
Cost-effective Web-based Media Synchronization 
Schemes for Real-time Distributed Groupware

Maarten Wijnants, Peter Quax and Wim Lamotte
Hasselt University / tUL / iMinds / Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium / {firstname.lastname}@uhasselt.be

T
h

e
 w

o
rk

 p
re

s
e

n
te

d
 o

n
 t
h

is
 p

o
s
te

r 
is

 c
o

-f
u

n
d

e
d

 b
y
 t
h

e
 i
M

in
d

s
 I
C

O
N

 p
ro

je
c
t 
3

D
T

V
 2

.0

A multitude of application domains benefit from synchronized multimedia content presentation and playback 
across spatially scattered client stations. Example use cases situated in the real-time distributed groupware realm 
include online remote tutoring, telework, and the non-co-located synchronous browsing through digital photos.

At the core of any synchronous media sharing and consumption platform lies its real-time content synchronization 
procedure. The synchronicity requirement namely dictates that spatially distributed participants need to be 
presented the same content at (approximately) the same time. In the literature, this concept is sometimes denoted 
by the term group synchronization or Inter-Destination Media Synchronization (IDMS).

This poster presents five concrete hosting and deployment strategies that realize media synchronization over the 
Web. The proposed techniques have been implemented and experimentally validated as part of the synchronous 
MediaSharing (sMS) service, a Web-conform framework which grants geographically dispersed users the ability to 
share and synchronously consume digital pictures and video clips. All five schemes are completely Web-compliant, 
achieve relatively loose synchronization accuracy, and are non-distributed (i.e., they require centralized 
coordination). The proposed synchronization solutions have also been subjected to a high-level economic cost-
benefit analysis by assessing their infrastructural requirements and the thereby induced operational expenditure.

The presented results are not bound to the sMS framework but instead are generalizable to many Web-based 
services that are conceptually situated in the same time, different place category of Johansen’s groupware typology.

Converged access: Seamless content sync 
between physical devices and digital world

Example cross-platform sMS session (picture 
sharing scenario involving PC and tablet)

Webserver plus AJAX

• Dedicated back-end hardware (Webserver)
• Back-end PHP software implementation
• Sync instructions persisted in back-end DB
• AJAX as client/server transport mechanism
• Poll-based sync data dissemination (clients 

poll server periodically to solicit up-to-date 
state)

Synchronization in the Cloud

• PaaS implementation on Google App Engine
• JavaServer Pages back-end implementation
• Sync instructions persisted in GAE Datastore
• Push-based sync data dissemination via GAE 

Channel API (sMS session maps to channel)
+ Intrinsic scalability of back-end resources
+ Channel API expedites sync record distribution

XMPP with Multi-User Chat

• Extensible Messaging and Presence Protocol
• MUC extension introduces textual group chat
• sMS sessions are mapped to rooms, session 

sync data broadcast within room
• Publish-subscribe interaction paradigm
+ No back-end software implementation
+ Public XMPP MUC servers are freely available

Facebook Page • Sync mediation via specialized, 
public Facebook Page

• sMS session mapped to post on 
Page (holds session config data)

• Session sync data communicated as 
comments on corresponding post

• Clients periodically query Page for 
newest comment

• Auto cleanup of obsolete 
comments

+ No FB user account pollution
- Facebook dynamically limits 

publication volume & rate
- Replication across Facebook 

servers is non-instantaneous 
consistency issues

Twitter Tweets• Sync data as public tweet
• Twitter Streaming API on back-end 

Webserver to filter sync tweets
• RDBMS-based sync storage
• Iterative poll-based sync data 

dissemination (AJAX)
- User account pollution
- Tweet length restrictions limit sync 

message size
- No access to Streaming API from 

within Web browsers
- Rate limits on Twitter API usage 

and strict per-day upper bound on 
tweet publication volume

- API-powered tweet posting is non-
instantaneous  consistency 
issues

• Requires Webserver hosting (with PHP & RDBMS support) and management

• Typically incurs a monolithic monthly or yearly fee
Webserver plus 

AJAX

• All back-end hardware is hosted and managed by PaaS cloud provider

• Actual cost depends on provider’s pricing model; many vendors (e.g., GAE) apply a pay-per-use 
billing system and offer free policies for apps that satisfy predefined resource usage quota (CPU, …)

Synchronization 
in the Cloud

• Requires MUC-enabled XMPP server(s)

• Complimentary XMPP servers are abundantly available online
XMPP with Multi-

User Chat

• No hosting expenses

• Facebook’s back-office takes care of persistence and dissemination of sync instructions
Facebook Page

• Twitter Streaming API imposes Webserver hosting (with PHP & RDBMS support) and management

• Typically incurs a monolithic monthly or yearly fee
Twitter Tweets

Cost-effectiveness and Infrastructural Requirements


	webist2013-poster-mwijnants.vsd
	Page-1


