128-bit block size in context
of CCMP. [26]

As with TKIP, CCMP uses a TK which is derived from the 4-Way Handshake. For each packet, a random
nonce is derived from a 48-bit Packet Number (PN), the SA and the Priority field. This nonce is used
together with the TK as input for the CCM algorithm, which produces the ciphertext and MIC. This
algorithm is considered more secure than TKIP, because all RC4-related vulnerabilities are inherently
not present in AES, and because the MIC from TKIP is susceptible to attack (see Section 3.7.1).

3.7 Attacks on 802.11i

Though many issues present in the WEP protocol were fixed with the introduction of 802.11i protocols,
some minor vulnerabilities still remain. In this section, we show how these vulnerabilities may be
exploited by an attacker.

3.7.1 Beck and Tews attack

The Beck and Tews attack is a variation on the ChopChop attack that can be used to send a small
number of custom packets on a network that is secured with TKIP. The attack can be exploited under
the following conditions: [58]

• The network supports the TKIP protocol.

• Internet Protocol (IP) version 4 is used with an IP range where most addresses are known to the
attacker (for example 192.168.0.X).

• A long re-keying interval is used for TKIP, for example 3600 seconds.

• The network supports the IEEE 802.11e QoS features.

Under these conditions, the attack is performed as follows:

1. The attacker sniffs until an encrypted ARP Request or Response is encountered. These packets
can be identified by their length, and their contents can be guessed except for the last byte of the
IP source, the last byte of the IP destination, the 8-byte MIC and the 4-byte ICV.

2. The attacker launches a modified ChopChop attack on the last byte of the packet on a different
QoS channel. Since each QoS channel uses its own TSC, this TSC has a high probability of being
lower than the TSC of the replayed packet. Hence, the packet will be accepted.
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3. If the attacker’s guess for the last byte was incorrect, the packet will be dropped because the
ICV is invalid. If it was correct, a MIC failure report will be sent by the AP. To prevent the
countermeasures from triggering (see Section 3.5), the attacker needs to wait 60 seconds between
each correct guess.

4. The attacker repeats step 3 to decrypt the 12 unknown bytes.

5. After the MIC key and plain-text of the packet are known to the attacker, the Michael algorithm
can be reversed to yield the MIC key. Additionally, an AP to STA keystream is known. The
attacker is now able to send a custom packet to the STA on every QoS channel that still has a
lower TSC value than the captured packet.

In 2013, M. Vanhoef and F. Piessens discovered several new attacks based on the Beck & Tews attack.
The authors show how more and bigger packets can be injected, and how any packet sent towards the
client can be decrypted [59].

3.7.2 Dictionary attack

From Equation 3.1 we learned that the PTK is derived from the PMK, AA, SPA, ANonce and SNonce.
These values are all exchanged in plain-text in the 4-Way Handshake, except for the PMK which is
secret. However, in WPA-PSK the PMK is equal to the PSK, and from Equation 3.2 we can see that
the only unknown is the password specified by the user. This means that an offline dictionary attack
can be performed to obtain the PSK if a 4-Way Handshake is sniffed [32].

3.7.3 Insider attacks

In Section 3.7.2 we discussed that the PTK is derived from the PMK. In WPA-PSK authenticated
networks, this PMK is not unique for every user. Hence, if an attacker is in possession of the PMK, they
can eavesdrop on any user as long as the 4-Way Handshake between the AP and this user’s STA has
been captured.

3.7.4 WPS side-channel attack

Wi-Fi Protected Setup (WPS) is a technology that offers a variety of methods to easily configure an
AP. One of these methods is the WPS-Personal Identification Number (PIN) method, where the user is
required to enter an 8-digit PIN number to gain access to the AP’s configuration.

In 2011, Stefan Viehböck discovered two design flaws in WPS-PIN: [60]

• No authentication is required apart from providing the PIN, making this method vulnerable to
brute-force attacks.

• If an incorrect PIN is provided by the user, the AP will send an EAP-NAK5 error message which
indicates whether the first or the second half of the PIN was incorrect. This reduces the number of
possibilities from 108 = 100 000 000 to 104 + 104 = 20 000. Additionally, the 8th digit is always a
checksum of the 7 previous digits, further reducing the number of possibilities to 104+103 = 11 000.

Given these design flaws, an attacker can brute-force the PIN in about 4 hours using a tool such as
reaver6. Some APs implement a lock-down to prevent this kind of attack, but not all vendors made the
lock-down interval long enough to make the attack infeasible.

5EAP-NAK messsages will be discussed in Section 4.2.2.
6Reaver can be downloaded from https://code.google.com/p/reaver-wps/.
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Chapter 4

IEEE 802.1X Port Based
Authentication

The IEEE 802.1X standard specifies the architecture, functional elements and protocols that support
port based authentication of clients in WLANs, LANs or MANs. The goal of this standard is to regulate
access to these networks and guard against transmission or reception by unidentified or unauthorized
parties [27].

To achieve the above goal, the standard specifies the use of the Extensible Authentication Protocol
(EAP). Though EAP can be used with any link-layer protocol, we will focus on the usage of EAP within
WLAN environments in this thesis. When a WLAN environment is secured with EAP, it is also known
in consumer terms as a WPA-Enterprise or WPA2-Enterprise network.

WPA2-Enterprise networks provide a seperate username and password login for each user through usage
of the EAP protocol, instead of a single pre-shared key for the entire network as in WPA2-PSK networks
(see Section 3.4). Since different users may require different access rights on the network, access may
need to be revoked to former employees, or since the password may unintentionally leak to unauthorized
parties when using a pre-shared key, we can naturally see why WPA2-Enterprise is the method of choice
for enterprise networks.

In the following sections we will take a look at the mechanisms behind the EAP protocol and compare
different EAP methods in terms of security and privacy. Finally, we will discuss and compare some
existing attacks on WPA2-Enterprise networks.

4.1 Communicating entities

We can distinguish two types of communicating Port Access Entities (PAEs) in 802.1X: the Supplicant
and the Authenticator. A third commonly used entity is the Authentication Server (AS).

• The Supplicant or client is the entity that wants to connect to the network, and hence requests
authorization. The Supplicant can only send data packets (DHCP, ARP, HTTP, etc.) to the
network after one is authenticated to the port. Examples of Supplicants are laptops, smartphones
or other WiFi-capable devices.

• The Authenticator or Network Access Server (NAS) functions for the larger part as an intermediary
between the Supplicant and the AS. It only orchestrates the exchange of authentication data on
the link layer between Supplicant and AS, and does not take authentication related decisions.
After successful authentication, the Authenticator sets up a secure communication channel with
the Supplicant, so network resources can be accessed. This is done through the derivation of WEP,
WPA or Wi-Fi Protected Access 2 (WPA2) keys on the Authenticator and Supplicant (see Section
3.4).

• An Authentication Server is used to provide the actual authentication service to the Authenticator
over higher level protocols, such as Remote Authentication Dial In User Service (RADIUS) and
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Diameter. This entity can also be co-located with the Authenticator itself [27].

The ports in port-based authentication can be either in an authorized state or unauthorized state,
depending on the credentials provided by the user. Logically, ports are further divided into two entities:
the uncontrolled and controlled port. Initially only EAP over LAN (EAPOL) data can be sent over the
uncontrolled port, and only after the supplicant successfully authenticates, the controlled port will be
opened. Internal network resources will then become available to the user (Figure 4.1). Note that in
WLAN networks – because physical ports do not exist – virtual ports are used, but the port authentication
principle remains the same.

Figure 4.1: Logical entities of a port[57]

Figure 4.2 shows an example setup where the Supplicant gains access to restricted resources after being
authenticated. The diagram also shows all protocols involved in 802.1X authentication. These protocols
will be detailed further in the coming sections as their understanding is crucial for identifying security
weaknesses.

Figure 4.2: Protocols and communicating entities in an 802.1X network[65]

4.2 The Extensible Authentication Protocol

EAP is a framework protocol that supports many different types of port authentication methods, called
EAP methods. The protocol is designed to run on top of the data link layer, and hence it does not require
IP in order to operate. The protocol stack is shown in Figure 4.3. Note that EAP itself is encapsulated
by the EAPOL protocol. We will discuss EAPOL in detail in Section 4.3.
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Figure 4.3: EAP protocol stack

Originally the protocol was used exclusively over Point-to-Point Protocol (PPP) or Ethernet wired net-
works [12], but its usage was later extended to 802.11 wireless networks [3]. The basic architecture of
EAP is shown in Figure 4.4.

Figure 4.4: Basic EAP architecture[22]

4.2.1 Packet structure

An EAP packet consists out of a Code, Identifier, Length and Data field (Figure 4.5). Here, the Code
field defines whether the EAP packet serves as a Request (1), Response (2), Success (3) or Failure (4)
message. The Identifier field can be seen as a sequence number; it indicates retransmissions and matches
requests with their reponses. The Length field indicates the size of the packet. Finally, the Data field
has a generic purpose depending on the used EAP method (Section 4.5), and contains a variable number
of bytes. In EAP Requests and EAP Responses, the first byte of the Data field serves as a Type field
for identifying the type of EAP Packet. The remainder of the Data field is thereupon denominated
Type-Data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Code Identifier Length

optional Type

Type-Data (variable length)

· · ·

 Data

Figure 4.5: EAP packet structure and field sizes in bits

When experimenting with the EAP protocol by sending custom packets, it is important that all of
the above fields are present. Otherwise, a Supplicant that respects the 802.1X Standard will drop the
packet. It is also required that the EAP packet be encapsulated properly depending on the context in
which it is used. For example, between Supplicant and Authenticator on a LAN, EAP packets must be
encapsulated within an EAPOL frame whereas between Authenticator and a RADIUS AS, EAP packets
must be encapsulated in RADIUS packets. Both EAPOL and RADIUS will be explained more in detail
in Sections 4.3 and 4.4.
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4.2.2 Authentication procedure

Most EAP methods use the same principal steps in order to authenticate a Supplicant to the AS.
As the first step, the Supplicant listens for an Identity Request (Type = 1) from the Authenticator.
Alternatively, the Supplicant can transmit an EAPOL Start packet to trigger the Identity Request
transmission by itself. Upon receiving an Identity Request, the Supplicant should reply with an Iden-
tity Response containing the Network Access Identifier (NAI) of the user. This NAI has the format
“username@realm.com”, and will be used by the AS to look up the corresponding RADIUS realm and
user credentials.

In the next step of the authentication procedure, the AS will send a method Request message containing
the desired authentication method, depending on the configuration of the RADIUS server. The Sup-
plicant can agree to authenticate using this method or send an EAP-Negative-Acknowledgment (NAK)
Response (Type = 3). In the latter case, the Supplicant will suggest to use a different EAP method by
providing this method’s Type value in the Data field. When both parties agree on the used method,
the authentication procedure continues as defined by the method specification. In Section 4.5, some
interesting methods will be detailed further.

After the port authentication is acknowledged by the AS, the Supplicant and AS derive the Master
Session Key (MSK) through a procedure defined in the used EAP method. The AS then derives the
PMK and sends it to the Authenticator over a secure channel. On the Supplicant, the PMK is derived
from the MSK as well. Finally, the Authenticator will send an EAP-Success packet (Code = 3) to the
Supplicant, and a 4-Way Handshake (see Section 3.4) is performed between Supplicant and Authenticator
in order to derive the PTKs. Note that the PMK is never sent over the air between these entities. The
PMK can be cached for fast reauthentications.

Should the authentication method fail for any reason, the port remains unauthorized and an EAP-Failure
packet (Code = 4) should be sent instead. When the Supplicant wants to log off, an EAPOL-Logoff
message can be sent to unauthorize the port. The full authentication procedure is summarized in
Figure 4.6. Table 4.1 gives an overview of some relevant EAP Code and EAP Type combinations.

Figure 4.6: Simplified EAP authentication procedure[63]
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EAP Code EAP Type Description

1 1 Request Identity

2 1 Response Identity

2 3 Response NAK

1 4 Request EAP-MD5

2 4 Response EAP-MD5

1 6 Request EAP-GTC

1 17 Request EAP-LEAP

1 21 Request EAP-TTLS

1 25 Request EAP-PEAP

1 29 Request EAP-MSCHAPv2

3 N/A EAP-Success

4 N/A EAP-Failure

Table 4.1: Table of EAP Code and EAP Type combinations

4.3 EAP over LAN

As explained in Section 4.2.1, EAP packets sent over the LAN must be encapsulated in EAPOL frames.
The structure of these frames is illustrated in Figure 4.7.
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Version Type Length

Data (variable length)

· · ·

Figure 4.7: EAPOL packet structure and field sizes

Note that the Type field in EAPOL packets is different from the Type field in EAP packets. The following
EAPOL types are relevant to our research:

• EAPOL-EAP-Packet (0): the Data field of the EAPOL frame contains an encapsulated EAP
packet.

• EAPOL-Start (1): frame sent by the Supplicant to discover available Authenticators and to trigger
the start of port-based authentication.

• EAPOL-Logoff (2): frame sent by the Supplicant to the Authenticator to reset the controlled port
to unauthorized state and log off the network.

• EAPOL-Key (3): contains cryptographic key information which is exchanged between entities after
successful port authentication (see Section 3.4).

4.4 Remote Authentication Dial In User Service

Though it is possible to perform Authentication, Authorization and Accounting (AAA) completely on
the Authenticator in 802.1X networks, in some situations it is desirable to have a dedicated AS for this
task. Most enterprise networks have a dedicated AS that either implements the RADIUS or the newer
Diameter protocol.
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From a functional point of view, these protocols are largely the same. RADIUS is the older protocol,
dating from RFC 2058, which was written in January 1997 [45]. The protocol runs on the application layer
and uses User Datagram Protocol (UDP)/IP for communication with the NAS (see Figure 4.8). Diameter
is a more recent protocol which supports more advanced features in comparison to RADIUS, including
native transmission-level security, reliable transport by using Transport Control Protocol (TCP), server-
initiated messages, capability negotiation, and more [20].

Despite Diameter’s apparent advantages towards RADIUS, we will only consider RADIUS, because this
protocol is widely implemented1 and because both protocols are similar nevertheless. Furthermore, in
context of 802.1X, the main objective is encapsulation of EAP packets, which happens in a similar fashion
in both protocols.

RADIUS was initially designed to provide AAA management on dispersed serial lines and modem pools
for users that wish to use a certain network service such as PPP, rlogin or telnet [46]. Nowadays EAP
support has been added, so that RADIUS could be used in the context of 802.1X.

Figure 4.8: RADIUS protocol stack

AAA management is provided through the exchange of RADIUS attributes, called Attribute Value Pairs
(AVPs), with the NAS. Later on, RFCs 3579 and 3580 added new guidelines and AVPs to support EAP
encapsulation [4, 15]. The packet structure of an AVP is given in Figure 4.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Length

Data (variable length)

· · ·

Figure 4.9: AVP structure and field sizes

Two AVPs that were added to support EAP over RADIUS are the EAP-Message and Message-Authenticator
AVP. The EAP-Message AVP is used to encapsulate EAP messages, and the Message-Authenticator AVP
is used to protect against spoofing and tampering of RADIUS messages [44]. In 802.1X networks, we
can distinguish between four message types that can carry these AVPs from Authenticator to AS and
vice versa: Access-Request, Access-Challenge, Access-Accept and Access-Reject messages:

• Access-Request (1): Access-Request messages are sent from the Authenticator to the AS. When the
Authenticator decides that a certain EAP Response message needs to be handled by the AS, the
EAP Response will be encapsulated within the EAP-Message AVP of the Access-Request RADIUS
message. Additional AVPs, such as Calling-Station-Id, User-Name, NAS-IP-Address, etc. may
also be included. Because Access-Request messages may query the AS for sensitive information
such as user passwords, a 128-bit pseudo-random nonce called the Request Authenticator (RA) is

1Some of our experiments were performed on the campus 802.1X network “eduroam”. Eduroam is an 802.1X network
which is implemented in universities all over the world, and uses RADIUS for its AS hierarchy [9].
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sent with each Access-Request message. The nonce will be used in the Access-Accept message to
encrypt this sensitive information.

• Access-Challenge (11): Access-Challenge messages are structurally very similar to Access-Request
messages. They carry EAP Requests encapsulated in EAP-Message AVPs from the AS to the Au-
thenticator, and also contain a 128-bit pseudo-random RA field to prevent spoofing and tampering.

• Access-Accept (2): When EAP authentication is successful, the AS will send an Access-Accept mes-
sage to the Authenticator, which contains the encrypted PMK2 in the MS-MPPE-Recv-Key AVP
(Section 3.4) and an encapsulated EAP Success message. The PMK will be used to encrypt traffic
between the Supplicant and the Authenticator / AP after authentication. Since the derivation of
this PMK requires keying material based on user credentials, and since the Authenticator has no
access to this material, the RADIUS server has to send the PMK to the Authenticator. It is natu-
rally essential that the PMK may not be eavesdropped during this process, since all communication
between Supplicant and Authenticator can then be intercepted and decrypted by a third party.
Therefore, a shared RADIUS secret S is used in combination with the RA from the Access-Request
message to encrypt the PMK before it is transmitted to the Authenticator:

B = MD5(S || RA) (4.1)

C = B ⊕ PMK (4.2)

Now C contains the encrypted PMK. This value is sent to the Authenticator, where the process is
reversed to yield the plain-text PMK.

• Access-Reject (3): In the case of unsuccessful authentication, the AS will send an EAP Failure
message encapsulated within an Access-Reject message. The Authenticator will forward the EAP
Failure to the Supplicant.

4.5 EAP Authentication Methods

As mentioned earlier, EAP allows a variety of authentication methods called EAP methods. The Type
field of EAP Requests and EAP Responses indicates which method should be used for authentication.
This decision is negotiated between Supplicant and AS after the EAP Identity exchange.

We will now consider EAP methods that are popular and relevant for the attacks on EAP described in
this thesis. These methods will be evaluated in terms of functionality and security, and in Section 4.6.3,
we will take a look at which EAP Methods are still accepted by modern client devices. Most of the EAP
methods discussed here have significant security vulnerabilities, yet they can be useful when encapsulated
by a secure Transport Layer protocol such as TLS.

4.5.1 EAP-MD5

EAP-MD5 authentication is an EAP method based on Challenge Handshake Authentication Protocol
(CHAP) [3] and is specified in paragraph 5.4 of RFC 3748. It has an EAP Type of 4. The authentication
procedure for this EAP method is straightforward: [53]

1. The AS sends a challenge message to the Supplicant.

2. The Supplicant responds with a 16 byte Message Digest 5 (MD5)-hash over the Identifier field,
shared secret and the challenge value.

3. The AS calculates the same MD5 value analogous to the previous step, and compares the result.
If the values match, the authentication is acknowledged.

4. At random intervals, a new challenge is sent and the process is repeated.

The EAP-MD5 RFC states that all EAP implementations must support EAP-MD5. However, the
Supplicant can freely decide to NAK this method, meaning a different method has to be chosen by

2In some RFC’s, the PMK is also referred to as the Master Key (MK), which may be confusing.
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the Authenticator. In Section 4.6.4, we compare the behaviour of different devices when an EAP-MD5
challenge is transmitted to them.

Currently, the EAP-MD5 algorithm is rarely used because of significant security vulnerabilities [2]. An
attacker could capture the MD5 challenge and challenge response in order to launch a dictionary attack
on the secret. Another contributing factor is that dynamic key derivation is not supported with EAP-
MD5. Finally, EAP-MD5 does not provide mutual authentication, meaning an attacker could set up a
rogue AS and trick a victim user into providing their credentials.

4.5.2 EAP-GTC

One of the simplest EAP methods is EAP-Generic Token Card (GTC), which is also defined in RFC 3748
as EAP Type 6. The Authenticator begins by sending an EAP Request message where the Type-Data
can contain a displayable message. The EAP Response coming from the Supplicant contains plain-text
data read from a token card, hence the name GTC. As with EAP-MD5, the Supplicant can also reply
with an EAP-NAK instead of an EAP Response message [3].

Because all data is sent (optionally hashed) in plain-text, EAP-GTC should always be used with the
protection of a TLS tunnel by using for example PEAP (see Section 4.5.6). If not, an attacker can
eavesdrop on the user’s credentials.

4.5.3 MSCHAPv1

MSCHAPv1 is a Microsoft proprietary CHAP dialect defined in RFC 2433. The protocol was designed
for use over PPP, and cannot be implemented as standalone method for EAP, because there is no EAP
method Type reserved for MSCHAPv1. In general, MSCHAP is similar to EAP-MD5, with the exception
that MSCHAP: [72]

• Provides additional mechanisms for password changing and authentication retries.

• Defines a set of reason-for-failure error codes.

The authentication algorithm used can be summarized as follows:

1. Receive a random Challenge C from the other peer.

2. Calculate the NtPasswordHash. This is identical to an Message Digest 4 (MD4) hash calculation
over the unicode or wchar password of the user.

3. Use the NtPasswordHash to generate three Data Encryption Standard (DES) keys k0, k1 and k2

where:

k0 = NtPasswordHash[0:7]

k1 = NtPasswordHash[7:14]

k2 = NtPasswordHash[14:16] || 00:00:00:00:00
(4.3)

4. Generate the Challenge Response R using k0, k1, k2 from the previous step and the Challenge C
from step one:

R = DESk0
(C) || DESk1

(C) || DESk2
(C) (4.4)

Where “||” stands for the concatenation operator. The result of this operation is 16-byte Challenge
Response value.

5. Send the Challenge Response to the other peer. If this peer calculates the exact same Challenge
Response, the authentication is acknowledged.

6. After the authentication is complete, an EAP peer can use keying material from the method in order
to dynamically generate Microsoft Point-to-Point Encryption (MPPE) RC4 keys for subsequent
communication. However, since MSCHAPv1 is never used in wireless networks, this key derivation
process ([69]) will not be detailed further in this thesis.
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Though more secure than EAP-MD5, the above algorithm still has several security issues. A first issue
is that since MSCHAPv1 exchanges are not encrypted, an attacker could eavesdrop on the challenge and
challenge response. Using a dictionary or brute-force attack, the password of a victim user can then be
derived (see Sections 4.6.7 and 4.6.8). An example of a tool that can be used in practice for executing a
dictionary attack is the asleap tool, which was developed by Joshua Wright [1].

A second security issue is that MSCHAPv1 on itself does not provide mutual authentication between
peers. This means that an attacker could impersonate the peer that sends the MSCHAPv1 request
message in order to steal a user’s credentials and become an active MITM (see Section 2.5.3).

4.5.4 MSCHAPv2

In response to the security vulnerabilities noted in Section 4.5.3 about MSCHAPv1, Microsoft created
a second version of the MSCHAP protocol. This new version is more complex and not backwards
compatible with MSCHAPv1 [71], but it benefits from added security measures such as default mutual
authentication.

MSCHAPv2 can be used in the context of EAP, in which case it has Method Type 29[48]. EAP-
MSCHAPv2 can be used as a standalone method, but it is generally used in conjunction with an outer
authentication method such as PEAP. We will discuss PEAP in Section 4.5.6. The MSCHAPv2 authen-
tication algorithm is performed as follows:

• The AS starts by generating a 16-byte random server challenge Cs = Random16(seed) and sends
it to the Supplicant.

• The Supplicant also generates a random 16-byte peer challenge Cp. Then the challenge response
is calculated as Rp = ChallengeResponse(Challenge(Cs), H), where the ChallengeResponse func-
tion is identical to steps 3 and 4 from MSCHAPv1 (Section 4.5.3), Challenge(Cs) = SHA1(Cp||Cs||U)[0 :
8], U is the username of the user, H = MD4(Unicode(PW )), PW is the password of the user and
[0 : 8] means the first eight bytes of the data. This challenge response is transmitted back to the
AS, along with Cp and U .

• The AS calculates Rcheck analogous to Rp in step 4.5.4. Rcheck and Rp must match, or the
authentication will fail.

• The AS calculates a peer challenge response

Rs = PeerResponse(MD4(Unicode(H)),M1, Rp, Challenge(Cp),M2) (4.5)

where M1 is the literal ASCII string “Magic server to client signing constant” and M2 is the literal
ASCII string “Pad to make it do more than one iteration”. This result is SHA1-hashed and sent
to the Supplicant.

• The Supplicant authenticates the server, completing the MSCHAPv2 authentication. Since both
Supplicant and Authenticator have to know the NtPasswordHash in order to mutually authenticate,
it should be impossible for an attacker to set up a rogue Authenticator.

After successful authentication, a MK is derived as follows: [70]

MK = SHA1(MD4(Unicode(H))||Rp||“This is the MPPE Master Key”) (4.6)

From the MK, the MPPE-Send-Key and MPPE-Recv-Key are derived as shown in Table 4.2.

MPPE-Send-Key MPPE-Recv-Key

Server SHA1(MK||SHSpad1|| “On the client side, this is the
receive key; on the server side, it is the send key.”
||SHSpad2)

SHA1(MK||SHSpad1|| “On the client side, this is the
send key; on the server side, it is the receive key.”
||SHSpad2)

Client SHA1(MK||SHSpad1|| “On the client side, this is the
send key; on the server side, it is the receive key.”
||SHSpad2)

SHA1(MK||SHSpad1|| “On the client side, this is the
receive key; on the server side, it is the send key.”
||SHSpad2)

Table 4.2: MSCHAPv2 MPPE key derivation
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Here, SHSpad1 is 40 times the octet 0x00 and SHSpad2 is 40 times the octet 0xF2. The resulting
MPPE keys are either used directly for derivation of WEP / WPA2 keys, or as input for the Compound
Session Key (CSK) as explained later in Section 4.5.6.

Note that in the previous algorithm, it is still possible for an attacker to capture the MSCHAPv2
credentials by setting up a rogue AP, because the user is authenticated before the AS itself. However,
since after that the AS is required to authenticate itself to the Supplicant, it is no longer possible to
become an active MITM as was the case with MSCHAPv1. To see why, observe that a rogue AS does not
know MD4(Unicode(H)), and that therefore the peer challenge response cannot be calculated. Hence,
the authentication cannot complete.

4.5.5 LEAP

Lightweight Extensible Authentication Protocol (LEAP) is a Cisco proprietary protocol for EAP au-
thentication. It is also known as “Cisco EAP Wireless” and has EAP Type 17. LEAP supports dynamic
generation of WEP keys and key rotation for enhanced security. Even though the protocol is proprietary,
the mechanisms behind it were deduced by analysis of packets passed between an Aironet and Cisco ACS
[33].

The authentication procedure of LEAP is shown in Figure 4.10, and is performed as follows:

1. The AS performs the MSCHAPv1 algorithm to authenticate the Supplicant. Denote the challenge
sent by the AS as Cs and the response sent by the Supplicant as Rp.

2. In case of success, an EAP-Success message is sent from Authenticator to the Supplicant. Then,
AS and Supplicant switch roles and repeat step 1. This time we denote the challenge sent by the
Supplicant as Cp, and the response by the AS as Rs.

3. The AS derives the SK as

SK = MD5(MD4(Unicode(H))||Cs||Rp||Cp||Rs) (4.7)

where “||” is the concatenation operator, H = MD4(Unicode(PW )) and PW is the password of
the user. The AS encrypts this value with the RADIUS secret (see Section 4.4). Then the encrypted
message is sent to the Authenticator. The Supplicant also derives the SK, so this key can be used
for WEP encrypted unicast communication. Finally, a random broadcast key is generated by the
Authenticator and sent encrypted with the unicast key to the Supplicant.

Despite the extra security measures, LEAP still has a number of shortcomings. Because credentials
are sent in the clear, they can easily be sniffed and captured by an attacker. Furthermore, since the
calculation of Rp is relatively cheap, an offline dictionary attack can be performed on the MSCHAPv1
credentials in order to obtain a victim’s NtPasswordHash [13]. If the password is weak, it can be retrieved
in plain-text by looking up the hash in a rainbow table.

4.5.6 PEAP

Protected EAP (PEAP) is an EAP method designed for mutual authentication and session key generation
in a roaming environment, and is specified in an Internet-Draft by H. Andersson et al. [39]. In essence,
PEAP performs an second or “inner” EAP (for example EAP-MSCHAPv2 or EAP-GTC) authentication
after establishing a TLS tunnel between Supplicant and AS. The authentication procedure of the latest
version of PEAP, PEAPv2, is as follows:[39]

1. In Phase 1, the Supplicant and AS set up a TLS tunnel similar to the procedure described in RFC
5246 [18]. From the TLS master secret Tm, an MSK is derived via a one-way function:

K = TLS-PRF-128(Tm, “client EAP encryption”, Nc||Ns) (4.8)

MSK = K[0 : 64] (4.9)

where Nc is the nonce generated by the TLS client and Ns is the nonce generated by the TLS
server (see Section 2.6.1). The one-way TLS-PRF-128 function prevents reversing of the MSK to
retrieve the TLS master secret. Taking the first 64 bytes of the TLS-PRF-128 output results in
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Figure 4.10: LEAP method mechanism

the MSK, which serves a comparable purpose to the SK from LEAP. When using cryptographic
binding however, the MSK derived here is instead named the Tunnel Key (TK), and only 40 bytes
are used instead of 64 [39].

2. Phase 2 is performed inside the TLS tunnel and implies the use of an inner EAP authentication
method encapsulated in EAP-Payload Type-Length-Value (TLV) messages. MSCHAPv2 is often
used and relatively secure for this purpose.

3. An EAP-Result-TLV exchange is performed between AS and Supplicant to indicate the result of
the PEAP authentication. If cryptograhic binding is enabled, a Cryptobinding TLV is exchanged
between AS and Supplicant as well. The Compound MAC field of the TLV contains a value that
proves both Phase 1 and Phase 2 of the PEAP authentication terminated at the same two EAP
peers. This value is calculated as follows:

• The TK is retrieved from step 1.

• An Inner Session Key (ISK) is calculated where

Peer ISK = InnerMPPESendKey||InnerMPPERecvKey (4.10)

Server ISK = InnerMPPERecvKey||InnerMPPESendKey (4.11)

The InnerMPPE keys are basically the MKs derived by the used inner EAP method. Though
MPPE is in the field name, the keys are not encrypted with the RADIUS secret.

• The Intermediate PEAP MAC Key (IPMK) Seed is calculated as

IPMKSeed = “InnerMethodsCompoundKeys”||ISK (4.12)

This seed will be used later in the Pseudo-Random Function+ (PRF+) function.

• Now the IPMK itself is calculated by combining the TK and IPMK Seed:

Result = PRF+(TK[0 : 40], IPMK Seed) (4.13)

IPMK = Result[0 : 40] (4.14)

CMK = Result[40 : 60] (4.15)
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The PRF+ function performs a number of HMAC-SHA1 operations on the key using the IPMK
Seed. The Compound MAC Key (CMK) is used as the key for another HMAC-SHA1 operation,
which will result in our final value, the Compound MAC.

Then the CSK is calculated as such:

CSK = PRF+(IPMK, “SessionKeyGeneratingFunction”, 128) (4.16)

Finally, the CSK is split into parts of 32 bytes to serve as the final MSK. Table 4.3 shows which
keys correspond to the MPPE send and receive keys. If cryptographic binding is not used, the MSK
from step 1 is split analogously, instead of the CSK. The resulting MPPE keys are sent encrypted
to the Authenticator.

It should be mentioned that an Extended Master Session Key (EMSK) is also derived from the
last 64 bytes of the CSK, but there is no use yet for this key in PEAP [39]. The EMSK is only
derived because this is a requirement for EAP methods according to RFC 3748 [3].

4. Finally, an EAP-Success message is sent in plain-text to indicate the result of the authentication.
The Authenticator decrypts the MS-MPPE-Recv-Key value and uses it as the PMK. Secure transmis-
sion of data can begin when the 802.11i 4-Way Handshake (see Section 3.4) between Authenticator
and Supplicant is completed.

The above algorithm is summarized in Figure 4.11.

4.5.7 EAP-TTLS

The EAP-TTLS method was designed by Paul Funk and Simon Blake-Wilson, and is described in RFC
5281. This method was created to allow usage of legacy authentication protocols (PAP, MSCHAP,
CHAP, etc.) within a TLS tunnel. Hence, the method is similar to PEAP, with the exception that:

• EAP-TTLSv0 uses the TLS record layer after the TLS handshake to exchange AVP messages
containing any legacy authentication method, whereas PEAP performs a complete second EAP
method authentication after the TLS handshake.

• Cryptographic binding is not supported in EAP-TTLSv0. The newer version, EAP-TTLSv1, has
expired as a draft despite being more secure by implementing cryptographic binding, and is no
longer supported since GnuTLS 3.0.0. The changelog reads:

“libgnutls-extra: Inner application extension was removed. It was never standardized nor
published as an RFC.” [36]

The authentication procedure of EAP-TTLSv0 is as follows: [21]

• Identical to Phase 1 in PEAP, the Supplicant and AS set up a TLS tunnel for secure communication.
The client must compare its configured certificate with the certificate that the server provided in
order to authenticate the AS. Analogous authentication from client to server through certificates is
optional.

• In Phase 2, the AS and Supplicant exchange AVP messages (see Section 4.4) over the TLS record
layer to perform one-way or mutual authentication. Any authentication method (PAP, MD5-Challenge,
MSCHAP, etc.) may be used here.

• When the previous steps successfully concluded, the method will derive the keying material, MSK,
and EMSK as follows:

K = TLS-PRF-128(Tm, “ttls keying material”, Nc||Ns) (4.17)

MSK = K[0 : 64] (4.18)

EMSK = K[64 : 128] (4.19)

Note that this is identical to PEAP, except for the literal string “ttls keying material” that is used
as input for the TLS-PRF-128 function. The MPPE-Recv-Key and MPPE-Send-Key can finally be
transported to the Authenticator / AP as respectively the first 32 bytes and second 32 bytes of the
MSK.
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Figure 4.11: PEAP method mechanism

CSK[0 : 32] CSK[32 : 64]

EAP peer MS-MPPE-Send-Key MS-MPPE-Recv-Key

EAP server MS-MPPE-Recv-Key MS-MPPE-Send-Key

Table 4.3: MS-MPPE keys in PEAP

4.5.8 EAP-TLS

Another method that utilizes TLS is EAP-TLS, which was designed by D. Simon et al. Contrary to
EAP-TTLS and PEAP however, this method does not tunnel an inner EAP method. Instead, the
authententication is completely performed using TLS, and keys are derived from the TLS master secret.
Hence, the authentication procedure is performed as follows: [52]

1. The Supplicant and AS set up a TLS tunnel (see Section 2.6.1). In EAP-TLS, both parties are
required to present a valid certificate to each other.

2. After successful authentication, the MSK and EMSK are derived from the TLS master secret simi-
larly to PEAP without cryptobinding:

K = TLS-PRF-128(Tm, “client EAP encryption”, Nc||Ns) (4.20)

MSK = K[0 : 64] (4.21)

EMSK = K[64 : 128] (4.22)

(4.23)
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4.5.9 Security claim comparison

RFC 3748 states that each EAP method must include a section on the claimed security properties of
that method. The set of terms used to distinguish these security properties are as follows: [3]

• Ciphersuite negotiation: The ability of the EAP method to negotiate the ciphersuite that protects
the EAP exchange itself.

• Mutual authentication: The ability of the EAP method to authenticate the client to the server and
vice versa.

• Integrity protection: The EAP method can protect against spoofing and tampering of the messages.

• Replay protection: The method protects against replaying packets.

• Confidentiality: EAP messages exchanged by the method are encrypted.

• Key derivation: The EAP method derives exportable keying material.

• Key strength: If the key strength is n bits, methods to brute-force the key should take 2n−1

operations of a typical block cipher.

• Dictionary attack protection: The method should protect against offline dictionary attacks.

• Fast reconnect: The ability of the EAP method to resume a previously established session in a
faster way than full reauthentication.

• Cryptographic binding: The EAP method must assure that the same client and server participated
in the EAP authentication during the complete exchange.

• Session independence: The method must assure that no passive or active attack may compromise
the MSK or EMSK of prior or subsequent sessions.

• Fragmentation: The ability of the EAP method to fragment and reassemble messages that exceed
the minimum Maximum Transmission Unit (MTU) of 1020 octets.

• Channel binding: The EAP method may support a mechanism that protects the exchange of chan-
nel properties. Examples of channel properties are endpoint identifiers such as NAS-Identifier,
Called-Station-Id, Calling-Station-Id, etc.

The following table summarizes all the the security claims made by each discussed EAP method in their
respective RFCs. Claims that were not mentioned are indicated with a “?”.

Cip.

Neg.
Mut.
auth.

Int.
Prot.

Rep.

Prot. Conf.

Key

der.
Key
str.

Dict.
prot.

Fast
rec.

Crypt.

binding
Sess.

Indep. Frag.
Ch.

Bind.

EAP-MD5 7 7 7 7 7 7 7 7 7 N/A 7 7 7

EAP-GTC 7 7 7 7 7 7 7 7 7 N/A 7 7 7

EAP-MSCHAPv2 7 3 3 3 7 3 33 7 7 N/A 34 7 7

EAP-TTLSv0 3 3 3 3 3 3 3 3 3 7 3 3 7

EAP-TLS 3 3 3 3 3 3 3 3 3 N/A 3 3 7

PEAPv2 3 35 3 3 3 3 Variable 3 3 3 3 3 ?

Table 4.4: Comparison of security claims made by EAP methods

The MSCHAPv1 algorithm is not discussed here because there is no EAP-MSCHAPv1 RFC, nor is
there an EAP method Type value reserved for this algorithm. LEAP is also not mentioned because
this protocol is proprietary. However, we will determine whether these methods meet the security
requirements discussed in Section 4.7.1 based on our experiments.

3Depends on passsword policy
4Depends on password policy
5Depending on the inner EAP method used and TLS certificate configuration.
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4.6 Attacks on EAP

When examining the security claim comparison from Section 4.5.9, it is obvious that certain EAP methods
are flawed by design in the sense that they were never meant to be used as secure wireless EAP methods.
A prime example is EAP-MD5, which is viable when used in a low security, wired EAP environment. If
used in a wireless environment however, usage of this method would be a major security risk.

Aside from the EAP methods that were designed to lack certain security features, there also exist EAP
methods that became widely used prior to the discovery security flaws. An example is LEAP, which was
found to be vulnerable to dictionary attacks after it became widely implemented by vendors and network
administrators. These kind of vulnerabilities are naturally more attractive to an attacker.

In the next sections we will discuss some attacks against EAP methods that exploit unintended vul-
nerabilities. Because not all vendors implement the same set of EAP methods, we tested devices that
use Linux, Windows 8, Mac OS X, iOS or Android operating systems. Finally, we will grade the EAP
methods based on their accordance to a set of requirements, and compare them in a single overview.

4.6.1 Supplicant identity snooping

In section 4.2.2 we saw that the first step in the EAP authentication procedure is the exchange of a user’s
NAI between AS and Supplicant. The AS requires this identity in order to match the corresponding
credentials of the user, and to decide whether this user is allowed access to internal network resources.
Per protocol specification this exchange is not encrypted, which means it is possible for third parties to
eavesdrop on the identity credentials.

A trivial attack to exploit this fact would therefore be to set a NIC in monitor mode and passively
capture all EAP Identity Responses that pass by in a WPA2-Enterprise network. In addition to a user
identity, EAP Identity Response messages also contain the sender MAC address in the 802.11 frame.
Hence, as EAP Identities often contain a username or (part of) the real name of a user, an attacker can
essentially perform a MAC address to user name mapping. A typical setup of this attack is shown in
Figure 4.12.

Figure 4.12: Passive identity snooping

Aside from passively sniffing Identity Responses, an attacker could also set up a rogue AP in order to
actively send Identity Request messages to victim users. Most WiFi-capable devices send Probe Requests
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for known APs (see Section 2.2.1), so identifying which SSID to spoof is a trivial task. Once the attacker
starts sending Beacon frames and Probe Responses, most devices will automatically associate to it (see
Section 2.5.4). Since no authentication happens prior to the NAI exchange, the victim will not be able
to distinguish between a legitimate and a rogue AP. Iterating through all network SSIDs in the PNL of
the victim’s device in this way may yield more than one user identity, so this method might leak more
sensitive information than the passive listening method. Furthermore, the attacker does not need to be
in range of the legitimate network to perform this attack. Figure 4.13 illustrates this setup.

Figure 4.13: Active identity snooping

Because all EAP methods are required to perform the NAI exchange, they are inherently vulnera-
ble to this attack. However, some EAP methods support anonymous identities or outer identities.
When outer identities are used, the Supplicant will first exchange a known EAP Identity, e.g. “anony-
mous@example.com”, with the AS. The real or inner identity of the user is only exposed after a TLS
tunnel has been established. This approach effectively mitigates passive eavesdropping, since it is not
possible for an attacker to monitor communication that happens inside the TLS tunnel.

4.6.2 Experiment: Supplicant identity snooping

In this experiment, the Python prototype tool from Section 2.5.6 was used to sniff Identity Requests in
both an active and passive manner. This can simply be achieved with Scapy by sniffing EAP Response
packets with Type “1”.

We found that the most effective way to gather NAIs was to actively spoof the SSID of an existing
network while being in range of this network. This caused closer devices to reassociate to our fake AP
because of stronger signal strength. Note that most devices6 automatically trust our fake AP, since no
authentication of the Authenticator happens before the Identity exchange, and since the SSID is already
known to the device. Passively sniffing Identity Responses was less effective, because we had to wait for
a coincidential Identity exchange to take place between a legitimate AP and a device.

Further improvements to the above method could be made by actively transmitting spoofed EAPOL-
Logoff packets or 802.11 Deauthentication frames to devices that are connected to the legitimate network.
In the case of EAPOL-Logoff packets, the victim device will attempt to reestablish the 802.1X session
with the NAS, and the Identity exchange may be passively sniffed. If we send a 802.11 Deauthentication
frame instead, the victim device will scan for other APs immediately, which allows us to become an
active MITM using a fake AP with better signal strength than the legitimate AP [49].

4.6.3 EAP method iteration

When a user connects to an EAP enabled network, their device stores the given credentials and EAP
method in a configuration file. The next time the user is in range of the network, this configuration

6Based on our experiments from Section 2.5.3, we concluded that most devices automatically associate to a known SSID.

41



42

profile can be retrieved in order to automatically connect. However, some devices allow usage of EAP
methods that were not advertised by the AS. We shall henceforth name these methods alternative EAP
methods.

By using the same principle from the rogue AP Identity Request attack described in Section 4.6.1, we can
check which alternative EAP methods are allowed by a certain device, when the device already possesses
a configuration profile for a certain network. This is valuable information to an attacker, because many
(older) EAP methods exist with security vulnerabilities that can be exploited if they are supported by
the Supplicant device. For example, allowed EAP methods that send credentials in clear text or EAP
methods that do not support mutual authentication could be interesting targets to an attacker when
performing an active MITM.

To check whether an EAP method is an allowed alternative, we can spoof the SSID (see Section 2.5.3)
and send an EAP Request message with the Type field set to the desired EAP method. This scenario is
illustrated in Figure 4.14. If the Supplicant sends an EAP-NAK message in the response, we know that
the method is not allowed as an alternative. In the case that the Supplicant sends an EAP Response of
the correct type, we know we can use this method to authenticate the Supplicant.

Figure 4.14: EAP method iteration

4.6.4 Experiment: EAP method iteration

With the above method, we can iterate over all EAP method types and derive a list of alternative EAP
methods that are allowed by default for an existing PEAP network configuration profile. Here, “by
default” means that the user only enters an SSID, username, and password in the configuration profile.
We tested the allowed default alternative methods for some of the most popular Operating Systems
(OSs). The results are shown in Table 4.5.
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OS / EAP Type EAP-MD5 EAP-GTC (inner) MSCHAPv2 (inner) LEAP PEAP EAP-TTLS EAP-FAST

Linux 3.14.3-1-ARCH 7[ 7[ 3[ 7[ 3[ 7[ 7[

Android 4.4.2 7 3 3 7 3 7 7

Mac OS X 10.8.2 7 3j 3 3 3 3 3

iOS 6.1.6 and iOS 7.1 7 3j 3 3 3 3 3

Windows 8.1 7 7 3 7 3 7 7

Windows Phone 8 7 7 3 7 3 7 7

[ Depends on the tool used to connect to the network. The values shown are for the default NetworkManager (wrapper
for wpa supplicant) configuration. If the wpa supplicant tool would be used without the eap= option, every EAP method
would be accepted. Such configurations are highly insecure.

j In a real life attack scenario, the default certificate pinning mechanism in these OSs will prevent changing the inner EAP
method in PEAP.

Table 4.5: Alternatives for PEAP per OS, as derived from our experiment

Note that insecure methods such as EAP-GTC and LEAP are allowed by default on some devices.
Fortunately, a user can configure their device to disallow alternative methods:

• Linux: Use a network client that disallows alternative methods by default. An example is Network-
Manager.

• Android: Set the “Phase 2 authentication method” field when connecting to a network.

• Mac OS X: Install a “configuration profile”. These will be discussed in Section 4.6.6.

• iOS: Identical to Mac OS X.

• Windows: Windows devices are fixed to PEAP and MSCHAPv2 by default for password based
authentication. On Windows 8.1, a server certificate is required by default as well. Hence, using
alternative methods is not possible.

4.6.5 EAP dumb-down attack

From Section 4.6.3 we were able to deduce which OSs support which EAP methods. We can exploit
this knowledge by acting as a rogue AP in order to force the client to use the weakest of all supported
EAP methods. This attack is known as the EAP dumb-down attack, and was introduced at RootedCON
by Raul Siles in 2013 [50]. The attack may allow an attacker to steal plain-text credentials, encrypted
credentials, or even become an active MITM.

The initial steps to perform the attack are similar to the EAP method iteration attack: we set up a
rogue AP that spoofs the target network. When answering the client’s Probe Request with a Probe
Response, the client will associate automatically7 to our AP, because at this stage the authenticity of
the AP cannot be verified yet.

After association, the attacker first chooses one of the supported EAP methods, and sends the EAP
Request message for this method to the Supplicant. More secure EAP methods will establish a TLS
tunnel between the two parties before continuing the authentication. Then, the attacker can choose from
the available inner EAP methods. A popular choice here from the attacker’s point of view is to choose
EAP-GTC, because if the Supplicant device accepts this EAP method, the user’s credentials will be sent
in plain text to the attacker. Note that this also allows an attacker to become an active MITM, because
the secret password is then known. A less optimal scenario for the attacker is that only MSCHAPv2 is
accepted, in which case only the challenge Cp and challenge response Rp are exposed. Nevertheless, the
attacker can still retrieve the plain text password from these credentials, as we will see in Section 4.6.7.
Figure 4.15 gives a graphical representation of the attack.

7This behaviour can be disabled by the user to prevent the attack from happening in an automated fashion.
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Figure 4.15: EAP dumb-down attack

4.6.6 Experiment: EAP dumb-down attack

To perform the dumb-down attack, we modified the source code of an open-source implementation
of a RADIUS server8 to force usage of a specific EAP method. In order to get clients to connect
to us automatically, we also used the modified hostapd implementation that was discussed earlier in
Section 2.5.3. We attempted to force the Supplicant to use PEAP with EAP-GTC in order get the
plain-text credentials of the user. If the Supplicant would send a NAK message, we attempted to switch
to MSCHAPv2 as a fallback to capture the MSCHAPv2 credentials instead of the plain-text credentials.

In a first test, the attack was tested in a lab environment on an Apple iPhone 4, a Samsung GT-S5570,
a Google Nexus 7 2013, a Windows Phone 8, and a HP EliteBook 8530p. We wanted to see whether the
attack still works, despite being reported by Raul Siles to all vendors in 2013 [50]. Before performing
the attack, we let the device connect to a legitimate PEAP network using the default configuration to
simulate a real-life situation. We then proceeded by spoofing this network and performing the dumb-
down attack. Table 4.6 shows on which OSs the attack was successfully executed in a way that does not
require user intervention.

OS Vulnerable

iOS 6.1.6 (iPod Touch) and iOS 7.1 (iPhone 4) 7

Android 2.3.6 (Samsung GT-S5570) 3

Android 4.4.2 (Google Nexus 7 2013) 3

Windows Phone 8 Q

Linux (HP EliteBook 8530p) Q

Table 4.6: EAP dumb-down attack applicability test

8This open-source implementation is named FreeRADIUS and can be found at http://freeradius.org.
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From this test we concluded that Android devices seem to be vulnerable to the attack, because alternative
inner EAP methods are allowed by default on this operating system. Even EAP-GTC could be forced,
which is the worst case scenario as the victim’s credentials can be sniffed in plain-text in this case. Apple
devices are not vulnerable, because certificate pinning is employed. This ensures that the device will not
automatically connect unless the user explicitly accepts the fake certificate provided by the attacker’s
AS. Other devices (Q) are vulnerable to a lesser degree, in the sense that they connected to our fake AP,
but did not dumb-down the EAP method. This means an attacker could still capture the MSCHAPv2
credentials and brute-force them in a later stage.

Fortunately all device vendors have features available that can mitigate the attack. However, some of
these features are not enforced or enabled by default, so security is essentially put in the hands of the
end user. The mitigation strategies are also different depending on the vendor:

• Apple: Apple devices offer several ways to mitigate the attack. A first is that the devices auto-
matically use certificate pinning by default, which means that each time a new X.509 certificate is
presented, the user has to manually accept this certificate. This prevents the attacker from execut-
ing the dumb-down attack automatically, since the user has to confirm the attacker’s fake certificate
before authentication proceeds. A second method is offered through configuration profiles (see Fig-
ure 4.16). Though this method is cumbersome9, it allows a user to disable specific EAP methods
and manually provide an X.509 ceriticate.

• Android: Android devices offer the functionality to manually set a certificate and inner EAP
method10. This way a user can force their device to only connect to an AP when a valid cer-
tificate is presented, and fix the inner EAP method to a safe variant. However, configuring the
inner EAP method and the certificate is not required by default.

• Windows: Windows devices only allow the PEAP method in combination with MSCHAPv2 (in case
of a password based login) or EAP-TLS (in case of a smart card based login) [38]. Furthermore, a
certficate can be set manually. On Windows Phone 8, setting this certificate is not a requirement
by default, and hence a user’s MSCHAPv2 credentials may still be exposed to an attacker when the
certificate is not set. Microsoft is aware of this problem and recommends configuring a certificate
[40].

A second test was performed in a crowded environment to see how many people are practically vulnerable
to the attack outside a lab environment. Our implementation was run from a Raspberry Pi that was
concealed in a backpack. We tested how many people would automatically connect to the “eduroam”
network, and how many would provide their plain-text or MSCHAPv2 credentials.

We captured and stored all relevant EAP packets together with all Probe Requests in a MySQL database.
Then, by analyzing the number of Probe Requests, we derived how many subjects were exposed to the
attack. Table 4.7 shows how which SQL queries were used to calculate the exposure.

The “Subjects” column indicates how many unique MAC addresses sent a Probe Request. Similarly,
“Notable subjects” gives the number of unique MAC addresses that sent a Probe Request, but with the
constraint that the device should have sent at least 5 of them. This ensures the device was in range long
enough to perform a full PEAP authentication. The “Subjects with eduroam” columns are identical,
except we only consider the devices that connected to “eduroam” in the past.

9Creating a configuration profile requires the user to download a special tool, such as the iPhone Configuration Utility
(http://support.apple.com/kb/dl1465). The user cannot make the same changes from within the iOS Graphical User
Interface (GUI).

10Sometimes, the inner EAP method is also called the “Phase 2 method”.
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Figure 4.16: iDevice configuration profile example

Description SQL Query

Subjects SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM

ProbeRequests GROUP BY mac) AS c;

Notable subjects SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM

ProbeRequests GROUP BY mac HAVING COUNT(*) > 5) AS c;

Subjects with eduroam SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM

ProbeRequests WHERE SSID = ‘eduroam’ GROUP BY mac) AS c;

Notable subjects with eduroam SELECT COUNT(*) FROM (SELECT mac, COUNT(*) AS count FROM

ProbeRequests WHERE SSID = ‘eduroam’ GROUP BY mac HAVING

COUNT(*) > 5) AS c;

Table 4.7: SQL queries used to calculate exposure to the dumb-down attack

The results from this test are shown in Table 4.8. The percentage of vulnerable devices is calculated by
taking the sum of the MSCHAPv2 and EAP-GTC vulnerable devices, divided by the number of notable
subjects that connected to “eduroam” at some point in time before. We can conclude that in total, 28
out of 99 devices (28%) are vulnerable to the EAP dumb-down attack if the target network is present in
the PNL.

Location Duration Subjects
Notable
subjects

Subjects

w. eduroam

Not. subjects

w. eduroam
MSCHAPv2
credentials

Plain-text
credentials

Percentage

vulnerable

UHasselt 2h36m7s 625 347 78 32 6 4 10
32 = 31%

UHasselt 1h56m0s 684 383 68 30 3 2 5
30 = 16%

EDM Research Center 3h59m17s 66 47 6 4 1 2 3
4 = 75%

Town café 1h56m23s 75 47 2 2 0 0 0
2 = 0%

Public transport 0h36m38s 249 86 10 4 2 1 3
4 = 75%

UHasselt + Bus 4h6m42s 961 466 56 27 3 4 7
27 = 26%

Table 4.8: EAP dumb-down attack test outside lab environment

4.6.7 MSCHAPv2 dictionary and brute-force attacks

We already saw in Section 4.5.4 that MSCHAPv2 is vulnerable to a dictionary attack. To see why,
consider a scenario where an attacker managed to sniff an MSCHAPv2 exchange of messages. This may
be accomplished by performing a passive MITM attack on the victim. The credentials in possession of
the attacker at this point are Cs, Cp, Rp, and U . Recall that the challenge response Rp is calculated
from the challenge as follows:

C = SHA1(Cp||Cs||U)[0 : 8] (4.24)

k0 = NtPasswordHash[0:7] (4.25)

k1 = NtPasswordHash[7:14] (4.26)

k2 = NtPasswordHash[14:16] || 00:00:00:00:00 (4.27)

Rp = DESk0(C) || DESk1(C) || DESk2(C) (4.28)

Notice that NtPasswordHash is the only unknown in the above equations. In a näıve approach, the
attacker can iterate over a list of passwords and calculate a challenge response R using the NtPassword-
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Hash derived from this guessed password. If the calculated value matches with Rp, the password guess
was correct.

There are several methods to speed up this dictionary attack. A first performance increase can be
achieved by precalculating the NtPasswordHash for every password in the dictionary. We could do this
ourselves or use an existing NtPasswordHash rainbow table from the internet, since the NtPasswordHash

is unsalted.

A second way to increase performance is to first brute-force k2. Note that this key is only 2 bytes in size,
so we can simply perform all 65536 combinations of DESk2

(C) and compare the result to the last 8 bytes
of R. When k2 is recovered, the two last bytes of the NtPasswordHash are revealed. With this knowledge,
we only need to calculate R in its entirety when the last two bytes of our guessed NtPasswordHash match
the first two bytes of the now known k2. The “asleap” tool by Joshua Wright [1] is capable of performing
this dictionary attack with both optimisations.

Aside from a dictionary attack, another method to recover the NtPasswordHash from MSCHAPv2 cre-
dentials was devised and commercialised by Moxie Marlinspike and Marsh Ray in 2012 [35]. This method,
dubbed CloudCracker, uses a cloud-based array of Field-Programmable Gate Array (FPGA) devices to
attack the weak 56-bit key strength of the DES keys. The duo proves how the strength of the challenge
encryption can be reduced to a single DES operation. The FPGA array performs the algorithm presented
in Listing 4.1 to quickly brute-force all possible k0 and k1 DES key combinations in under a day.

keyOne = NULL;

keyTwo = NULL;

for(int i = O; i < 2^56; i++) {

result = DESkey[i](plaintext);

if(result == ciphertext1)

keyOne = result;

else if(result == ciphertext2)

keyTwo = result;

}

Listing 4.1: CloudCracker cracking algorithm [35]

Though knowledge of the NtPasswordHash is sufficient to decrypt traffic11, gain authorization to the
network, or become an active MITM, note that one still has to perform a rainbow table lookup or
brute-force attack on the hash in order to obtain the plain-text password of the user.

4.6.8 Experiment: MSCHAPv2 brute-force attack

One disadvantage of the asleap tool discussed in Section 4.6.7 is that this tool always requires a dictionary,
since pure brute-force on the user’s password is considered infeasible. We decided to challenge this claim
by extending the tool with a threaded brute-force functionality, and perform an attack without usage of a
dictionary. In this experiment we attempt to crack an 8-character random alphanumeric ([a-zA-Z0-9])
password to verify the feasibility of a brute-force attack on medium-length plain-text passwords. This
makes the total amount of possible combinations:

628 = 218 340 105 584 896 (4.29)

Consider now that we take one random combination x from this set. If our guessed x is random, the
NtPasswordHash of x, which we will define as X from now on, will be random as well. Also, the last two
bytes of the hash to guess, which we denoted earlier as H, are already known: these are equal to the

11Naturally, this assumes the MSCHAPv2 exchange itself was not encrypted by any means. For example in the case of
PEAP, the attacker should be in possession of the TLS private key in order to capture the MSCHAPv2 exchange.
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first two bytes of k2. In case that H[14] 6= X[14] or H[15] 6= X[15], we know that X will never match
H, and our partial calculation of NtPasswordHash was sufficient to check this. Hence, we only need to
perform the entire calculation of R when H[14] == X[14] and H[15] == X[15]. The chance that this
event occurs is 1

256 ·
1

256 = 1
65536 or roughly 0.0015 percent. Therefore, 99.9985 percent of the time a

simple NtPasswordHash operation is sufficient to check whether our guess X is correct.

Our asleap extension divides all possible permutations of the 8-character password over a number of
worker threads. Each thread performs an NtPasswordHash operation on its current permutation, and
checks the result against the known k2 bytes. Table 4.9 shows the performance of this algorithm when
executed on different machines.

Checks / s Worst-case time

Intel(R) Core(TM) 2 Duo CPU P8600 @ 2.40GHz 7 047 175 358 days

Intel(R) Core(TM) i7-4770K CPU @ 3.50 GHz 35 235 878 72 days

Table 4.9: Brute-force attack on an 8-character password

From these results we concluded that with today’s modern Central Processing Units (CPUs), it would
be feasible for a determined attacker to brute-force the plain-text password on a single machine. The
process can be further accelerated through usage of the Graphics Processing Unit (GPU), though we
did not implement this technique. To give an idea of the potential speedup with GPU acceleration: a
single AMD HD6990 GPU can check 20 853 000 000 MD4 hashes per second using the OCLhashcat
tool [8]. This translates to finding an 8-character alphanumeric password worst-case in three hours, or a
9-character alphanumeric password worst-case in eight days.

If GPU acceleration is not an option, one could consider distributed computing to speed up the cracking
process. Cracking time will then decrease in a roughly linear fashion with the number of machines used.

4.7 Privacy of EAP

Now that we have a good understanding of the operations and vulnerabilities of different EAP methods,
we can assess the impact on user privacy by evaluating these aspects. The severity of an EAP method
vulnerability is determined by the impact on the security requirements and security claims (see Sec-
tion 4.5.9) made by the method. At the end of this section we will grade all EAP method based on this
information.

4.7.1 Requirements

Before we can quantify an EAP deployment’s security, we have to define requirements that should be
met in a secure deployment. Fortunately, these requirements are already defined in RFC 4017 [56],
and further detailed in a paper by R. Dantu et al. [16]. These papers distinguish between 3 types of
requirements: mandatory requirements, recommended requirements and optional requirements.

• Mandatory requirements

1. Generation of symmetric keying material: the EAP method must export a MSK of at least 64
octets, and an EMSK of at least 64 octets. This corresponds to the key derivation and key
strength security claims.

2. Mutual authentication

3. Dictionary attack protection

4. MITM attack resistance: the EAP method must resist MITM attacks by implementing cryp-
tographic binding, integrity protection, replay protection, and session independence.

5. Protected ciphersuite negotiation
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• Recommended requirements

1. Fragmentation support

2. Identity hiding: the EAP method should have support for anonymous EAP identities.

• Optional requirements

1. Channel binding

2. Fast reconnect

A requirement is met when all of the matching security claims from Section 4.5.9 are present.

4.7.2 Evaluation

Table 4.10 shows the evaluation of all discussed EAP methods based on the requirements and discovered
vulnerabilities. EAP methods are penalized based on these vulnerabilities. Penalty points for an EAP
method are calculated as: severity ∗ importance for each column. Here, the severity can be none (0), low
(1), medium (2) or high (3). The importance can be optional (1), recommended (2), or mandatory (3).
In the table, these values are represented as colors, where a darker shade indicates a higher value.

Sym.

Key. Mat.

(3)

Mut.
auth.

(3)

Dict.
Prot.

(3)

MITM
Resist.

(3)

Prot.
Ciph. Neg.

(3)

Fragmentation
support

(2)

Identity

hiding

(2)

Channel
binding

(1)

Fast
reconnect

(1)

EAP-MD5 (3) (3) (2) (3) (3) (3) (3) (3) (3)

EAP-GTC (3) (3) (3) (3) (3) (3) (3) (3) (3)

EAP-MSCHAPv2 (1) (1) (3) (3) (3) (3) (3)

PEAPv2 (1) (1) (2) (1) (3)

EAP-TTLSv0 (1) (1) (2) (1) (3)

EAP-TLS (1) (3)

Table 4.10: Security of EAP methods based on vulnerabilities

We will now briefly motivate our choices of penalty points for each EAP method.

• EAP-GTC 63 points: EAP-GTC does not meet any security requirement.

• EAP-MD5 60 points: Dictionary attacks are slightly more difficult to perform on EAP-MD5,
because the shared secret is MD5-hashed. However, this hash is not salted, which means it can
easily be cracked using rainbow tables in case the attacker desires a plain-text value.

• EAP-MSCHAPv2 33 points: MSCHAPv2 offers generation of symmetric keying material and
mutual authentication. However, dictionary and MITM attacks can still be performed.

• PEAP 14 points: PEAP adds protected ciphersuite negotiation, fragmentation support, and fast
reconnect to meet extra requirements. However, mutual authentication via TLS or the inner EAP
method is optional, which means execution of a MITM attack, dumb-down attack or relay attack
is simplified. Similarly, identity snooping attacks may be performed as identity hiding is not a
requirement.

• EAP-TTLS 14 points: Analogous to PEAP, though it should be noted that the lack of crypto-
binding may have security implications in context of relay attacks.

• EAP-TLS 5 points: EAP-TLS completely relies on certificates for authentication, which eliminates
the possibility of brute-force attacks. Furthermore, mutual authentication between Supplicant and
AS is required in EAP-TLS, which prevents MITM attacks and relay attacks. However, identity
hiding is still optional.

From this evaluation we can conclude that EAP-TLS appears to be the most secure EAP method, because
of the mutual authentication requirement and certificate-based authentication. Despite its advantages, a
major drawback is that the implementation of EAP-TLS requires a lot of maintenance, as valid certificates
need to be installed on the AS and on all Supplicants.
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Chapter 5

Experiment: LEAP relay attack

In January 2014, we discovered a novel vulnerability in Apple devices that allows an attacker to gain
unauthorized access to PEAP WPA2-Enterprise networks by impersonating a victim user. The vulner-
ability is caused by the sharing of credentials over EAP methods on Apple devices, and by a flaw in the
MSCHAPv2 protocol. By performing a similar attack to the MITM attack proposed by N. Asokan et al.
[7], these vulnerabilities can be exploited. A more detailed explanation will be provided in Section 5.2.
Aside from the vulnerability itself, we will also discuss the disclosure procedure and proof-of-concept
implementation in this chapter.

5.1 Disclosure procedure

After discovery of the vulnerability, we chose to responsibly disclose it in order to minimize the impact
on enterprise network security. The initial report was made to Computer Emergency Response Team
(CERT) Belgium. They contacted Apple on our behalf so we could remain anonymous.

In the meantime, we submitted a paper that details the discovered vulnerability to WiSec 2014. We
also contacted Ars Technica in an attempt to warn the public about which devices would be vulnera-
ble under which conditions, without giving away practical details required to exploit the vulnerability.
Unfortunately, we never received a response to this report.

Some time later we contacted CERT US, because we still had not received news about a fix date from
Apple. This fix date is currently still unknown.

The full vulnerability disclosure timeline can be found below:

• January 2014: Discovery of the vulnerability and development of proof-of-concept implementation.

• January 31, 2014: Reported existence of vulnerability to CERT.be

• February 5, 2014: Fully detailed report sent to CERT.be. This report was forwarded to Apple.

• February 20, 2014: Vulnerability acknowledged as distinct issue by Apple. Fix date unknown.

• March 18, 2014: Paper detailing the vulnerability submitted to WiSec 2014.

• March 24, 2014: Contacted Ars Technica about the vulnerability in an attempt to warn users,
without giving too much information about the exploit. No response received.

• April 17, 2014: Existence of vulnerability reported to CERT.org. Immediate reply requesting more
details.

• April 18, 2014: Some details provided to CERT.org.

• May 9, 2014: Paper conditionally accepted.

• May 28, 2014: Acknowledgement of the vulnerability by CERT.org. Fix date unknown.

• May 28, 2014: Paper revision submitted.
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• May 30, 2014: Paper accepted.

5.2 Paper submission

The discovered vulnerability was submitted and accepted as short paper to WiSec 2014. The original
submission explains all details of the vulnerability, and can be found attached below.
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Exploiting WPA2-Enterprise Vendor Implementation
Weaknesses through Challenge Response Oracles

ABSTRACT
Many of today’s enterprise-scale wireless networks are pro-
tected by the WPA2-Enterprise Protected Extensible Au-
thentication Protocol (PEAP). In this paper it is demon-
strated how an attacker can steal a user’s credentials and
gain unauthorized access to such networks, by utilizing a
class of vulnerable devices as MSCHAPv2 challenge response
oracles. More specifically this paper explains how on these
devices, Lightweight EAP (LEAP) MSCHAPv1 credentials
can be captured and converted to PEAP MSCHAPv2
credentials by using a rogue Access Point. This man-in-
the-middle vulnerability was found to be present in all
current versions of Apple’s iOS and OS X operating systems,
and may impact other devices as well. A proof-of-concept
implementation is available that shows how Authentication
Server certificate validation and certificate pinning mecha-
nisms may be bypassed. Mitigation strategies for the attack
and protective actions which can be undertaken by end-users
are also described in this paper.

Keywords
Network security, WPA2-Enterprise, PEAP, LEAP

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Security
and protection.

General Terms
Experimentation, Security

1. INTRODUCTION
Since its inception, wireless networking has become increas-
ingly popular. More and more users desire access to network
resources or the internet without having to struggle with
network cables. As anyone with a wireless network card
can eavesdrop on data sent wirelessly, it is self-evident that
data security and user privacy are crucial aspects. This is
especially true for enterprises, where confidential company

Submitted for review to ACM WiSec 2014.

data may be transmitted over the air. Fortunately, this data
can be encrypted using a secure communication protocol.

For the average home user, the procotol that is considered
most secure for wireless communication is WPA2-PSK.
Here, the user configures a single password that is used for
authentication. This password is shared with all users that
require access to the network. For enterprises, this approach
is infeasible: different users may require different access
rights on the network, access may need to be revoked to
former employees or the password may unintentionally leak
to unauthorized parties. Therefore, the most popular choice
for enterprises is WPA2-Enterprise. When this protocol is
used, each user has their own login and password.

Though WPA2-Enterprise is considered secure in general,
many attacks exist that are based on the man-in-the-middle
principle. Here, a victim user is tricked into connecting to a
malicious Access Point (AP) that has the same SSID as the
enterprise network. To add to the problem, many devices
on the market automatically join a wireless network in their
Preferred Network List (PNL) by default. This is convenient
for the user, as it reduces the amount of actions that have
to be taken in order to access internet or network resources.
Conversely, the user has no control over which network from
the list is joined, meaning they could inadvertedly join a
network under control of an attacker [10].

To solve these man-in-the-middle issues, the authenticity of
the APs themselves can be verified by the device. This
verification happens in the background, so the user fully
relies on the used network protocol for its security. In
context of WPA2-Enterprise networks, the IEEE 802.1X
Standard specifies that the EAP protocol should be used for
this purpose. EAP is an extensible authentication protocol
that implements a wide variety of authentication procedures,
called EAP methods.

Though EAP methods are well-defined and thoroughly
examined for flaws by security experts, a correct protocol
implementation is the responsibility of the device vendor.
Unsurprisingly, there are subtle differences between various
vendor implementations. Some of these may contribute to
significant security vulnerabilities, such as those described
in this paper.

For our research we focused mainly on the PEAP method,
because it is popular, widely supported and considered
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secure. We tested the PEAP implementation of some of
the most popular operating systems used today: Windows,
MAC OS X, Android and iOS [6]. A practical attack for
which Apple devices are particularly vulnerable resulted
from our findings. The vulnerability has been reported to
Apple prior to the release of this paper, on February 5, 2014.

2. ATTACK DESCRIPTION
Our attack exploits a combination of two vulnerabilities.
The first vulnerability is the fact that some devices accept
the older LEAP method for authentication. This EAP
method is Cisco proprietary and uses the MSCHAPv1
algorithm to authenticate users. Past research has already
proven that both MSCHAPv1 and MSCHAPv2 are insecure
for various reasons when used without the protection of a
TLS tunnel [15]. Since the LEAP method does not establish
a TLS tunnel from client (or“Supplicant”) to Authentication
Server (AS) prior to exchanging credentials, it is vulnerable
to a rogue AS man-in-the-middle attack [3].

The second vulnerability is that when the user configures
or joins a PEAP network, some devices reuse the supplied
credentials for all supported EAP methods. Hence, LEAP
credentials do not have to be entered explicitly by the user.
Existing man-in-the-middle attacks try to capture these
LEAP credentials using a rogue AS, and then crack them
with dictionary attack tools like asleap1. In our attack, we
will use the credentials for a different purpose.

Before we discuss a practical implementation of our attack,
let us first examine how credentials are exchanged in LEAP.
The three entities participating in the authentication are the
Supplicant, the Authenticator, and the AS. For simplicity,
assume that Authenticator and AS reside on the same
machine. The LEAP authentication procedure is performed
as follows [3]:

1. The Supplicant associates with the AP and exchanges
its identity with the AS. This step is identical for all
EAP methods.

2. The AS sends an 8-byte challenge Cs, where Cs =
Random8(seed), to the Supplicant.

3. The Supplicant generates a 24-byte challenge response
Rp, where Rp = ChallengeResponse(Cs, H), H =
MD4(Unicode(PW )) and PW is the password of the
user. Rp is then sent to the AS.

4. The AS calculates Rcheck = ChallengeResponse(Cs, H).
The exchange is successful if Rp and Rcheck match.

5. In case of success, an EAP-Success message is sent
from Authenticator to the Supplicant. Then, AS and
Supplicant switch roles and repeat steps 2 to 4. This
time we denote the challenge sent by the Supplicant as
Cp, and the response by the AS as Rs.

6. The AS derives the Session Key as

SK = MD5(MD4(Unicode(H))

||Cs||Rp||Cp||Rs) (1)

1This tool can be downloaded from the following URL:
http://www.willhackforsushi.com/?page_id=41

Figure 1: General LEAP authentication sequence

where “||” is the concatenation operator. The AS
encrypts this value with the RADIUS secret and
sends it to the Authenticator. The Supplicant also
derives the SK, so this key can be used for WEP
encrypted unicast communication. Finally, a random
broadcast key is generated by the Authenticator and
sent encrypted with the unicast key to the Supplicant.

Figure 1 shows a diagram of the previous algorithm. Note
that a LEAP exchange is practically identical to performing
two MSCHAPv1 authentications (steps 2 to 4): one from
AS to Supplicant (Cs → Rp) and one from Supplicant to
AS (Cp → Rs). [20].

Next, let us examine PEAP in Figure 2. This authentication
method is significantly more complex, and among other
features supports MSCHAPv2 mutual authentication to
protect against man-in-the-middle attacks [13, 14]. As-
suming cryptographic binding is not used (see Section 6.3),
PEAP authentication is performed as follows:

1. The Supplicant associates with the AP and exchanges
its identity with the AS.

2. In Phase 1, the Supplicant and AS set up a TLS tunnel
similar to the procedure described in RFC 5246 [4].
From the TLS master secret, a Master Session Key
(MSK) is derived via a one-way function. This key
serves a comparable purpose to the Session Key from
LEAP.

3. Phase 2 is performed inside the TLS tunnel and implies
usage of an EAP inner authentication method en-
capsulated in EAP-Payload Type-Length-Value (TLV)
messages. MSCHAPv2 is often used and relatively
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secure for this purpose. Assuming MSCHAPv2 is used,
the AS starts by generating a 16-byte random server
challenge Cs = Random16(seed) and sends it to the
Supplicant.

4. The Supplicant also generates a random 16-byte peer
challenge Cp. Then the challenge response is calcu-
lated as Rp = ChallengeResponse(Challenge(Cs), H),
where Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 8], U is
the username of the user, H = MD4(Unicode(PW )),
PW is the password of the user and [0 : 8] means the
first eight bytes of the data. This challenge response
is transmitted back to the AS, along with Cp and U .

5. The AS calculates Rcheck analogous to Rp in step 4.
Rcheck and Rp must match, or the authentication will
fail.

6. The AS calculates a peer challenge response

Rs = PeerResponse(MD4(Unicode(H)),

M1, Rp, Challenge(Cp),M2) (2)

where M1 is the “Magic server to client signing con-
stant” and M2 is the “Pad to make it do more than
one iteration” constant. This result is SHA1-hashed
and sent to the Supplicant.

7. The Supplicant authenticates the server, completing
the MSCHAPv2 inner authentication.

8. An EAP-Result-TLV exchange is performed between
AS and Supplicant to indicate the result of the PEAP
authentication. Then an EAP-Success message is sent.

9. The MSK is used to derive the WPA2 Pairwise Master
Key (PMK) and subsequent keys. Secure transmission
of data can begin when the 802.11i four-way handshake
[8] is completed.

When comparing the core differences between MSCHAPv1
and MSCHAPv2 credentials from RFCs 2433 and 2759, we
can see that they are in fact very minor. Table 1 shows a
comparison between the two methods [19, 20].

Though RFC 2759 states that MSCHAPv2 is incompati-
ble with MSCHAPv1 [19], the insignificance of the afore-
mentioned differences led us to the conclusion that some
MSCHAPv1 messages can be converted to MSCHAPv2
messages and vice versa.

We will now show that Cs from MSCHAPv1 is identical
to Challenge(Cs) from the MSCHAPv2 AS and that Rp

from the MSCHAPv1 peer is identical to Rcheck at the
MSCHAPv2 server. This way we can be sure that all
messages converted from MSCHAPv1 to MSCHAPv2 or
vice versa will be accepted by the destination host. For
the challenges we derive:

Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 8] (3)

= SHA1(x)[0 : 8] (Cp and Cs are random)
(4)

= Random8(seed), if x = random (5)

= Cs (6)

Figure 2: General PEAP authentication sequence

Given that the ChallengeResponse function is the same in
MSCHAPv1 and MSCHAPv2, we derive for the challenge
responses:

Rs = ChallengeResponse(Cs, H) (7)

= ChallengeResponse(Challenge(Cs), H) (Eq. 6)
(8)

= Rcheck (9)

With the knowledge that the challenge we get from the
PEAP MSCHAPv2 AS can be converted to an MSCHAPv1
challenge (Equation 6), and that the challenge response we
get from our LEAP MSCHAPv1 victim can be converted to
an MSCHAPv2 challenge response that matches Rcheck on
the AS (Equation 9), we devised a relay attack that uses a
vulnerable device as an MSCHAPv2 challenge response ora-
cle in order to gain unauthorized access to PEAP networks.
Figure 3 shows a schematic representation of our attack.

3. PRACTICAL LEAP RELAY ATTACK
In this section we will show how the MSCHAPv1 to
MSCHAPv2 conversion can be exploited in practice. First
we will discuss the preconditions for the attack. Then, a
practical implementation for attacking Apple devices will
be demonstrated.

3.1 Preconditions
A device connecting to a PEAP network is considered vul-
nerable to our attack when all of the following preconditions
are met:
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MSCHAPv1 MSCHAPv2

Cs Cs = Random8(seed) Cs = Random16(seed)

Rs N/A Rs = PeerResponse(MD4(Unicode(H)),M1, Rp, Challenge(Cp),M2)

Cp N/A Cp = Random16(seed)

Rp Rp = ChallengeResponse(Cs, H) Rp = ChallengeResponse(Challenge(Cs), H)

Table 1: Differences between MSCHAPv1 and MSCHAPv2 exchanges

• The device supports the LEAP method.

• The device connects automatically to the PEAP net-
work. This is the default behavior.

• The Authenticator does not require and validate client
certificates. Server certificate validation and certificate
pinning may be enabled on the client.

• The MSCHAPv2 or MSCHAPv1 inner authentication
EAP method is supported and allowed on the AS.

Note that most of the preconditions listed here are com-
monly fulfilled by default in enterprise network setups.

3.2 Case study: Apple devices
We will now demonstrate how the exploit can be practically
applied to Apple devices (see Figure 3). Our proof-of-
concept implementation uses a simple state machine to
perform the attack (Figure 4). After successful execution,
an attacker gains unauthorized access to the target network
by impersonating a legitimate user.

Assoc.start Ident. Chal.

Resp. Success

fail

fail

fail

fail

Figure 4: State machine of our attack

3.2.1 State 1: Association
Before wireless clients can begin the exchange of EAP
packets to secured networks, they require association with
a wireless AP. Clients will transmit Probe Requests every
few seconds to search for in-range APs. Then, when
the AP responds with a Probe Response, the client will

automatically associate to it. Note that this only happens
automatically if the client already successfully connected to
this network at some point in time. We exploit this default
auto-join behavior to have clients associate to an AP under
our control. In order to accomplish this, we set up a fake
wireless AP with the same SSID as the target network. This
fake AP broadcasts beacon packets and replies to Probe
Requests from clients.

The client will associate or reassociate to our fake network
AP when it is closer to the target network AP, because
better signal strength is preferred [5]. Since we do not want
to receive requests from devices which are not vulnerable,
our implementation uses the MAC Organizationally Unique
Identifier (OUI) to identify the device vendor. We can filter
out all non-Apple devices this way.

3.2.2 State 2: Identification
The first step after association in WPA2-Enterprise net-
works is identification. The AS has to know which user
wants to authenticate in order to match corresponding
credentials. We can learn the identity of the vulnerable
device by sending an EAP Identity Request. The device will
then reply with an EAP Identity Response which contains
the username of our victim.

At this point, data sent over the air is still not encrypted.
Hence, some PEAP implementations use anonymous identi-
ties. In this case the real username is only disclosed when
a TLS tunnel has been established between the Supplicant
and the AS. Nonetheless, we can still get the real username
in a later phase of our attack.

Our next goal is to get the challenge value from the target
AP. We created a modified version of the wpa_supplicant2

tool for this purpose. At the end of this state, the
binary executable of this modified version is called from our
implementation.

2The wpa_supplicant tool is the de facto standard
802.1X Supplicant implementation in Linux-based operating
systems. It was created by Jouni Malinen and is open source.
We modified the source code to fit our needs instead of
starting from scratch.

4



Figure 3: Schematic representation of the Apple LEAP
attack

3.2.3 State 3: Challenge
In State 3, we wait for the wpa_supplicant tool to establish
a TLS tunnel with the target AS and extract an MSCHAPv2
challenge from the inner authentication. We can now see
why usage of client certificates would mitigate the attack,
as the client certificate validation would not be successful in
this case.

When the MSCHAPv2 challenge is retrieved, we pass it
on to our tool. Upon receipt, the tool will periodically
send LEAP Request messages (containing the extracted
challenge) to the Apple device in order to keep the session
alive.

3.2.4 State 4: Response
After receiving the LEAP Request, our victim will reply
with a LEAP Response which contains an MSCHAPv1
challenge response to our MSCHAPv2 challenge. Should
the target PEAP network enforce anonymous identities, the
real or inner identity of the victim will also be revealed
to the attacker through this LEAP Response. Next,
our implementation will forward the received MSCHAPv1
challenge response as an MSCHAPv2 challenge response
to the modified wpa_supplicant tool, which will in turn
forward the challenge response to the legitimate PEAP
network AS.

3.2.5 State 5: Success
When the AS receives our modified challenge response,
authentication proceeds as usual, which means the AS has
to authenticate to our Supplicant. However, since we are not
in posession of the NT password secret, we cannot derive H.
Hence, when receiving the peer challenge response from the
AS, we are forced to accept any sent value.

After this, the MSCHAPv2 inner authentication will com-
plete successfully and the port will be authenticated. The
AS and our Supplicant will derive the MSK, and from this
we can derive the PMK. We now have all components
required to access resources on the internal network.

4. VARIANTS
In this section we will discuss some of the possible variations
on the attack described above.

4.1 Remote challenge response collecting
Since devices periodically send Probe Requests for networks
in their PNL, an attacker may sniff these Probe Requests
and respond to each of them by posing as a WPA2-
Enterprise network. When the attacker finds an SSID that
truly is a WPA2-Enterprise network, the device will attempt
to automatically connect. Next, a LEAP challenge can be
sent in order to retrieve the LEAP challenge response. We
can then perform a dictionary attack on these credentials by
using existing tools, such as asleap.

4.2 Elevation of privileges
A side effect of our attack is that the user of the targeted
vulnerable device is impersonated. Therefore, it is possible
for the attacker to gain access to a user’s VLAN when the
attack is executed. For example, suppose there are two
users currently connected to the network with a vulnerable
device: Jane and Bob. Bob is an accountant and only has
access to VLAN 0. Jane is a sales manager and only has
access to VLAN 1. Because the VLAN is assigned by the
AS based on username, an attacker can perform our attack
on either Jane’s or Bob’s device in order to get access to
their corresponding VLANs.

5. TEST RESULTS
We tested our attack on devices from multiple vendors.
Table 2 shows the devices we tested and whether they were
vulnerable to the LEAP relay attack.

Assuming that the same network protocol stack is used on
all Apple operating systems, we concluded from these results
that all Apple devices are vulnerable. The vulnerability
was executed on multiple different APs using different AS
implementations. These included:

• A TP-Link WN422G using hostapd and the latest
freeradius implementation on the same machine.

• A Linksys WRT54G AP using the latest freeradius

implementation on a dedicated machine.

• A Ubiquity UniFi AC 3.x AP using Windows RADIUS
server on a dedicated machine.
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Device Vulnerable

iPod Touch (iOS 6.1.6) Yes

iPhone 4 (iOS 7.1) Yes

iPhone 4S (iOS 7.1) Yes

Mac OS X 10.8.2 (Mountain Lion) Yes

Samsung GT-S5570 (Android 2.3.4) No

Google Nexus 7 (Android 4.4.2) No

Samsung GT-I8750 (Windows Phone 8.0) No

Windows 7 Desktop No

Table 2: Devices vulnerable to the LEAP relay attack

6. MITIGATION
The attack we described in this paper can be mitigated in
various ways. We will discuss four methods in this section.

6.1 Client certificates
In State 3 of our attack, a TLS tunnel has to be established
between the attacker and the target network AS. When
using client certificates, each client’s certificate must be
provided in the“Client Hello”phase of the TLS tunnel setup.
When this verification fails, the TLS setup will be aborted
and hence, our attack will fail because the MSK cannot be
derived from the TLS master secret.

This countermeasure is very effective and by far the most
secure. However, it would require a lot of administration
effort for enterprises. Especially in enterprises with a
Bring Your Own Device (BYOD) policy, because a signed
certificate for every device allowed on the network must be
installed on the AS.

6.2 iPhone Configuration Utility
A network administrator can distribute and install network
configuration profiles on Apple devices. Alternatively, a user
can create their own configuration profile using tools like the
iPhone Configuration Utility3.

These configuration profiles allow the network administrator
to choose which EAP methods clients should use (Figure 5).
They are the only way in which LEAP can be disabled on
Apple devices. If this method is chosen to mitigate the
attack, care must be taken in BYOD environments: if one
user does not install the network profile, the attack can

3The iPhone Configuration Utility can be
downloaded from the official Apple website at:
http://support.apple.com/kb/dl1466

nevertheless be executed. Furthermore, network profiles can
be accidentally removed by the user. For these reasons,
security is put in the hands of the end user and therefore
this method is not as secure as using client certificates.

Figure 5: Disabling LEAP on Apple devices through profiles

6.3 Cryptobinding
An optional feature described in the PEAP version 2
internet draft is cryptographic binding [14]. This feature
introduces the use of a new Type-Length-Value (TLV), the
CryptoBinding TLV, to address man-in-the-middle attacks.
A two-way handshake containing a Compound MAC Key
(CMK) proves that the two authentications terminate at
the same PEAP peer and PEAP server [12].

To calculate the CMK, the Supplicant is required to use
keying material from both Phase 1 and Phase 2 of the PEAP
exchange. In pratical terms this involves the calculation of
the Tunnel Key (TK) and the Inner Session Key (ISK).
These keys are combined in the cryptobinding algorithm to
form the CMK (see Figure 2).

The TK is calculated similarly to the MSK from the
TLS master secret, and would be available to an at-
tacker. The ISK however, is calculated at the Supplicant
as ISK = InnerMPPESendKey||InnerMPPERecvKey.
The InnerMPPESendKey and InnerMPPERecvKey are
both derived from the inner MSCHAPv2 Master Key (MK),
which is derived as

MK = GetMasterKey(

MD4(Unicode(H))[0 : 16], Rs) (10)

Since H is unknown to the attacker, the ISK cannot be
derived and authentication will fail.

If all consumer devices would support cryptobinding, this
method would probably be the best way to mitigate our
attack. However, from our experiments we concluded that
Apple devices do not support cryptographic binding at
this time. When support for cryptographic binding is
implemented, we recommend to enable this feature on the
authentication server.

6.4 Intrusion detection
Though it does not prevent an attack, real time intrusion
detection may be helpful for enterprise system administra-
tors to detect an attack. This way, appropriate measures
may be taken by the administrator. For wireless networks,
several Wireless Intrusion Detection Systems (WIDS) exist;
both commercial (AirDefense, AirMagnet Distributed) and
open source (Kismet, NetStumbler) [9].

A signature based WIDS might be able to detect our
attack by passively scanning for LEAP requests. Since
these packets will never be sent by a legitimate AP, IDS
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Figure 6: Remote LEAP relay attack

sensor nodes have a clear indication that the network is
under attack. Analytic approaches to detect our attack may
include station counts, association counts, OS fingerprinting
and RSSI value analysis, though these methods often lead
to false positives [1].

As a final note, we would like to indicate that care must be
taken when relying on a WIDS for detection of an attack, as
we believe that in many cases the IDS may be bypassed. For
example, a victim may be in range of the rogue AP, while the
latter is out of range from a WIDS sensor. The only entity
that is required to be in range of the enterprise network is
the attacker’s client device. In Figure 6, an example scenario
is shown where the relay attack is executed over the internet.

7. FUTURE WORK
Future work could be done by using the same attack
principles described in this paper. From our experiments we
determined that other devices, for example Android devices,
do not employ certificate pinning by default. If the victim
user did not configure a server certificate, we believe a more
generic man-in-the-middle attack may be executed as shown
in Figure 7. This attack is similar to the attack described in
RFC 7029 [7]. Note that in this case, the preconditions are
stricter: it is required that server certificates are not used
by the Android device, which was not the case for Apple
devices.

Another option for future work would be to complete the
LEAP exchange from Figure 3, instead of the MSCHAPv2
exchange with the PEAP AS. This way, an attacker could
become an active man-in-the-middle, so data traffic sent

Figure 7: Generic PEAP relay attack

by the victim can be captured. However, the attacker
would need to derive SK, which requires knowledge of the
password hash H (see Equation 1).

8. RELATED WORK
A similar attack on PEAP vendor implementations is the
EAP dumb-down attack introduced by Raul Siles in 2013.
This attack exploits the default lack of certificate validation
in mobile devices. When these devices trust the AS, any
inner EAP method may be chosen, and credentials may be
stolen. However, for Apple devices, the dumb-down attack
requires user intervention whereas our attack is automatic
[16]. Furthermore, a correct configuration of authentication
server certificates does not mitigate our attack for Apple
devices.

Other related attacks were proposed at numerous security
conferences. In 2008, Joshua Wright and Brad Antoniewicz
demonstrated how EAP credentials such as MSCHAPv2
exchanges can be collected using freeradius-wpe, a rogue
AS implementation [17]. By using the asleap tool, these
credentials can then be cracked with a dictionary attack
[2]. More recently, in 2012, Moxie Marlinspike showed
how MSCHAPv2 credentials can be cracked in less than
24 hours using cloud-based FPGA nodes [11]. Finally, Josh
Yavor indicated the dangers of BYOD and default certificate
validation behavior of mobile devices in 2013 [18].
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9. CONCLUSIONS
We demonstrated how MSCHAPv1 challenges and challenge
responses can be converted to MSCHAPv2 challenges and
challenge responses. Then, we indicated how this can
be exploited in practice when a Supplicant supports the
insecure LEAP method and when credentials are reused
between EAP methods.

Many devices, in particular all Apple devices, are currently
vulnerable to our attack. Mitigation is possible in various
ways. However, we noted why some mitigation strategies
might not be feasible for enterprises. Therefore, users
and network managers should take care when their devices
satisfy all mentioned vulnerability preconditions.
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5.3 PEAPwn tool

PEAPwn is a proof-of-concept implementation of the Apple LEAP relay attack described in this chapter.
The proof-of-concept consists of two components:

• The PEAPwn Python script, which performs the actual exploit.

• A modified version of the wpa supplicant tool, which performs the TLS tunnel setup, the credential
relay to PEAPwn via Unix domain sockets, and the 802.11i 4-Way Handshake with the target AP
(see Section 3.4).

The paper from Section 5.2 explained how the tool works. In this section we will discuss which options
are available, and how the user can use the tool to gain unauthorized access to a PEAP WPA2-Enterprise
network. This proof-of-concept implementation is currently only supported on Linux, and can be invoked
on the command line as shown in Listing 5.1.

peapwn.py [-h] [--debug] [--nooui] infra_if mon_if essid bssid

Listing 5.1: PEAPwn options

Arguments that may be provided are:

• infra if: The interface that should be used as the “client” interface to connect with the target
SSID.

• mon if: The interface that should be used to spoof the target SSID and attack the victim’s device.

• essid: The SSID of the network to attack.

• bssid: The MAC address of the AP to spoof. Make sure that you are closer to the victim’s device
than the real AP with this MAC address.

• -h: Display help.

• -d: Print verbose wpa supplicant output.

• -n: Disables usage of an Organizationally Unique Identifier (OUI) list to identify vulnerable devices.
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Chapter 6

Conclusion and future work

Despite the fact that many protocols are available to secure wireless networks, a lot of networks still use
open authentication to provide access to the network resources. Notable examples of such networks are
public hotspots, over which sensitive user data is transmitted every day. Our experiments have shown
that the presence of only one open network in the device’s PNL is enough to compromise the privacy
of a user. We concluded that on average, 16% of the mobile device users are directly vulnerable to an
active MITM attack.

Fortunately, many protocols exist to secure wireless networks. We explained the mechanisms behind the
most popular wireless security protocols in order to gain an insight in their known vulnerabilities. Some
of the vulnerabilities were tested to verify their applicability today. Notable results from these tests
come from the dumb-down attack, which despite being reported in 2013 is still a risk to roughly 28% of
mobile device users.

Concluding this thesis, we have demonstrated how a vendor implementation vulnerability in Apple
devices allows an attacker to gain unauthorized access to any PEAP network. This discovery resulted
in a paper that was submitted and accepted to WiSec 2014. At the time of writing, the vulnerability
has not yet been fixed. This proves again that vulnerabilities may remain feasible for extended periods
of time, and that users and administrators should always be on their guard for both existing and novel
attacks on wireless networks in order to protect their privacy.

Future work

A first possibility for future work was discovered in experiments with the Google Nexus 7 (2013). When
connecting to a new 802.1X secured wireless network on this device, the user is required to specify the
configuration. Among the available options are mandatory fields such as the username and password
field, and optional fields such as the TLS certificate and the PEAP inner authentication method.

While experimenting, we noticed that the PEAP inner authentication setting can be overridden by an
attacker if the victim is quickly disconnected from one network, and then quickly rejoins another that
shares the same BSS MAC address. For example, suppose a user is connected to a network “gtcnet”,
and that this user has configured their Android device to use PEAP with GTC for this network. If an
attacker quickly deauthenticates the user and spoofs a different SSID “testnet” (also using the same MAC
address), the attacker may force the client to use PEAP with EAP-GTC, even if the client configured
“testnet” to use PEAP with MSCHAPv2.

The exact conditions under which this event occurs are not clear. It is also unknown why not all Android
devices behave this way. Because of time contraints, we could not investigate this further, and hence
work regarding this issue could be done in the future.

A second possibility for future work is to implement the LEAP relay attack from Chapter 5 for EAP-
TTLS. The LEAP relay attack was only tested on PEAP networks. However, since PEAP and EAP-
TTLS are very similar protocols, we believe the attack may also work on EAP-TTLS secured enterprise
networks.
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As a third option, future work could be done by investigating new attacks on WPA-Personal. In this the-
sis, we focused on WPA-Enterprise 802.1X for our novel attacks feasibility study, but new vulnerabilities
may be found in WPA-Personal as well.

Lastly, recall that we extended the asleap tool with a threaded brute-force functionality for MSCHAPv2
credentials. This cracking process could be improved in the future by making use of the GPU for
calculating MD4 hashes.
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