
Hasselt University

and transnational University of Limburg
School of Information Technology

Service Quality Improvement and User Experience
Optimization by Introducing Intelligence in the

Network

Dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

at the transnational University of Limburg

to be defended by

Maarten Wijnants

on May 26, 2010

Supervisor: Prof. dr. Wim Lamotte

2005 – 2010

Universiteit Hasselt

en transnationale Universiteit Limburg
School voor Informatietechnologie

Service Quality Improvement and User Experience
Optimization by Introducing Intelligence in the

Network

Proefschrift voorgelegd tot het behalen van de graad van

Doctor in de Wetenschappen, Informatica

aan de transnationale Universiteit Limburg

te verdedigen door

Maarten Wijnants

op 26 mei, 2010

Promotor: Prof. dr. Wim Lamotte

2005 – 2010

Acknowledgments

No PhD thesis is ever the product of only the candidate’s efforts, and certainly
this one is no different. A lot of people have contributed to my study and hence
to the book you are currently holding in your hands. Mentioning all of them
individually would lead to a far too extensive list. I would therefore like to
begin by extending a general word of gratitude to everyone who has in some
way influenced me and/or my research. Thank you! Some people are however
worthy of explicit acknowledgment due to their significant and direct impact
on the realization of this dissertation and this will be done in the remainder
of this section. My sincere apologies if I have inadvertently omitted anyone to
whom personal acknowledgment is due.

First and foremost, I would like to thank my promotor, prof. dr. Wim
Lamotte, for his continuous supervision and expert guidance. Thank you Wim
for allowing me to explore my research interests, for your support throughout
the PhD period and, probably most importantly, for your pointers and sug-
gestions which have guided my research in the right direction. Without you,
this dissertation would definitely not be in the state it is in today.

I have had the privilege of conducting my research at the Expertise centre
for Digital Media (EDM), the ICT research institute of Hasselt University. I
would very much like to thank prof. dr. Frank Van Reeth and prof. dr. Eddy
Flerackers, respectively Deputy Managing Director and Managing Director of
the EDM, for this wonderful opportunity. Thanks also goes to all present and
former colleagues at the EDM for creating such a pleasant working environ-
ment. As a member of the Multimedia & Communication Technology research
group, a special acknowledgment is due to fellow (ex-)group members with
whom I have worked in close collaboration throughout the years: Stijn Agten,
Bart Cornelissen, Jeroen Dierckx, Bjorn Geuns, Panagiotis Issaris, dr. Tom
Jehaes, dr. Pieter Jorissen, dr. Jori Liesenborgs, dr. Patrick Monsieurs and
dr. Peter Quax. I also wish to express my gratitude to my friends and former

ii Acknowledgments

colleagues dr. Tim Clerckx, Bert Creemers and Chris Vandervelpen for the
many nice experiences that we have shared while working together. Maarten
Cardinaels and Geert Vanderhulst are thanked for the valuable collaboration
during the IBBT iConnect project. I am also grateful to the administrative
staff of the EDM, Roger Claes and Ingrid Konings, for their everyday support
and in particular for taking care of the formalities that are associated with
the successful completion of a PhD. Lastly, I would like to acknowledge the
rest of the senior research staff of the EDM which have not yet been men-
tioned thus far: prof. dr. Philippe Bekaert, prof. dr. Karin Coninx, prof. dr.
Kris Luyten and prof. dr. Chris Raymaekers. The EDM and its researchers,
including myself, have benefited considerably (and keep on benefiting) from
their experience, insights and expertise.

In the course of my PhD study, I have had the honor of meeting and
collaborating with researchers from other universities and research institutes.
I would particularly like to extend my appreciation to prof. dr. Filip De Turck,
dr. Bart De Vleeschauwer, dr. Peter Lambert and Dieter Van de Walle, whose
constructive attitude and cooperation in the IBBT E2E QoE project was very
much appreciated. Without their help, the work that will be presented in
chapters 12 and 13 could not have been realized. I am also grateful to the
fellow researches whom I have met at attended scientific conferences for their
feedback on my work, the interesting discussions and simply for contributing
to having a good time while being away from home.

I am also very much obliged to the members of my PhD jury for their
comments and suggestions regarding this text. I hope that they will notice
the improvements that have resulted from their most valuable input.

Finally, some words of gratitude on a more personal level are definitely
also in order. A very special and warm thanks goes to my parents, Josée and
Guy, who have always believed in me and have given me more than ample
opportunities for pursuing my ambitions in life. Thank you mom and dad for
your love, guidance, motivation and never-ending support! I am also grateful
for the many friends I have. Thank you all for making my leisure activities
so enjoyable and for staging the necessary diversions throughout the years!
Last but certainly not least, I would like to thank my girlfriend, Saadia, for
standing by me while I was writing this dissertation and for brightening up
my life!

Diepenbeek, May 2010

Abstract

The majority of present-day distributed applications demand a certain level of
service from the transportation network and impose a number of performance
requirements on it. Failure to meet these requirements will typically degrade
the efficiency of the application and, more importantly, will likely have a detri-
mental impact on the experience of the end-user. Over the years, a number of
frameworks has therefore been proposed that enable transportation networks
to guarantee a certain Quality of Service (QoS) and the positive implications
of these frameworks on application performance have been established. Due
to the growing attention to human factors however, the focus is increasingly
shifting from pure QoS provision towards user experience optimization. Stated
differently, in recent years, the goal of guaranteeing a certain level of network
performance is evermore being replaced with the aspiration to ensure a high
end-user satisfaction or so-called Quality of Experience (QoE). The current
generation of telecommunications networks, and the omnipresent Internet in
particular, unfortunately lack elaborate and effective constructs for QoE op-
timization. Mitigating this deficiency forms the subject of this thesis.

The overall contribution of this doctoral dissertation is the Network Intel-
ligence Proxy (NIProxy), a network intermediary which has been developed to
enable QoE manipulation and optimization in IPv4-based computer networks.
As is hinted at by its name, the NIProxy’s methodology involves the intro-
duction of “intelligence” in the networking infrastructure. This is achieved
by accumulating contextual knowledge regarding the transportation network
itself, the distributed application and the end-user (and his terminal).

On a finer-grained level, this PhD research contributes to various domains,
the first of which being network traffic engineering and application-layer QoS
provision. The NIProxy provides two complementary techniques to improve
the (multimedia) traffic handling capabilities of the transportation network
in which it is deployed. The first technique, network traffic shaping (NTS),

iv Abstract

enables the in-network coordination and management of the bandwidth con-
sumption of the network traffic that is induced by distributed applications.
The second tool, service provision, allows the NIProxy to act as a substrate
for the hosting of services that will be applied to the (multimedia) content that
flows through the network. Both traffic engineering mechanisms are context-
aware and context-adaptive since they have unbridled access to the NIProxy’s
context repository.

A second concrete research contribution is situated in the area of network
intermediary design and implementation. The service provision platform is
designed with extensibility in mind. Thanks to a pluggable implementation,
the set of provided services can at run-time be modified and extended. This
extensible design for instance enables the NIProxy to cope with heterogeneous
conditions in dynamic networking environments without requiring a reboot.
Secondly, instead of implementing the NTS and service provision frameworks
as isolated entities, an integrated design is adopted so that both traffic engi-
neering techniques are allowed to interface and collaborate. The outcome is a
holistic solution in which the composing components supplement each other’s
strong points and improve their potential through cooperation.

Finally, this PhD dissertation presents significant results in the area of
context-aware networking and user experience optimization. The ultimate
objective of the NIProxy is not to improve the QoS features of the transporta-
tion network, but instead to improve the experience of the users which leverage
the network to run distributed applications. The viability and the feasibility
of the NIProxy as a QoE manipulation and optimization framework is in-
vestigated by analyzing the outcomes of numerous experimental evaluations.
These studies confirm that the NIProxy is equipped with an elaborate toolset
for user experience optimization which enables it to deliver on its objective in
a multitude of distributed scenarios, in dynamic environments, under variable
network load and amidst heterogeneous mixes of network traffic types. It is
also corroborated experimentally that the NIProxy is amenable to cooperation
with other QoS provision or QoE optimization solutions and as such can serve
as a building block for the construction of larger frameworks.

To conclude, it is worth underscoring what this dissertation is not about.
The NIProxy is not concerned with (methods for) QoE measurement or the
QoE concept per se. This thesis also does not involve the collection of quali-
tative feedback by means of user studies. Lastly, the NIProxy is not a ready-
made solution for QoE optimization; instead, it is a QoE manipulation frame-
work whose actual behavior needs to be attuned to the current context of use.
Simply integrating the NIProxy in a transportation network is hence by no
means a guarantee for success.

Contents

Acknowledgments i

Abstract iii

List of Figures xi

List of Tables xvii

1 Introduction 1
1.1 Problem Statement and Motivation 1
1.2 Contributions . 3
1.3 Terminology . 5
1.4 Outline . 6
1.5 Publications . 9

1.5.1 Articles in International Journals 9
1.5.2 Articles in International Conference Proceedings 10
1.5.3 Internal Technical Reports 12

2 Background and Related Work 13
2.1 Quality of Service Provision . 14

2.1.1 Layered Networking Model 14
2.1.2 Service Level Agreement 17
2.1.3 QoS Provision in IPv4-Based Networks 18
2.1.4 QoS provision in non-IPv4-based networks 23

2.2 Quality of Experience . 24

vi CONTENTS

2.2.1 Definitions . 26
2.2.2 Measurement . 27

2.3 Context-Aware Networking . 29
2.4 Network Traffic Engineering . 30

2.4.1 Bandwidth Management 30
2.4.2 Multimedia Service Provision 33
2.4.3 NIProxy Contributions 38

2.5 Active Networking . 40
2.5.1 Classification . 40
2.5.2 Benefits . 41
2.5.3 Achievements . 43
2.5.4 Discussion and Comparison with the NIProxy 46

2.6 A Taxonomy of QoS/QoE Frameworks 47

I Network Intelligence Proxy 51

Overview 53

3 Objectives and Methodology 55
3.1 Context Introduction in the Network 55

3.1.1 Network Awareness . 56
3.1.2 Application Awareness 58
3.1.3 Terminal Awareness And User Preferences 59

3.2 Traffic Management Techniques 61
3.3 Inbound and Outbound Optimization 62
3.4 Network Intelligence Layer . 63
3.5 Deployment . 67
3.6 The NIProxy as Part of Larger QoE Optimization Frameworks 69

4 Network Traffic Shaping 71
4.1 Arranging Network Traffic in a Stream Hierarchy 72
4.2 Internal Node Types . 73

4.2.1 Mutex . 73
4.2.2 Priority . 74
4.2.3 Percentage . 75
4.2.4 WeightStream . 76
4.2.5 WeightData . 77

4.3 Leaf Node Types . 79
4.3.1 Discrete Leaf Node . 79
4.3.2 Continuous Leaf Node 80

CONTENTS vii

4.4 Maximal Bandwidth Consumption 81
4.5 Sibling Dependencies Framework 81
4.6 Overflow Prevention Buffer . 82
4.7 Stream Hierarchy Construction and Management 84

4.7.1 Global Stream Hierarchy Layout Determination 85
4.7.2 Stream Hierarchy Governance 86

4.8 A Comprehensive Example . 88

5 Multimedia Service Provision 91
5.1 Pluggable Design . 92
5.2 Network Traffic Shaping Interoperation 93
5.3 A Representative Example: Static Video Transcoding 94

5.3.1 Stream Hierarchy Incorporation 95
5.3.2 Mode of Operation . 96
5.3.3 NTS Interoperation . 96
5.3.4 Implementation . 97

6 Software Architecture 99
6.1 Netfilter-Based Design . 100

6.1.1 Netfilter . 100
6.1.2 iptables . 102
6.1.3 Implementation . 104

6.2 Refactored Design . 107
6.2.1 Motivation . 107
6.2.2 Implementation . 108
6.2.3 Application-Layer Protocol Support 116

6.3 Summary . 118

II Practical QoE Optimization Results 121

Overview 123

7 Reference Scenario and Baseline Results 125
7.1 Evaluation Environment . 126
7.2 Experiment Description . 127
7.3 Experimental Results . 129
7.4 Conclusions . 133

viii CONTENTS

8 Combined Real-Time and Non-Real-Time Network Traffic
Shaping 135
8.1 Real-Time versus Non-Real-Time Network Traffic 136
8.2 Implementation . 137

8.2.1 Buffering and Rate Control 138
8.2.2 Determination of Maximal Bandwidth Consumption . . 138
8.2.3 Granularity Level . 139

8.3 Evaluation . 140
8.3.1 Test Setup . 140
8.3.2 Experiment 1: Managing Non-Real-Time Network Traffic141
8.3.3 Experiment 2: Simultaneously Managing Real-Time

and Non-Real-Time Network Traffic 146
8.4 Conclusions . 151

9 Efficient Transmission of Rendering-Related Data 153
9.1 Introduction . 154
9.2 Considered Distributed Application 155

9.2.1 Rendering Scheme . 155
9.2.2 Model Data . 157
9.2.3 Network Communication Issues 159

9.3 Implementation . 160
9.3.1 Stream Hierarchy Design 160
9.3.2 Support for Stream Hierarchy Leaf Node Relocations . . 162

9.4 Evaluation . 163
9.4.1 Minimalist Experiment 163
9.4.2 Representative Experiment 165
9.4.3 Discussion . 167

9.5 Related work . 168
9.6 Conclusions . 169

10 Outbound Traffic Engineering 171
10.1 Architectural Modifications . 172
10.2 Conceptual Implications . 173
10.3 Use Case: Outbound Static Video Transcoding 174

10.3.1 Mode of Operation . 174
10.3.2 Stream Hierarchy Manipulation and Awareness Extension175

10.4 Evaluation . 175
10.4.1 Experimental Setup . 176
10.4.2 Experiment 1: Simultaneous Audio and Video Stream-

ing to a Single Client . 178

CONTENTS ix

10.4.3 Experiment 2: Simultaneous Video Streaming to Multi-
ple Clients . 181

10.4.4 Discussion . 184
10.5 Conclusions and Future Work 185

11 FEC-Integrated Network Traffic Shaping 189
11.1 Introduction . 190
11.2 XOR-Based Parity Coding . 191
11.3 FEC Integration in the NIProxy 193

11.3.1 Stream Hierarchy Incorporation 193
11.3.2 Implementation . 194
11.3.3 Supporting Additional FEC Techniques 195

11.4 Evaluation . 196
11.4.1 Experiment Description and Setup 196
11.4.2 Experimental Results 200
11.4.3 Discussion . 203

11.5 Related Work . 205
11.6 Conclusion and Future Work 206

12 End-to-End QoE Optimization Through Overlay Routing In-
teroperation 209
12.1 Introduction . 210
12.2 Proposed Two-Tier Platform 212

12.2.1 Overview . 212
12.2.2 Tier-1 Functionality and Constituting Component Types 214
12.2.3 Tier-2 Functionality . 220
12.2.4 End-to-End Path Coverage 220

12.3 Evaluation . 221
12.3.1 Evaluation Testbed . 221
12.3.2 Experimental Results 222
12.3.3 Discussion . 225

12.4 Related Work . 226
12.5 Conclusions and Future Work 227

13 Increasing Bandwidth Brokering Flexibility via Dynamic
Video Transcoding Support 229
13.1 Background . 231
13.2 Implementation . 232
13.3 Implications on the QoE Optimization Platform 233
13.4 Evaluation . 233

x CONTENTS

13.4.1 Evaluation Testbed and Experimental Setup 234
13.4.2 Experiment 1: Optimizing Network Core Routing . . . 235
13.4.3 Experiment 2: Exploiting Dynamic Video Transcoding

on the Last Mile . 236
13.4.4 Discussion . 241

13.5 Conclusions . 241

14 Conclusions and Directions for Future Research 245
14.1 Conclusions . 245
14.2 Directions for Future Research 248

Appendices 253

A Early Results 255
A.1 Experimentation in the ALVIC Framework 255

A.1.1 ALVIC . 256
A.1.2 NIProxy Integration . 259
A.1.3 Video Quality Selection Through Filtering 260
A.1.4 Static Video Transcoding 263
A.1.5 Mobile Access . 267
A.1.6 Audio Filtering . 271
A.1.7 Audio Mixing . 271

A.2 Incorporation in the iConnect System 273
A.2.1 iConnect . 274
A.2.2 Video-Based Avatar Creation 276

B Example MPEG-21 UED Document 281

C Dutch Summary 285

Bibliography 295

List of Figures

1.1 An end-to-end network connection between end-hosts located
in different access networks. 7

2.1 Two alternative representations of the OSI reference model. . . 16

3.1 Link latency and throughput determination using active probing. 57
3.2 Inbound versus outbound traffic engineering. 62
3.3 The Network Intelligence Layer (NILayer) support library. . . . 64
3.4 Introducing an intermediate NILayer auxiliary application to

enable closed-source application to benefit from NIProxy func-
tionality. 66

3.5 Offloading NIProxy instance selection responsibility to a cen-
tralized management entity. 68

4.1 Example Mutex node operation. 74
4.2 Example Priority node operation. 75
4.3 Example Percentage node operation. 76
4.4 Example WeightStream node operation. 77
4.5 Example WeightData node operation. 78
4.6 Notifying the NIProxy’s NTS mechanism of the fact that the

user prefers audio to video through appropriate stream hierar-
chy organization. 85

4.7 A comprehensive stream hierarchy and the resulting bandwidth
brokering outcome. 88

xii LIST OF FIGURES

5.1 Example stream hierarchy before and after modification by the
static video transcoding service. 95

6.1 Netfilter packet traversal diagram for the IPv4 protocol stack
[Netfilter 10]. 101

6.2 Schematic overview of the software architecture of the initial
version of the NIProxy. 105

6.3 Schema of the software architecture of the refactored NIProxy
implementation. 109

6.4 Inter-component packet flow conditions in the packet processing
chain. 112

6.5 Clarification of the packet flow within a NIProxy service chain. 114

7.1 Screenshot of the NVE application which illustrates the client
positioning in the virtual world during the experiment. 128

7.2 Stream hierarchy maintained during the experiment. 129
7.3 Stacked graph which visualizes all video network traffic received

by the NIProxy client during the experiment. 131

8.1 Stacked graph plots of the media content received by the client
during the three different executions of the first experiment. . . 142

8.2 Stream hierarchy instances maintained by the NIProxy during
the second and third iteration of the first experiment. 143

8.3 Stacked graph plots of the media content received by the client
during the three different executions of the second experiment. 148

8.4 Stream hierarchy instances maintained by the NIProxy during
the second and third iteration of the second experiment. 149

9.1 Comparative illustration of model quality yielded by respec-
tively geometric rendering and RTMO representation [Jehaes 08].156

9.2 A relatively crowded virtual environment, visualized using the
NVE’s hybrid geometric/IBR rendering scheme [Jehaes 08]. . . 156

9.3 Model quality comparision [Jehaes 08]. 158
9.4 General layout of the stream hierarchy used to manage the

downstream bandwidth of clients of the considered NVE ap-
plication. 161

9.5 Categorization of rendering-related data. 162
9.6 Simple scenario network traffic chart (stacked graph)

demonstrating deliberate management of non-real-time (i.e.,
rendering-related) traffic (in KBps). 164

9.7 Scene layout for the minimalist experiment. 165

LIST OF FIGURES xiii

9.8 Stacked graph illustrating the client bandwidth distribution
during a realistic scenario involving the reception of both 3D
model data and real-time video traffic (in KBps). 166

10.1 Emulated network environment in which the NIProxy’s out-
bound traffic engineering support was evaluated. 176

10.2 Qualitative comparison of the original and transcoded version
of a particular video fragment. 177

10.3 The multimedia streaming server’s upstream stream hierarchy
in experiment 1. 179

10.4 Plot (stacked graph) of the multimedia streaming server’s WAN
bandwidth consumption during experiment 1. 180

10.5 The multimedia streaming server’s upstream stream hierarchy
in experiment 2. 182

10.6 Plot (stacked graph) of the multimedia streaming server’s WAN
bandwidth consumption during experiment 2. 183

11.1 Network setup for the video streaming case study. 196
11.2 Stream hierarchy which directed the shaping of the network

traffic that was destined for the client in the experiment. 198
11.3 Stacked graph illustrating the network traffic received by the

NIProxy-managed client during the error-free execution of the
experiment. 200

11.4 Two examples of imperfect video playback at client-side caused
by the loss of video packets. 203

12.1 Architectural overview of the integrated QoE optimization plat-
form. 213

12.2 Overlay header format [De Vleeschauwer 08b]. 214
12.3 Overlay Server software architecture [De Vleeschauwer 08a]. . . 215
12.4 Overlay Access Component software architecture

[De Vleeschauwer 08a]. 218
12.5 Illustrative overlay routing scenario. 219
12.6 The testbed used for experimental evaluation. 221
12.7 Packet loss ratio witnessed on the route between the multimedia

streaming server and the NIProxy instance, with and without
overlay routing. 222

12.8 Stream hierarchy based on which the NIProxy managed client
downstream bandwidth. 224

12.9 Stacked graph illustrating all video traffic received by the client. 225

xiv LIST OF FIGURES

13.1 Testbed for the dynamic video transcoding evaluation. 234

13.2 Packet loss ratio per second, with and without overlay routing. 235

13.3 H.264/AVC data received by the QoE-managed client (stacked
graph, in KBps). 237

13.4 Stream hierarchy that directed the downstream bandwidth bro-
kering. 238

A.1 Screenshots of applications that have been realized on the PC
platform using the ALVIC framework. Notice that ALVIC’s
video conferencing support enables users’ faces, recorded by
their webcam, to be textured on their avatar in the virtual world.257

A.2 Stacked graphs of the network traffic that was captured during
an ALVIC video filtering experiment in which a client’s down-
stream access bandwidth was altered over time. 261

A.3 Stacked graphs of the network traffic that was captured dur-
ing an ALVIC video filtering experiment which simulated an
interactive conversation between VIC participants. 262

A.4 Operation of the application-aware static video transcoding ser-
vice for ALVIC-based distributed applications. 264

A.5 Client dispersion in the virtual world during the ALVIC video
transcoding experiment. 265

A.6 Stacked graphs of the network traffic that was captured during
an ALVIC video transcoding experiment in which the down-
stream access bandwidth was varied over time. 266

A.7 Proposed network architecture for long-range mobile access to
ALVIC-based applications. 268

A.8 Screenshots of an example ALVIC-based NVE application with
support for both fixed and mobile users (3D rendering on the
mobile terminal). 269

A.9 Screenshots of an example ALVIC-based NVE application with
support for both fixed and mobile users (2D rendering on the
mobile terminal). 269

A.10 Example ALVIC multi-platform setups including standard
desktop clients as well as mobile Dell Axim x51v PDA devices. 270

A.11 Design and operation of the application-aware sound mixer ser-
vice for ALVIC-based distributed applications. 272

LIST OF FIGURES xv

A.12 Impact of the ALVIC sound mixer service on audio traffic dis-
semination. The horizontal axes of the graphs specify the
time (in seconds), the vertical axes the bit count (in Kilobits).
Graphs A, B and C depict (the bandwidth consumption of) the
input audio traffic, whereas graph D shows the resulting audio
mix. 273

A.13 Overview of the iConnect infrastructure and of the functionality
of the iConnect software framework. 275

A.14 The video-based avatar service for the iConnect system. 277
A.15 Visualizing the webcam feeds of remote participants might con-

sume considerable whiteboard screen space. 278

List of Tables

4.1 Calculating the maximal bandwidth consumption of stream hi-
erarchy nodes. 81

9.1 Storage sizes (in KiloBytes) of two Progressive Mesh (PM) mod-
els in the NVE database. 157

9.2 Storage sizes (in KiloBytes) for RTMO image-based represen-
tations. 159

10.1 Quality settings of the original and transcoded video versions. . 177

11.1 Video encoding parameters. 198
11.2 Packet loss and recovery statistics (10 percent packet loss ran-

domly introduced on access link). 202

13.1 Quality parameters of the video sequences employed in the sec-
ond experiment. 236

13.2 Target bandwidth evolution for the H.264/AVC bitstreams dur-
ing the second experiment, in KBps. 239

A.1 ALVIC’s multiple video qualities. 258

Chapter 1
Introduction

1.1 Problem Statement and Motivation

Given the omnipresence of the Internet in today’s society, exchanging infor-
mation between computers that are interconnected through a transportation
network might seem like a straightforward issue. This is however largely un-
true. Efficiently and effectively disseminating data over a computer network
and implementing distributed applications is anything but trivial. For exam-
ple, as the network traffic volume rises, bandwidth restrictions might become
a problem. How should bandwidth shortage be dealt with? Should a number
of network flows be disabled or reduced in quality and, if so, exactly which
ones? As another example, an increase in the number of involved network
traffic types is likely to complicate network traffic management. A TCP flow
carrying file data for instance exhibits significantly divergent characteristics
and requirements compared to a real-time multimedia stream with stringent
delivery constraints. As a result, a differential treatment of heterogeneous
network traffic types is advocated. Further complicating matters is the grow-
ing level of heterogeneity that is invading many aspects related to computer
networking. This evolution is for instance exemplified by the continuous pro-

2 Introduction

liferation of networking technologies and protocols and the high amount of
diversity that is currently prevailing in the end-user device space.

So far, only technological factors regarding computer networking and dis-
tributed application development have been considered. Another important
aspect in software and system design, and one that is receiving increasing at-
tention in recent years, is customer or end-user satisfaction. The person who
will eventually be using the distributed application should be provided with
an experience that is as agreeable as possible. Users who are unsatisfied with
the operation or performance of a distributed application are likely to discard
it and will probably start looking for an alternative, which will in turn lead
to revenue loss for the provider of the abdicated solution (in case we are deal-
ing with a commercial product). This implies that data dissemination over
transportation networks should take into account not only technically-oriented
issues but also human factors. Note that in this context, the complexity of
the distributed application is in many cases directly proportional to the user
experience optimization potential. For simple distributed applications, only a
limited number of options regarding user experience improvement will typi-
cally be available. As the application becomes more advanced, for instance in
terms of the number of induced network traffic types, more elaborate possi-
bilities are likely to be unlocked, however at the expense of rendering the user
satisfaction optimization process increasingly complex.

The current generation of computer networks, and the Internet in particu-
lar, were devised to passively transfer moderate volumes of (textual or binary)
data from source to destination. Also, IP-based networking technology and the
Internet have been conceived in an era when human dimensions and user ex-
perience did not yet receive the attention which they do today. Consequently,
traffic management and differentiation features are largely lacking in current
network infrastructure since there was initially considered to be little need
for them. In recent years however, the networked distribution of tremendous
amounts of traffic of heterogeneous types has become a reality. As a result,
the importance and even necessity of facilities for influencing and tweaking
network data dissemination has risen drastically and continues to grow every
day.

As an example, streaming real-time multimedia content imposes high and
strict requirements on the networking substrate, for instance in terms of band-
width guarantees and delay bounds. It is consequently not uncommon that
trade-offs will need to be applied due to network resources being insufficiently
available. Whenever such situations arise, the experience of the end-user
should always be reckoned with. In other words, the detrimental impact of
each trade-off decision on the user satisfaction should be minimized. The In-

1.2 Contributions 3

ternet is unfortunately not equipped to take, let alone to enforce, such trade-off
decisions. The likely effect is a user experience that is sub-optimal at best.

1.2 Contributions

The overall contribution of this PhD research is the development of the Net-
work Intelligence Proxy (NIProxy), a network intermediary which can be in-
tegrated in the Internet (as well as other IP-based networks) to enhance the
network’s capabilities with regard to traffic engineering. Based on knowledge
accumulated from multiple sources, including the networking substrate and
the distributed application, the NIProxy exerts its traffic engineering facili-
ties in an attempt to beneficially influence the experience that is provided to
end-users of distributed applications.

From a more fine-grained perspective, this PhD research has yielded multi-
ple contributions in various domains. The first set of contributions is situated
in the field of network traffic engineering and application-layer Quality of Ser-
vice (QoS) provision:

• To enable meaningful traffic engineering coordination, the NIProxy in-
troduces “intelligence” in the transportation network by maintaining a
context repository. The NIProxy’s contextual knowledge is three-fold
and encompasses information regarding the networking infrastructure,
the distributed application and the end-user (and his terminal).

• The NIProxy encompasses a network bandwidth brokering framework.
The framework draws upon findings from link-sharing research, but ap-
plies it on a per application basis (instead of a per link basis) and hence
allows for the bandwidth consumption of network traffic that is gener-
ated by individual distributed applications to be mediated.

• At the same time, the NIProxy acts as a platform for the provision as
well as execution of services. As such, it enables data to be processed
and adapted as it is being disseminated throughout the network. An im-
portant feature of the service provision platform is its flexibility: service
delivery occurs on a per client basis, services can implement generic as
well as application-specific functionality and the composition of multiple,
independent services is supported to enable collaborative data process-
ing.

A second research domain to which the NIProxy has contributed is network
intermediary design and implementation:

4 Introduction

• The NIProxy system is completely software-based. A modular and rela-
tively generic software architecture was defined and developed to enable
in-network traffic engineering and user experience optimization. On top
of this solid foundation, the bandwidth brokering and service provision
facilities were implemented.

• The service provision platform was designed with extensibility in mind.
Thanks to a pluggable implementation, the set of services that is pro-
vided by a particular NIProxy instance can at run-time be modified
and extended. This extensible design for instance enables the NIProxy
to cope with heterogeneous conditions in dynamic networking environ-
ments without requiring a reboot.

• Instead of implementing the bandwidth brokering and service provision
frameworks as isolated entities, an integrated design was adopted to
enable both traffic engineering techniques to interface and collaborate.
The outcome is a holistic solution in which the composing components
supplement each other and improve their potential through cooperation.

• To achieve easy exploitation of the NIProxy functionality, the Network
Intelligence Layer (NILayer) auxiliary library was developed. This client-
side library largely abstracts the existence of the NIProxy for application
developers by attending to all aspects concerning client-NIProxy com-
munication.

Finally, this PhD dissertation will present significant results in the area of
context-aware networking and user experience optimization:

• The NIProxy does not limit its attention to QoS provision but rather ex-
erts its traffic engineering functionality to address the larger and higher-
level issue of user experience optimization.

• To direct the operation of its user experience optimization engine, the NI-
Proxy largely draws from its accumulated contextual intelligence. Care
is taken that each traffic engineering decision is in tune with the cur-
rently prevailing conditions and that the requirements of the network,
the distributed application and the end-user are reconciled in the best
possibly way.

• Numerous experimental studies have been performed to investigate the
feasibility and viability of the NIProxy. These practical tests have re-
vealed that the NIProxy is equipped with an elaborate toolset for user

1.3 Terminology 5

experience optimization which enables it to deliver on its objective in
a multitude of distributed scenarios, in dynamic environments, under
variable network load and amidst heterogeneous mixes of network traffic
types.

• The NIProxy has been shown to be amenable to cooperation with other
QoS provision or user experience optimization solutions. This implies
that the NIProxy can serve as a building block for the construction of
larger frameworks.

1.3 Terminology

An overview of the terminology that will be used in this PhD dissertation is
given below:

Quality of Service (QoS) Quality of Service is a measure of technological
performance and excellence as it denotes the capability of systems to
guarantee that a certain level of performance will be met. In the field of
computer networking, for instance, QoS might involve guaranteeing an
upper bound on the latency that will be experienced by network traffic
or reserving the amount of bandwidth that is required for transporting
a network stream.

Quality of Experience (QoE) Quality of Experience is the formal term
that is typically employed in research context to denote the experience
witnessed by users, in this case of distributed applications. Contrary to
QoS, it is a rather subjective metric that encompasses human dimen-
sions. QoE is a multi-disciplinary concept which for instance involves
user expectation, satisfaction and overall experience.

Network flow In this thesis, a network flow or network stream refers to a
collection of (related) data that is being transmitted over a computer
network from a source to a destination. It is possible for multiple flows
to simultaneously exist between the same source and destination. The
way network flows are identified might differ depending on the context
and particular situation. One possibility to identify a (unicast) network
flow is via the network address and port pair of the flow end-points.

Distributed application An application whose operation requires the ex-
change of one or more types of data over a computer network. A dis-
tributed application hence incorporates at least one network flow.

6 Introduction

Traffic engineering Traffic management or engineering is a collective term
for techniques for optimizing the performance of a telecommunications
network by (dynamically) regulating the transmission of data over that
network.

Network Traffic Shaping (NTS) A particular type of traffic engineering
where the objective is to manage the allocation of network bandwidth.
Therefore often also referred to as bandwidth brokering.

Access network An access network is that part of a telecommunications net-
work which connects subscribers to their immediate network provider
(see Figure 1.1). Since it represents the final leg (in the downstream di-
rection) of a connection between a remote source and the customer, it is
often referred to as the “last mile”. The access network typically repre-
sents the most problematic part of an end-to-end network connection due
to its relatively limited resource capacity (e.g., in terms of bandwidth).

Core network The core network is the central part (i.e., the backbone) of
a transportation network which interconnects multiple access networks
(see Figure 1.1). Data that is exchanged between different access net-
works will always need to pass through the network core. Compared
to access networks, the network backbone is typically much more provi-
sioned and capacitated in terms of resources.

NIProxy client A (end-)host that is managed by a NIProxy instance and
which will hence benefit from the NIProxy’s QoE optimization potential.

1.4 Outline

This dissertation is divided into two major parts, which are preceded by two
preparatory chapters. These initial chapters serve as introduction and hence
aim to sketch the context in which the presented research is situated. Besides
the current chapter, the introductory section encompasses the results of a
literature study. In particular, chapter 2 will compare the NIProxy with the
state of the art and related research that is described in the literature.

Following these preliminary chapters, part I is devoted to the fundamen-
tals of the NIProxy network intermediary and will discuss topics which range
all the way from its high-level methodology to its design and low-level imple-
mentation. More specifically, part I will be launched with an overview of the
NIProxy’s objectives and methodology in chapter 3. This chapter will address

1.4 Outline 7

Figure 1.1: An end-to-end network connection between end-hosts located in
different access networks.

topics such as context compilation, client-side requirements, auxiliary func-
tionality which facilitates NIProxy exploitation, deployment prospects and the
ability to employ the NIProxy as a constituting module in more extensive user
experience optimization frameworks. The two subsequent chapters are dedi-
cated to the NIProxy’s traffic engineering techniques. In particular, chapter
4 will discuss the NIProxy’s network traffic shaping support, whereas chapter
5 will dilate on its multimedia service provision and delivery facilities. The
rationale behind both techniques will be presented, as well as crucial decisions
regarding their design and implementation. Both chapters will also provide a
representative example to further clarify the specific operation of the described
traffic engineering mechanisms. The NIProxy’s multimedia service provision
support will for instance be exemplified through the discussion of a static video
transcoding service which enables the NIProxy to adapt the fidelity and hence
the bitrate of H.263-encoded video streams. Finally, the design and imple-
mentation of the NIProxy’s software architecture will be described in chapter
6.

After this rather theoretical discussion of the NIProxy and its facilities, the
outcomes and findings of a number of practical studies are clustered in part
II. During this PhD research, the NIProxy has been evaluated experimentally
numerous times. Every chapter in part II will dwell on a specific aspect of
user experience optimization; the chapter order will hereby to a large extent

8 Introduction

match the chronology of the conducted evaluations. As a result, chapter 7 will
first of all present a reference scenario to exemplify the basic functionality of
the NIProxy. In particular, at the time of evaluation, only elementary net-
work traffic shaping functionality was supported and the NIProxy’s service set
exclusively encompassed the static video transcoding service from chapter 5.
Furthermore, the scenario was limited to the dissemination of real-time video
data and hence did not consider any other type of network traffic. Chapter
7 therefore serves as a point of reference with regard to the NIProxy’s QoE
optimization potential against which subsequent results and achievements will
be offset. The next chapter will for instance embellish the results from the
reference scenario by discussing how the NIProxy’s network traffic shaping
functionality was extended with support for non-real-time network traffic. In
particular, chapter 8 will present the architectural modifications that were
required to enable the brokering of non-real-time network traffic (e.g., a file
transfer). Experimental results will be provided which will comprehensively
demonstrate that the NIProxy succeeds in performing network traffic shap-
ing in case the traffic mix is composed of contending real-time and non-real-
time network flows. In chapter 9, the NIProxy’s real-time and non-real-time
bandwidth brokering functionality will be applied to regulate the bandwidth
consumption of a concrete, real-world distributed application. The defining
characteristic of the considered application is its advanced rendering scheme,
which relies on both geometrical and texture-based model representations.
The application moreover supports real-time audiovisual communication be-
tween participants. Experimental evaluation will verify that the NIProxy is
not only able to successfully fulfill the requirements which the application im-
poses in terms of the (non-real-time) distribution of rendering-related data,
but in addition achieves an improvement of the experience that is witnessed
by the application’s users. Chapter 10 will prove that the NIProxy’s traf-
fic engineering techniques are not confined to network traffic that is destined
for managed users, but that they instead can just as well be applied on the
data which these users inject into the network themselves. It will be exper-
imentally validated that regulating the network traffic which originates from
users offers opportunities in terms of QoE optimization not only for the data
sources, but indirectly also for hosts which are not explicitly managed by the
NIProxy. Next, chapter 11 will explore the issue of data corruption and loss
induced during network transmission and will demonstrate how Forward Error
Correction (FEC) functionality was incorporated in the NIProxy to tackle its
detrimental effect on user experience. Finally, the two subsequent chapters
will exemplify that the NIProxy is not only usable as a stand-alone entity but
instead is perfectly capable of collaborating with complementary user expe-

1.5 Publications 9

rience optimization frameworks so that a holistic solution is achieved. More
specifically, chapter 12 will introduce the architecture of an integrated two-
layer platform in which the NIProxy’s functionality is combined with a resilient
overlay routing service. The platform exploits its routing functionality to en-
hance data dissemination in the network backbone, whereas the incorporated
NIProxy instances exert their traffic engineering mechanisms to control and
direct the delivery of data over the last mile of the network connection. It
will be shown that, by bundling the efforts of its constituting components, the
two-tier platform achieves (near) end-to-end QoE optimization. In chapter 13,
this platform will be further extended by introducing a NIProxy service which
allows for H.264/AVC-encoded video flows to be dynamically transformed to
an arbitrary bitrate in real-time. Practical findings will confirm the beneficial
impact of this novel functionality on the user experience optimization features
and effectiveness of the NIProxy and hence, through extrapolation, of the
two-tier platform.

Once the results of the practical evaluations will have been presented, it
will be time to look back at the problem statement and to determine whether
the research objectives have been met. This will be done in chapter 14. Besides
drawing overall conclusions, this chapter will enumerate possible directions for
future research.

Finally, for reasons of completeness, a collection of superseded results will
be presented in appendix A. In particular, this appendix will superficially
survey QoE enhancement results that stem from the inceptive phase of this
doctoral research and which have been rendered outmoded by later improve-
ments to the NIProxy’s implementation.

1.5 Publications

To conclude this introductory chapter, the articles that have been published
in the course of this doctoral research are enumerated below. Publications
that are not directly related to the work that will be presented in this thesis
are marked with a † symbol.

1.5.1 Articles in International Journals

• Pieter Jorissen, Maarten Wijnants, and Wim Lamotte. Dynamic In-
teractions in Physically Realistic Collaborative Virtual Environments.
IEEE Transactions on Visualization and Computer Graphics - Special
issue on Haptics, Virtual and Augmented Reality, Volume 11, Number
6, p. 649-660, November/December 2005 †

10 Introduction

• Maarten Wijnants, Wim Lamotte, Bart De Vleeschauwer, Filip De Turck,
Bart Dhoedt, Piet Demeester, Peter Lambert, Dieter Van de Walle, Jan
De Cock, Stijn Notebaert, and Rik Van de Walle. Optimizing User Qual-
ity of Experience Through Overlay Routing, Bandwidth Management
and Dynamic Transcoding. Special Issue of the International Journal of
Adaptive, Resilient and Autonomic Systems (IJARAS) on the Adaptive
and Dependable Mobile Ubiquitous Systems (ADAMUS) Workshop (in
press)

1.5.2 Articles in International Conference Proceedings

• Pieter Jorissen, Maarten Wijnants, and Wim Lamotte. Using Collabora-
tive Interactive Objects and Animation to Enable Dynamic Interactions
in Collaborative Virtual Environments. In: Proceedings of the Con-
ference on Computer Animation and Social Agents (CASA 2004), p.
223-230, Geneva, Switzerland, July 7-9, 2004 †

• Patrick Monsieurs, Maarten Wijnants, and Wim Lamotte. Client-
controlled QoS Management in Networked Virtual Environments. In:
Proceedings of the 4th International Conference on Networking (ICN
2005), p. 268-276, Reunion Island, April 17-21, 2005

• Maarten Wijnants, Patrick Monsieurs, Peter Quax, and Wim Lamotte.
Exploiting Proxy-Based Transcoding to Increase the User Quality of
Experience in Networked Applications. In: Proceedings of the 1st In-
ternational Workshop on Advanced Architectures and Algorithms for
Internet DElivery and Applications (AAA-IDEA 2005), p. 73-80, Or-
lando, Florida, USA, June 15, 2005

• Peter Quax, Maarten Wijnants, Tom Jehaes, and Wim Lamotte, Bridg-
ing the Gap between Fixed and Mobile Access to a Large-Scale NVE
Incorporating Both Audio and Video. In: Proceedings of the IASTED
International Conference on Web Technologies, Applications, and Ser-
vices (WTAS 2005), Calgary, Canada, July 4-6, 2005

• Peter Quax, Tom Jehaes, Maarten Wijnants, and Wim Lamotte. Mo-
bile Adaptations for a Multi-User Framework Supporting Video-Based
Avatars. In: Proceedings of the 9th IASTED International Conference
on Internet and Multimedia Systems and Applications (IMSA 2005), p.
412-417, Honolulu, Hawaii, USA, August 15-17, 2005

• Maarten Wijnants, and Wim Lamotte. Audio and Video Communica-
tion in Multiplayer Games through Generic Networking Middleware. In:

1.5 Publications 11

Proceedings of the 7th International Conference on Computer Games
(CGAMES 2005), p. 52-58, Angoulême, France, November 28-30, 2005

• Maarten Cardinaels, Geert Vanderhulst, Maarten Wijnants, Chris Ray-
maekers, Kris Luyten, and Karin Coninx. Seamless Interaction between
Multiple Devices and Meeting Rooms. In: Proceedings of the CHI Work-
shop on Information Visualization and Interaction Techniques for Collab-
oration across Multiple Displays (IVITCMD 2006), Montreal, Canada,
April 22-23, 2006 †

• Maarten Wijnants, Bart Cornelissen, Wim Lamotte, and Bart De
Vleeschauwer. An Overlay Network Providing Application-Aware Mul-
timedia Services. In: Proceedings of the 2nd International Workshop
on Advanced Architectures and Algorithms for Internet DElivery and
Applications (AAA-IDEA 2006), Pisa, Italy, October 10, 2006

• Maarten Wijnants, and Wim Lamotte. The NIProxy: a Flexible Proxy
Server Supporting Client Bandwidth Management and Multimedia Ser-
vice Provision. In: Proceedings of the 8th IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia Networks (WoW-
MoM 2007), Helsinki, Finland, June 18-21, 2007

• Maarten Wijnants, and Wim Lamotte. Managing Client Bandwidth in
the Presence of Both Real-Time and non Real-Time Network Traffic.
In: Proceedings of the 3rd IEEE International Conference on COM-
munication System softWAre and MiddlewaRE (COMSWARE 2008),
Bangalore, India, January 5-10, 2008

• Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt, Piet Demeester,
Maarten Wijnants, and Wim Lamotte. End-to-end QoE Optimiza-
tion Through Overlay Network Deployment. In: Proceedings of the
22nd IEEE International Conference on Information Networking (ICOIN
2008), Busan, Korea, January 23-25, 2008

• Maarten Wijnants, Tom Jehaes, Peter Quax, and Wim Lamotte. Effi-
cient Transmission of Rendering-Related Data Using the NIProxy. In:
Proceedings of the IASTED International Conference on Internet and
Multimedia Systems and Applications (EuroIMSA 2008), Innsbruck,
Austria, March 17 19, 2008

• Maarten Wijnants, Wim Lamotte, Bart De Vleeschauwer, Filip De
Turck, Bart Dhoedt, Piet Demeester, Peter Lambert, Dieter Van de
Walle, Jan De Cock, Stijn Notebaert, and Rik Van de Walle. Optimizing

12 Introduction

User QoE through Overlay Routing, Bandwidth Management and Dy-
namic Transcoding. In: Proceedings of the 2nd International Workshop
on Adaptive and DependAble Mobile Ubiquitous Systems (ADAMUS
2008), Newport Beach, California, USA, June 23, 2008

• Maarten Wijnants, and Wim Lamotte. Effective and Resource-Efficient
Multimedia Communication Using the NIProxy. In: Proceedings of the
8th IEEE International Conference on Networks (ICN 2009), p. 266-274,
Cancun, Mexico, March 1-6, 2009

• Maarten Wijnants, and Wim Lamotte. FEC-Integrated Network Traf-
fic Shaping Using the NIProxy. In: Proceedings of the 1st IEEE In-
ternational Conference on Emerging Network Intelligence (EMERGING
2009), p. 51-60, Sliema, Malta, October 11-16, 2009

• Maarten Wijnants, Stijn Agten, Peter Quax, and Wim Lamotte. In-
vestigating the Relationship Between QoS and QoE in a Mixed Desk-
top/Handheld Gaming Setting. In: Proceedings of the Student Work-
shop of the 5th ACM International Conference on emerging Networking
EXperiments and Technologies (CoNEXT 2009) (poster presentation),
p. 29-30, Rome, Italy, December 1, 2009

1.5.3 Internal Technical Reports

• Maarten Wijnants, Patrick Monsieurs, and Wim Lamotte. Im-
proving the User Quality of Experience by Incorporating Intelli-
gent Proxies in the Network, EDM Technical Report TR-UH-EDM-
0502, April 2005, http://research.edm.uhasselt.be/~mwijnants/
pdf/wijnantsTRMSAN.pdf

http://research.edm.uhasselt.be/~mwijnants/pdf/wijnantsTRMSAN.pdf
http://research.edm.uhasselt.be/~mwijnants/pdf/wijnantsTRMSAN.pdf

Chapter 2
Background and Related Work

The NIProxy is an intra-network solution for application-layer QoS provision
and QoE optimization in IPv4-based transportation networks. This chapter
will review the state of the art concerning QoS and QoE research. Since the
NIProxy is a context-aware network intermediary whose primary operational
tools consist of network traffic shaping and multimedia service provision, spe-
cific attention will be given to the subtopics of context-aware networking,
bandwidth brokering and service provision and delivery platforms. A sur-
vey of Active Networking research will also be presented and its underlying
philosophy will be related to the NIProxy’s approach to QoE optimization.
Finally, a (non-exhaustive) taxonomy of frameworks that are concerned with
QoS and/or QoE provision will be developed via the identification of a number
of interesting classification criteria and it will be discussed where exactly the
NIProxy is situated on each of the identified axes. Throughout this chapter,
the NIProxy’s distinctive features will be highlighted by contrasting it with
kindred systems and research to which it is most closely related.

14 Background and Related Work

2.1 Quality of Service Provision

QoS is a well-established notion in software and system engineering and is
hence a concept that has been around for quite some time. It is a measure
of technological performance and excellence which, broadly speaking, denotes
the quality of systems, networks or applications. The QoS construct is hence
very extensive and has potential applications in multiple domains. Given the
focus and objectives of the NIProxy, the discussion will in this dissertation be
constrained to QoS provision in transportation networks. In this context, the
term QoS has two possible definitions which are often used interchangeably:

• The ability of the transportation network to guarantee a minimal perfor-
mance level, for instance in terms of throughput, maximal delay, average
delay variation, bit error rate, and so on

• The ability of the transportation network to support heterogeneous treat-
ment of different applications, services, users or data flows; during its
operation, the network could for instance favor (e.g., prioritize) particu-
lar types of network traffic or could discriminate between different types
of users (e.g., standard, premium, . . .) in terms of network resource
allocation

Present-day transportation networks adhere to a layered design; QoS pro-
vision can be implemented at any of these layers. The layered networking
model is even to a certain degree responsible for the duality of the QoS def-
inition: at the lower levels, QoS provision is typically considered from the
guaranteed performance perspective, whereas the majority of the higher-level
QoS frameworks swears by the differential treatment definition. Therefore,
before actually diving into the related work on QoS mechanisms and archi-
tectures, this section will first briefly describe the layered networking model.
During the subsequent discussion of the state of the art, it will be indicated
for each QoS solution on which layer of the networking model it conceptually
operates.

2.1.1 Layered Networking Model

The majority of modern telecommunications networks are designed according
to a layered model [Tanenbaum 02]. In this approach, the network is organized
as a series of so-called layers or levels which each encompass a collection of
semantically similar functions. The purpose of every layer is to offer services
to the layer directly above it in the model without exposing the latter to the

2.1 Quality of Service Provision 15

technicalities which effectively enable the provided services. In other words,
layers define a clear interface via which higher layers can easily access and
leverage their functionality. Through these interfaces, layers can draw upon
the services that are provided by their underlying layer to implement their
own functionality. An important advantage of the interfaces-based design is
that each layer is rendered functionally independent of the others.

Layered network development has emerged out of practical concerns. De-
signing complete computer networks is a hard and extremely comprehensive
task. By adhering to a layered approach, this task can be broken into smaller,
less complex and hence more manageable components (i.e., the design of in-
dividual tiers and their corresponding protocols). Another advantage of this
approach is that it isolates the implementation of the different layers from
each other: as long as its interface remains consistent, the implementation
and internals of an individual tier can be updated independently of the oth-
ers. As such, the layered networking model shows conceptual similarities to
the modular programming paradigm.

Conceptually, data exchange between end-hosts occurs horizontally in the
layered networking model. In particular, an entity which is located in a cer-
tain layer on the source host appears to communicate directly with its peer
in the same layer on the destination host. The communication between the
peer entities will hereby always follow a particular protocol that has been de-
fined for the network layer to which they belong. In practice however, data
is not transferred straightly between corresponding layers of communicating
parties. Instead, on the source host the data that needs to be transmitted is
passed down iteratively from the originating layer to the layer immediately
below it. This process is repeated until the lowest layer in the networking
model is reached, after which the data is put on the physical medium, which
implements the actual communication. As the data moves down the series of
layers on the sending machine, each layer typically will add some extra infor-
mation to it (e.g., by prefixing a header). This process is usually referred to
as data encapsulation. After the destination host has extracted the data from
the physical medium, the data is passed upward, from layer to layer, until the
layer from which the data originated at sender-side is encountered. As the
received data climbs up the layer hierarchy at the destination host, decapsula-
tion occurs: each layer strips off the additional information which was added
by its peer at the source host before passing the data to the next layer.

Presumably the most elaborate model for layered networking is the Open
System Interconnection Reference Model (OSI Reference Model or OSI Model).
This model is based on a proposal by the International Standards Organiza-
tion (ISO) and was introduced in an attempt to internationally standardize the

16 Background and Related Work

Figure 2.1: Two alternative representations of the OSI reference model.

protocols that are used in the various layers [Tanenbaum 02]. As is illustrated
in Figure 2.1, it encompasses seven layers. From top to bottom, these are the
application, presentation, session, transport, network, datalink and physical
layer. The principal responsibilities of each layer are summarized below:

• The application layer is the topmost layer of the model and hence rep-
resents the ingress point for distributed applications and their users; in
other words, it is the level at which applications access network services
and it therefore provides a number of functions which directly support
applications (e.g., file transfer functionality)

• The presentation layer performs data encoding and furthermore man-
ages security issues by providing services such as data encryption and
compression

• The session layer allows applications on different computers to estab-
lish and terminate sessions; services provided by this layer include dialog
control and synchronization

• The transport layer segments large data chunks into smaller units (if
necessary) and is responsible for delivering each piece to the host for
which the data is destined

2.1 Quality of Service Provision 17

• The major objective of the network layer is to allow heterogeneous
networks to be interconnected; it deals with issues such as addressing,
routing and congestion control; the network layer is the realm of the
ubiquitous IPv4 protocol

• The datalink layer breaks input data up into frames and is responsi-
ble for the reliable transfer of these frames to the next hop; it conse-
quently deals with error detection and recovery, for instance by relying
on acknowledgment-based procedures

• The physical layer transmits bits from one computer to another and
hence regulates the transmission of a stream of bits over a physical com-
munication channel

QoS provision mechanisms can theoretically be implemented at any echelon
of layered network communication models. In reality however, the majority of
the QoS solutions concentrate their efforts on either the datalink layer (L2),
the network layer (L3) or the application layer (L7) of the OSI model (or the
corresponding levels in comparable models). As a rule of thumb, the deeper
one descends in the layered network model, the increasingly “technical” QoS
provision becomes. Also, evermore specific constructs will be involved and the
solution will become less broadly applicable as QoS provision is implemented
in lower layers. As an example, network-layer QoS provision might entail the
modification of the header of IP packets to achieve prioritized treatment, to
influence queue management at intermediate routers, to achieve packet route
optimization and so on. In contrast, L7 approaches will generally attempt
to improve the performance by leveraging purely application-layer constructs
and high-level knowledge of the distributed application. As will become clear
later on, the NIProxy operates exclusively at the application layer.

2.1.2 Service Level Agreement

QoS provision typically involves the definition of contracts between the net-
work operator and the customer. These contracts are often denoted by Service
Level Agreements (SLAs). Note that a customer in this context not necessar-
ily needs to correspond to an end-user; it might for instance just as well be a
Value Added Service (VAS) provider which aims to offer (commercial) prod-
ucts on top of the basic networking service that is provided by the network
operator. The objective of QoS-enabled networks is to ensure that agreed
upon SLAs will be satisfied, since a SLA breach is likely to result in financial
repercussions for the network operator. Note that in the absence of network

18 Background and Related Work

congestion (i.e., under ideal conditions in which network capacity is sufficiently
available), QoS mechanisms will typically not be required to ensure SLA satis-
faction. QoS techniques are hence primarily applied at times when a shortage
in network resources is noticed. This implies that an alternative solution to
QoS support is to over-provision the capacity of the transportation network so
that network resources are at all times abundantly available and so that the
network will always be able to sustain the injected traffic load. It is apparent
however that this approach suffers from a lack of efficiency from an economical
and financial perspective.

2.1.3 QoS Provision in IPv4-Based Networks

The most popular network-layer protocol to date is irrefutably the Internet
Protocol version 4 (IPv4). It is the “driving force” behind the omnipresent
Internet. IPv4 is a relatively lightweight data distribution protocol which does
not guarantee packet delivery, nor does it assure proper packet sequencing or
avoidance of duplicate delivery. Instead, these responsibilities are left to pro-
tocols higher up in the network stack (i.e., transport- or even application-layer
protocols). This was a deliberate decision of the IP standardization commit-
tee [Postel 81a] as it confers the advantage that complexity is eliminated from
the network core and instead is pushed to the end-points of the network con-
nection, where the higher layers of the protocol stack are implemented. The
outcome is a highly scalable network design which is considered to be one of
the key factors in the success and explosive growth of the Internet [Saltzer 84].

A direct consequence of the IPv4 policy is that each IPv4-based network
is limited to providing best effort data delivery and by default does not sup-
port any form of QoS provision. In particular, each request will be treated
identically by the network, no guarantees are given that data will actually
be delivered and each network flow will experience an unspecified and un-
predictably varying throughput and delivery time, depending on the current
traffic load. The best effort behavior of the Internet suffices to host the services
and applications for which it was originally devised (i.e., non-real-time services
of low complexity such as e-mail, file transfer and information browsing). Re-
cently, the use of the Internet is however increasingly shifting towards real-time
services which require the dissemination of one or more types of multimedia
data. Compared to the traditional services, the latter have a much higher sen-
sitivity to network anomalies such as packet loss, data corruption, congestion,
delay and jitter variation, bandwidth fluctuations, etcetera. Stated differently,
modern Internet applications require the transportation network to deliver a
certain level of service. This evolution inspired the Internet Engineering Task

2.1 Quality of Service Provision 19

Force (IETF), the standardization organization of the IP protocol suite and
the Internet in particular [IETF 10], to develop two fundamentally divergent
IP-layer QoS solutions: the Integrated Services (IntServ) and the Differenti-
ated Services (DiffServ) architectures.

IntServ

The IntServ architecture, proposed by the IETF in RFC 1633 [Braden 94],
is intended to emulate circuit switching (and in particular the QoS provision
options which it entails) on packet-switched IPv4 networks1. IntServ is a fine-
grained QoS solution as it operates on the level of individual network flows
[White 97][Clark 92]. Stated differently, applications can request a particular
level of service from the transportation network on a per flow basis (e.g., min-
imum required throughput, maximally tolerable end-to-end delay, etcetera).
In case a flow is admitted to the network, the Resource reSerVation Protocol
(RSVP) [Braden 97] is employed to actually reserve resources in the network
routers which form the end-to-end path between the end-points of the flow, this
way assuring that the flow’s QoS demands will at all times be satisfied. While
its ability to provide deterministic and absolute end-to-end performance guar-
antees makes IntServ a very powerful approach, it suffers considerably from
scalability and manageability issues [Mankin 97]. Each router is namely re-
quired to maintain per flow control and forwarding state (e.g., the resources
that are reserved for each flow) and every flow needs to be processed individ-
ually (e.g., packet scheduling as well as queue and buffer management need
to be performed for each flow separately). It is clear that these requirements
might pose serious problems in network backbones due to the enormous traffic
loads to which they are subjected.

DiffServ

Being faced with the drawbacks of IntServ (and the resulting reluctance of
network operators and router vendors to adopt it), the IETF decided to de-
velop a completely new model with the prerequisite that it should be a scal-
able and readily manageable solution. The outcome was DiffServ [Blake 98,
Ramanathan 01], a framework which manages QoS on the level of traffic
classes, aggregates of flows with comparable service requirements, rather than
considering network flows individually. This implies that all packets which are
transported on any flow that belongs to a particular class will be processed

1Please see [Tanenbaum 02] for more information regarding circuit switching and its dif-
ferences with packet switching.

20 Background and Related Work

identically by routers. In particular, DiffServ-enabled routers will typically re-
sort to queuing strategies and priority scheduling to achieve a differentiation
in the service that is provided to the various traffic classes. As such, the need
for maintaining per flow state is eliminated; instead, it suffices for routers to
distinguish between a limited number of flow aggregates. At the end-host or
the first-hop router, packets are conditioned and classified as belonging to a
particular class by filling in the Differentiated Service CodePoint (DSCP) field
of the packet’s IPv4 header. From that point on, the DSCP mark specifies
the per hop processing that the packet will experience at each of the routers
along the network path to the remote flow end-point.

In contrast to IntServ, DiffServ is compatible with one of the Internet’s
fundamental design principles, namely of placing complexity at the network
edge while keeping the processing behavior in core routers to a minimum. As
a result, DiffServ clearly outperforms IntServ in terms of scalability. On the
downside, a direct consequence of its class-based approach is that DiffServ is
innately less suited for the provision of absolute QoS guarantees. Instead, Diff-
Serv will typically only provide relative performance assurances (e.g., traffic
belonging to the class with the highest QoS guarantees will receive a treat-
ment that is at least as good as the service that is provided to traffic from
other classes). An excellent comparison of the IntServ and DiffServ models is
presented by Dovrolis and Ramanathan in [Dovrolis 99].

Despite its relatively mature status, its scalability advantages and its be-
havioral conformity with the infrastructural philosophy of the Internet, Diff-
Serv, like IntServ, thus far has seen far from universal adoption. This can
be largely attributed to the reserved attitude of both network operators and
service providers. Both IntServ and DiffServ require support from each sin-
gle router in the IP-based network, support which is typically not available
in older routers which at the moment still constitute the bulk of the Internet
infrastructure. As a result, huge financial commitments are required from net-
work operators if they want to make their network compliant with the IntServ
and/or DiffServ QoS model. Service providers on the other hand would need
to modify their services to make optimal use of the unlocked QoS provision
possibilities. In summary, due to the hesitating stance of network and service
providers alike and due to the reluctance of either party to take the initiative
[Huston 00], the Internet to date still largely lacks IntServ and/or DiffServ
support and it is very questionable whether this situation will turn around in
the future.

2.1 Quality of Service Provision 21

Non-Standardized Solutions

Complementary to the standardized IntServ and DiffServ architectures, a
plethora of QoS provision solutions has been proposed throughout the years by
the research community. Discussing each one in detail is virtually impossible.
Moreover, it would exceed the scope of this dissertation since the NIProxy is
not concerned with QoS provision per se but instead leverages it as a means
to achieve the more high-level objective of user QoE optimization. Therefore,
only a subset of the most relevant and noticeable approaches that have been
described in the literature will be presented. For the same reason, the NIProxy
will not be explicitly related to each of the discussed systems; this section is in-
tended to provide background information and to familiarize laymen with the
QoS research domain rather than to discriminate the NIProxy from existing
QoS solutions.

De Silva et al. have proposed TOMTEN (TOtal Management of Transmis-
sions for the ENd-user), an application-layer framework for network resource
management which aims to maximize user satisfaction [De Silva 99]. The dis-
tinctive feature of TOMTEN is its reactive nature: TOMTEN in itself does not
make decisions regarding the acceptability of user sessions; instead, it provides
the necessary controls to react to end-user decisions. In particular, TOMTEN
provides the infrastructure to monitor the state of the system and to present
aggregated information to the end-user so that the latter can make informed
decisions regarding the actions that need to be taken in case the current ses-
sion quality is considered to be unsatisfactory. These decisions are translated
into resource management actions, which will subsequently be enforced.

But et al. present in [But 08] the Automated Network Games Enhancement
Layer (ANGEL) prototype which supports prioritized transmission of network
game traffic over bandwidth-constrained links. They in particular propose
to decouple traffic classification from the actual prioritization in residential
settings by outsourcing the former task to the Internet Service Provider (ISP)
gateway. The advantage of this approach is that it allows residential network
infrastructure to remain simple (i.e., cheap and easily manageable for home
users which typically lack network administration expertise).

An application-layer QoS framework that is targeted specifically at video-
conferencing and videotelephony is presented in [Mulroy 06]. Depending on
the condition of the communication channel (e.g., the current packet loss rate),
the video encoding process at the source is adapted. The system for example
exploits a recently drafted profile extension for RTP which enables receivers
to provide early feedback to sources as well as the reference picture selection
feature of the H.264/AVC video coding standard.

22 Background and Related Work

The Mobility And Service Adaptation (MASA) project integrates multi-
ple types of so-called QoS Broker entities which interoperate and interact to
achieve adaptive, end-to-end QoS provision in heterogeneous multi-domain
and multi-operator environments [Niedermeier 03]. The MASA architecture
hereby specifically concentrates on content delivery and adaptation services. In
[Kassler 01] and [Kassler 03], two examples of potential QoS Broker function-
ality are presented. In particular, respectively a filtering scheme for wavelet-
encoded video traffic and a QoS-aware media adaptation and transcoding
unit are described. While the MASA framework claims to allow underlying
network-layer QoS constructs to be leveraged, the two example QoS Brokers
operate exclusively at the application level.

Li and Mohapatra advocate in [Li 04] the use of overlay networking technol-
ogy to achieve QoS provision support in the Internet. Their work is specifically
concentrated on the design of QoS-aware overlay routing protocols. The vision
of Li and Mohapatra is shared by Subramanian et al., who have proposed the
OverQoS system, an overlay-based architecture for enhancing Internet QoS
[Subramanian 04]. An important merit of both solutions is their compatibil-
ity with prevailing Internet hardware: contrary to for instance IntServ- or
DiffServ-based architectures, neither requires non-standard functionality from
the underlying Internet infrastructure.

The impact of the use of content transcoding on QoS provision for multime-
dia traffic has been studied in [Kumar 03]. In particular, the authors propose
a protocol which amalgamates components and features of both the IntServ
and DiffServ standards to improve multimedia communication over the Inter-
net. Within this protocol, transcoding serves a dual purpose. First of all,
it is exploited to avoid network congestion by making amends for bandwidth
constraints. Secondly, the transcoding layer adapts multimedia traffic so that
it matches end-user requirements (e.g., the characteristics of his terminal).

Another attempt at combining the granularity of IntServ with the scalabil-
ity benefits of DiffServ is presented in [Kusmierek 02]. An integrated network
resource and QoS management framework is described which is structured
around the concept of decoupling the QoS control plane from the data plane.
The control plane performs network management functions and resource reser-
vation accounting, whereas the data plane is populated by core routers that
execute stateless packet scheduling and forwarding (i.e., no per flow state needs
to be maintained by the core routers).

All QoS systems that have been discussed thus far can be regarded as
general-purpose solutions. An increasing fraction of the QoS research is how-
ever targeted at specific environments and domains. These frameworks typi-
cally limit the problem scope by focusing on the unique QoS requirements and

2.1 Quality of Service Provision 23

characteristics of the considered setup. For mobile scenarios for example, no-
table QoS solutions include the wireless video streaming framework proposed
in [Cai 08] and Chen and Heinzelman’s multi-layer QoS platform for mobile ad
hoc networks (MANETs) [Chen 04]. Another emerging research subdomain
for QoS provision is pervasive computing. Significant achievements in this set-
ting include the QoS-aware middleware for ubiquitous environments presented
in [Nahrstedt 01], the framework for QoS provision in ontology-centered per-
vasive systems [Arora 09] and the QoS architecture proposed by Bolla et al.
for smart homes [Bolla 08]. As the NIProxy is not particularly targeted at
a specific setting but instead is intended as a universally applicable solution
for QoS provision (and, more correctly, user QoE improvement), a full-fledged
survey of domain-unique QoS frameworks is not in order. Important to note
however is that the NIProxy, thanks to its generic methodology, could very
well be exploited in many of the fields that are targeted by these focused re-
search efforts. As an example, section A.2 will illustrate that the NIProxy has
already been leveraged and (superficially) evaluated in a pervasive meeting
room context.

As a final remark, QoS provision is not only being studied in academic
contexts or as network backbone technology, it is also slowly penetrating the
market of IP consumer devices. As an example, D-Link, a global leader in con-
sumer network connectivity, has developed GameFuel, an intelligent packet
processing engine which features dynamic packet fragmentation as well as
packet prioritization [D-Link 10]. Routers in the GameFuel line-up promise
lag-free gaming experiences by giving game-related traffic precedence for net-
work bandwidth over traffic that is induced by other Internet applications like
e-mail or FTP file transfer.

2.1.4 QoS provision in non-IPv4-based networks

Thus far, QoS provision has been exclusively described in the context of IPv4-
based networks. Of course, technologies other than IPv4 exist for implement-
ing network communication. Contrary to IPv4, some of these technologies by
default even include prominent mechanisms and constructs for QoS provision
and hence do not require explicit additional procedures to achieve it.

The connection-oriented Asynchronous Transfer Mode (ATM) standard,
for instance, defines a number of QoS parameters (e.g., cell transfer delay, cell
loss ratio and cell delay variation) that are negotiated between the customer
and the network carrier prior to connection setup. In case the level of service
that is requested by the customer is sustainable by the network, the connection
will be set up and the ATM network will provide the required QoS for it; on the

24 Background and Related Work

other hand, in case both parties fail to agree on terms, the connection will not
be created at all. This implies that, in case the connection is approved, ATM
will provide hard guarantees that the desired QoS will actually be delivered
during the complete lifecycle of the connection.

Another protocol with (modest) built-in QoS features is IPv6, the succes-
sor of IPv4. QoS support is not the only area in which IPv6 outclasses its
precursor; additional examples include an increased IP address space, better
mobility support and multihoming options. However, despite the numerous
improvements which it introduces and the relative maturity of the standard,
IPv6 is still in its infancy in terms of infiltration in operational networks (see,
for instance, the survey results presented in [ARIN 08]). Like the IntServ and
DiffServ standards, IPv6 appears to be the victim of the success of its prede-
cessor: over the years, IPv4 has become the de facto networking technology
and the benefits that are afforded by newer standards seem to be insufficient
to justify the high financial repercussions that are associated with a full-scale
technology transition.

As a final example that will be described here, the MultiProtocol Label
Switching (MPLS) architecture, which was standardized by the IETF in RFC
3031 [Rosen 01], can also be employed to achieve QoS provision. In essence,
MPLS is a protocol-agnostic, label-based mechanism for data transmission.
Each data packet is assigned a label and routing decisions depend solely on
the contents of the packet’s label. MPLS conceptually operates at an OSI
model layer that is considered to lie between the datalink and the network
layer, and is therefore often referred to as a “layer 2.5” protocol. Besides its
modest innate QoS support (in the form of fields in the MPLS header), the
MPLS architecture can also be exploited to implement QoS on a higher level
through packet label interpretation (e.g., divide network traffic into classes
based on the labels of their constituting network packets).

As the NIProxy aims to be compliant with the current Internet, QoS pro-
vision in non-IPv4-based networks will not be further elaborated on in this
thesis. The reader should however keep in mind that alternative network
protocols and technologies exist which, contrary to standard IPv4, exhibit
interesting assets in terms of QoS provision (and hence, indirectly, QoE opti-
mization).

2.2 Quality of Experience

Attention for Quality of Experience (QoE) has emerged in the late 1990s and
has since then increased exponentially. Compared to QoS, it has hence only
recently become an active research topic. QoE can be considered the semantic

2.2 Quality of Experience 25

variant of QoS since, broadly speaking, it denotes the overall experience that
is witnessed by an end-user or, stated differently, the consumer’s satisfaction
when using a particular product or service. Somewhat paradoxically perhaps,
the majority of research on user experience optimization is focused primarily
on technical performance and QoS achievements. This is especially true for
initial studies, but a strong attention for technological factors remains explicit
in more recent research as well. The aim of these studies is to reveal the
impact of the provided level of service on the user experience. For example,
Eberle et al. have developed a cross-layer methodology for trading off perfor-
mance versus energy consumption in wireless communication environments,
but they largely neglect actual user satisfaction in the process [Eberle 05]. In
[Siller 03b], Siller and Woods hypothesize that QoE is directly proportional to
QoS and therefore evaluate and determine QoE by nearly exclusively consid-
ering network performance and QoS metrics. In particular, they state that the
exploitation of QoS constructs to deliberately introduce service differentiation
holds considerable potential for QoE improvement. Soldani has investigated
QoE in a telecommunications setting (i.e., for cellular phone users) and claims
that QoE performance is defined by service accessibility, retainability, avail-
ability and integrity [Soldani 06], which are all purely technical concepts. As
a final example, Vanhaverbeke et al. quantify user experience in HDTV video
streaming setups as the number of Visible Distortions in Twelve hours (VDTs)
and propose Forward Error Correction (FEC) and retransmission schemes as
means to improve video quality and hence user satisfaction [Vanhaverbeke 09].

As QoE research evolved, it became clear that user experience is not
constricted to technical parameters. QoE researchers therefore increasingly
started to consider aspects from non-technological domains, including sociol-
ogy, cognitive sciences, psychology, usability research, user interface design,
context-aware computing, expectation modeling and market studies. For in-
stance, Nokia has investigated the influence of the usability of (mobile) ser-
vices on user experience [Nokia 04]. As another example, based on the results
of a comparative literature study as well as feedback from an expert panel,
De Marez and De Moor propose in [De Marez 09] a 5-pillar conceptual model
which attempts to cover the most significant QoE dimensions while at the same
time integrating QoS parameters. Deryckere et al. have applied this model to
assess the experience of users of a mobile wineguide application [Deryckere 08].
A similar multi-dimensional QoE model is presented in [Perkis 06]. Finally,
Wu et al. define yet another conceptual QoE framework which allows causal
relationships between objective, technical QoS parameters and subjective QoE
constructs to be identified [Wu 09]. The mapping methodology is exemplified
through a number of empirical studies in a Distributed Interactive Multimedia

26 Background and Related Work

Environments (DIME) application.

2.2.1 Definitions

Given its broad scope, definitions for the QoE concept abound in the liter-
ature. These definitions have followed the evolution of the QoE research in
terms of elaborateness. In particular, the bulk of the initial definitions very
narrowly interpreted user experience by concentrating on technical parameters
and performance metrics. Kumar [Kumar 05] for example has proposed the
following definition:

Quality of Experience can be defined as the qualitative measure of
the daily experience the customer gets when he uses the services he
is subscribed to - including experiences such as outages, quality of
picture, speed of the Internet service, latency and delay, customer
service, etcetera. The better the consumer’s experience, the higher
his QoE. And that has an effect on customer loyalty.

Another completely technology-oriented interpretation is given in [Dey 08]. In
particular, Dey states user satisfaction in a (mobile) video streaming context
to be a function of session quality (e.g., initial buffering time, audio-video syn-
chronization), audio-related attributes (e.g., mono versus stereo) and video-
related parameters (e.g., image quality, stalling). As can be seen, subjective or
contextual factors are not included in this definition. QoS is also the decisive
factor in the formulation by Siller and Woods, who define QoE as “the user’s
perceived experience of what is being presented by the Application Layer,
where the Application Layer acts as a user interface front-end that presents
the overall result of the individual Quality of Services” [Siller 03a].

More recent formulations acknowledge the multi-dimensional and the inter-
disciplinary nature of the QoE concept. For instance, Beauregard and Cor-
riveau consider QoE to be “the degree to which a system meets the target
user’s tacit and explicit expectations for experience” [Beauregard 07]. As an-
other example, the conceptual model proposed in [De Marez 09] accounts for
both technical and subjective metrics:

The model was constructed with the intention to cover not only
what the technology does (QoS, performance measurement), but
also what people (can) do with the technology, what people want
or think to do with it and expect from it, in what context peo-
ple (intend to) use it, and up to what degree it is meeting their
expectations and resulting in an “end-user happiness”.

2.2 Quality of Experience 27

Probably one of the most elaborate and versatile definitions is provided by
Wu et al. in [Wu 09]:

QoE is a multi-dimensional construct of perceptions and behav-
iors of a user, which represents his/her emotional, cognitive, and
behavioral responses, both subjective and objective, while using a
system.

Finally, popular informal phrasings of QoE include “user perceived per-
formance”, “the degree of satisfaction of the user” and “the number of happy
customers”. In this dissertation, the term QoE will be wielded loosely to de-
note the experience or the satisfaction of the user, in this case when consuming
a distributed application running over a transportation network.

2.2.2 Measurement

Given the fact that it deals exclusively with objectively measurable parame-
ters, the task of determining QoS performance is relatively straightforward.
In contrast, due to its multi-dimensional hallmark, the involvement of purely
subjective aspects and its high sensitivity to the context of use, measuring QoE
performance is a much more complicated issue. As a result, it has become an
important subtopic in the field of QoE research. Soldani for example proposes
the use of a Mobile QoS Agent (MQA) to measure service quality on stan-
dard mobile terminals (i.e., cellular phones) [Soldani 06]. The MQA software
library is however restricted to technical service parameters such as service
application setup time and Received Signal Code Power (RSCP). Deryckere
et al. extend this approach by attempting to also register actual user experi-
ence [Deryckere 08]. In particular, they present a modular software tool which
can be integrated in end-user terminals and which encompasses three differ-
ent types of probes (contextual, QoS-related and experience-related). User
experience probing is for instance supported by facilitating the post-usage
presentation and completion of user surveys and questionnaires on the user’s
device.

User experience and satisfaction measurement can be considered as a spe-
cial form of user research, a topic which has a relatively long history in the
domain of Human Computer Interaction (HCI). For instance, techniques such
as usability testing, user observation, user interviewing and self-reporting have
proven to be very effective and efficient methods to evaluate the (graphical)
user interfaces of software systems [Nielsen 94]. Whereas these techniques were
previously purely paper-and-pencil-based, there have recently been some at-
tempts to computerize them. Several advantages of computerized user research

28 Background and Related Work

methods over their non-digital predecessors are enumerated in [Barrett 01].
Two notable achievements in the field of digital user research and, in par-
ticular, of computerized user experience sampling are the MyExperience and
SocioXensor frameworks. The open-source MyExperience software tool for
the Windows Mobile platform combines sensing technology and computer-
ized self-report procedures to collect both quantitative and qualitative data
regarding human behaviors, attitudes and activities [MyExperience 10]. An
important characteristic of the MyExperience framework is its support for
in-situ, context-triggered sampling [Froehlich 07]: it allows participants to re-
port on their thoughts, feelings, behavior and so on as they are experienced,
this way eliminating recall bias. Additionally, MyExperience takes advantage
of the multimedia features of the device on which it is hosted (e.g., audio
recording, image and video acquisition) to provide richer forms of participant
response. Likewise, SocioXensor is also a software toolkit for in-situ data col-
lection [Mulder 05]. Analogous to MyExperience, SocioXensor recognizes that
personal mobile devices such as contemporary cellular phones are excellent
means for capturing objective data regarding application usage, for accumu-
lating contextual information and for measuring user experience. The main
difference between both solutions is that SocioXensor has a larger focus on in-
terpersonal relations and social phenomena. Note that neither MyExperience
nor SocioXensor are intended to capture QoS-related information.

Part II of this thesis will evaluate the impact of the traffic engineering
operations performed by the NIProxy on the experience of users of distributed
applications. This will be accomplished by presenting the outcomes of nu-
merous experimental studies. All results that will be provided were captured
objectively, for instance by tracing the traffic that traversed the transportation
network. For each test, the recorded results will be interpreted analytically, af-
ter which conclusions will be drawn regarding the implications of the achieved
results on user perceived QoE. Notice that this implies that the conclusions
will be rather speculative in nature, since no traditional usability research
methods (e.g., user surveys) were applied to formally confirm them. Also,
although they offer substantial opportunities with regard to low-intrusive user
experience sampling, experience measurement software toolkits such as My-
Experience or SocioXensor were not exploited. This latter negligence can in
part be explained by the relatively recent emergence of these solutions. How-
ever, the absence of explicit user feedback and data from formal qualitative
studies is justified by the fact that the produced experimental results are of
such a magnitude that the beneficial influence on user QoE will be intuitively
apparent.

2.3 Context-Aware Networking 29

2.3 Context-Aware Networking

The NIProxy enables user QoE optimization by introducing intelligence in the
transportation network. This intelligence takes the form of contextual knowl-
edge that is accumulated from a number of different sources. In particular, as
will be discussed in section 3.1, the NIProxy’s contextual awareness is three-
fold and encompasses information regarding the transportation network, the
distributed application as well as the terminal and preferences of the end-user.

Context is a very extensive concept. This is for instance illustrated in the
definition by Abowd and Dey, which state that context “includes any infor-
mation that characterizes an entity’s situation and environment” [Abowd 99].
The same authors define a system to be context-aware in case “it leverages
context to provide relevant information or services to the user, where relevancy
depends on the user’s task”. Since communication networks can be considered
as systems (e.g., systems for data dissemination), context sensitivity also ap-
plies to them. Context-aware networking therefore refers to the exploitation
of context during the execution of network-related operations such as routing.

Countless examples of context-sensitive systems are described in the lit-
erature. As an example, nearly all of the QoS architectures that have been
described in section 2.1.3 as well as the traffic engineering frameworks that will
be reviewed in section 2.4 consider at least modest forms of contextual knowl-
edge. Some of these systems merely exploit context to improve the efficiency of
their operation. Others leverage context to achieve higher-level objectives that
surpass simple efficiency maximization. For instance, the MobiGATE system
(see section section 2.4.2) provides an adaptation engine which is steered by
accumulated context to guarantee that end-users are provided with content
that is tailored to their particular consumption environment.

An exhaustive survey of context-aware systems is not in order in this disser-
tation. It suffices to know that the NIProxy exploits its contextual awareness
as a means to achieve its overall objective of user QoE optimization. Indeed,
it is apparent that contextual data plays a crucial role in improving the sat-
isfaction of users of distributed applications. Therefore, all of the NIProxy’s
QoE optimization tools have access to its complete context repository and
can leverage it to coordinate their actions. This approach guarantees that the
NIProxy’s user QoE optimization decisions will always be in tune with the
current context of use.

As a final remark, of the NIProxy’s three supported categories of context
(i.e., network-, application- and terminal-related), its application awareness is
the most unique (i.e., the one that is the least prevalent in related systems).
Section 3.1.2 will explain that this type of context encompasses application-

30 Background and Related Work

specific information and that it is hence highly variable. Generally speaking,
by supporting this form of context, the NIProxy enables distributed appli-
cations to inform it of any application-related knowledge which they deem
relevant. Despite its relatively limited adoption by related systems, numer-
ous examples of the usefulness (and even essentiality) of the availability of
application-dependent knowledge during QoE optimization will emerge in part
II.

2.4 Network Traffic Engineering

The NIProxy enables IPv4-based networks to impact data dissemination and
hence to influence the experience that is provided to users of distributed appli-
cations. In particular, the NIProxy’s dual network traffic engineering toolset
includes bandwidth brokering functionality as well as multimedia service pro-
vision and delivery support. This section will first review the related work on
both research topics and will subsequently state the NIProxy’s contributions
in the field of network traffic engineering.

2.4.1 Bandwidth Management

The high-level objective of network traffic shaping (NTS) and, in particular,
bandwidth brokering schemes consists of mediating the network bandwidth
consumption of distributed applications. The need for such schemes is advo-
cated by the fact that, despite the continuously growing bandwidth capacity
of transportation networks, network bandwidth remains a scarce commodity
and consequently requires judicious management. As such, bandwidth bro-
kering schemes are typically concerned with distributing a certain amount of
available bandwidth over a number of competing network flows. This section
will review important recent achievements in this research domain.

Two of the initial explorers of the issue of bandwidth brokering were Floyd
and Jacobson. In [Floyd 95], they have described the requirements and objec-
tives of link-sharing in packet-switched networks and they have identified link-
sharing enforced at gateway nodes to be an essential mechanism to satisfy the
demands of emerging real-time distributed applications. Furthermore, formal
guidelines for the implementation of hierarchical link-sharing are presented.
In their approach, network traffic which arrives at a gateway is categorized
and the resulting traffic classes are subsequently laid out in a hierarchical
link-sharing structure. Every class in the hierarchy is allocated its entitled
segment of the link bandwidth; in case classes fail to completely consume
their assigned bandwidth volume, the proposed guidelines state that the ex-

2.4 Network Traffic Engineering 31

cess bandwidth should be divided among the other classes in accordance with
“some set of reasonable rules”.

An architecture for the dynamic and fair distribution of network band-
width called the eXact Bandwidth Distribution Scheme (X-BDS) is presented
in [Hnatyshin 06]. The term “exact” refers to the fact that the scheme relies
on measured instead of estimated values of flow requirements. The objec-
tives of the X-BDS architecture are threefold: to guarantee that each flow
receives at least its minimal requested rate, to distribute network resources
(i.e., bandwidth) in a fair fashion among admitted flows and to support dy-
namic adjustment of flow resource allocation. To attain scalability, the X-BDS
system pushes complexity towards the periphery of the network. In particu-
lar, whereas edge routers are required to maintain per flow information, core
routers only need to deal with flow aggregates. Provided experimental re-
sults confirm that X-BDS succeeds in supporting fair per flow distribution of
available bandwidth without compromising overall network link utilization.

Rakocevic et al. have presented in [Rakocevic 01] a dynamic bandwidth
partitioning scheme in which network links are logically split up into a collec-
tion of bandwidth-configurable sublinks that each serve a particular network
traffic class. In particular, analogous to the DiffServ standard (see section
2.1.3), the proposed solution defines a number of independent traffic classes
such that network traffic belonging to different classes will not impact each
other. The scheme dynamically adapts the portion of the link bandwidth that
is allocated to each class to improve the overall utilization of the available
bandwidth as well as to maximize the utility for the end-user (where utility
can be interpreted as a simplified form of QoE). The authors therefore describe
their solution as being both adaptive and user-oriented.

Network traffic shaping and bandwidth sharing has also been investigated
in the context of the WebTP project. The WebTP research effort attempts
to address the complete suite of issues that are introduced by the present-
day content transportation model of the World Wide Web. In [Gupta 02],
a transport-layer solution for Web transport (i.e., a replacement for HTTP
over TCP/IP) is conceptualized which is exclusively receiver-driven in terms
of connection setup, flow control, congestion control and retransmission initi-
ation. Simulation results confirm that the proposed protocol achieves stable,
efficient and fair bandwidth partitioning among concurrent WebTP flows. The
protocol is in addition TCP-compatible, as WebTP traffic is shown to interact
fairly with competing TCP flows.

Foster et al. describe in [Foster 04] GARA (General-purpose Architecture
for Reservation and Allocation), an extensive resource management architec-
ture which supports secure immediate as well as advance reservation of re-

32 Background and Related Work

sources, resource co-reservation (i.e., simultaneously allocating various types
of resources such as network bandwidth and CPU time) and online monitoring
and control of both individual resources and heterogeneous resource ensem-
bles. A prototype GARA implementation is presented which largely builds
on DiffServ mechanisms. The authors prove that GARA can be exploited in
in DiffServ-enabled networks to perform bandwidth management as well as
to enforce bandwidth guarantees for heterogeneous flow types. In particular,
two specific types of network traffic are considered, namely foreground (i.e.,
latency- and jitter-sensitive) media data and background (i.e., voluminous yet
latency-insensitive) bulk transfers.

Another scheme for bandwidth brokering in DiffServ domains is the Active
Resource Management (ARM) approach that is described in [Ramanathan 01].
ARM aims to optimize bandwidth utilization by actively and dynamically real-
locating bandwidth in function of the current requirements of the applications
as well as the status of the DiffServ-enabled network. The ARM approach is
motivated by the observation that static resource allocations based on peak
bitrate are likely to lead to network under-utilization. Further aggravating
matters is the fact that applications which could make good use of the excess
resources might suffer from starvation as they are by default unable to adopt
the unexploited capacity. Through simulation, the authors demonstrate that
ARM might conserve up to 75 percent of the bandwidth capacity of DiffServ
networks while still honoring the QoS requirements of the admitted network
traffic.

The issue of bandwidth utilization optimization has also been investigated
by Furini and Towsley, this time however in the context of the Premium Service
(PS) architecture [Furini 01]. The default Bandwidth Allocation Mechanism
(BAM) of the PS architecture is based on the peak bitrate of real-time traf-
fic. In contrast, the newly proposed BAM dynamically adjusts the amount
of bandwidth that is reserved for real-time flows while preventing their QoS
requirements from being violated. As such, the available network bandwidth
is exploited more efficiently and completely and hence overall bandwidth uti-
lization is improved.

The generic, application-independent Congestion Manager (CM) frame-
work combines integrated flow management with a convenient programming
interface which allows distributed applications to achieve adaptive behavior
[Balakrishnan 99][Andersen 00]. As is alluded to by its name, the core focus
of the CM system is on the prevention and management of network conges-
tion. The framework however also adopts principles from the Application-
Level Framing (ALF) methodology to permit the distributed application to
orchestrate its data transmissions and to control, to a certain extent, the frac-

2.4 Network Traffic Engineering 33

tion of the available bandwidth that is allocated to each of the network flows
which it induces.

Anjum and Tassiulas present in [Anjum 99] Balanced Random Early De-
tection (BRED), a queuing algorithm for Internet gateways which achieves
fair bandwidth sharing in the presence of contending adaptive (e.g., TCP)
and non-adaptive (e.g., UDP) network traffic. The algorithm penalizes non-
adaptive network traffic through packet dropping as soon as it attempts to
unfairly claim room in the gateway packet queue (i.e., queue space, and there-
fore bandwidth, that actually accrues to concurrent adaptive flows).

In [Amir 97], a scalable, lightweight and tunable feedback protocol for re-
flecting receiver interest back to media sources is presented. The proposed
scheme was denominated SCUBA (Scalable ConsensUs-based Bandwidth Al-
location) and focuses specifically on multicast-based media conferences. Simi-
lar to for instance RTCP, SCUBA embraces the announce/listen metaphor. In
this case, periodic receiver reports are exploited to explicitly rank active me-
dia sources. By listening for such reports and by aggregating the information
that is contained in them, sources are able to adjust their transmission rate.
Stated differently, SCUBA enables sources in multicast-based conferencing
sessions to account for receiver interest in their rate-adjustment algorithms.
The expected outcome is an improved session effectiveness since the available
session bandwidth will be allocated in a more efficient and intelligent manner.

An example bandwidth brokering scheme for 3D tele-immersive environ-
ments is described by Yang et al. in [Yang 06]. Since such environments incor-
porate multiple 3D cameras, they require the dissemination of large volumes of
video data. The proposed framework leverages the semantic correlation among
the generated 3D video flows as well as their exact contribution to the current
view to guide stream selection, priority-based bandwidth allocation and con-
tent adaptation operations. Presented experimental results demonstrate that
the framework yields good video rendering quality in case bandwidth is suffi-
ciently available; more importantly, in the event of bandwidth shortage, the
scheme achieves graceful quality degradation by judiciously enforcing band-
width allocations and by dynamically adapting stream fidelity according to
user preferences.

2.4.2 Multimedia Service Provision

The second pillar of the NIProxy’s network traffic engineering functionality
is multimedia service provision. The NIProxy can assume the role of ser-
vice provision and delivery platform, which implies that it enables the intra-
network application of services on transported (multimedia) flows. Stated

34 Background and Related Work

differently, service provision and delivery platforms introduce the possibility
to process multimedia traffic during its dissemination through the commu-
nication network. The type of processing that is offered by services can be
very diverse and is in theory only limited by the policy and capabilities of
the delivery platform. In particular, services might be absolutely generic,
completely application-specific, or anything in between these extremes. This
section will representatively sample research efforts with regard to multimedia
service provision.

A popular application of the multimedia service provision concept is in-
network content adaptation. The typical objective of such services is to im-
prove content delivery to the destination. Initial achievements in this area
include the on-demand dynamic distillation approach to cater to network and
client heterogeneity [Fox 96][Fox 98] and the InfoPyramid proposal [Mohan 99].
A solution that is targeted specifically at pervasive geospatial content access is
presented in [Lin 04a]. Schill et al. propose in [Schill 99] an adaptive multime-
dia (i.e., image) transfer service for mobile computing environments, whereas
Lum and Lau present a context-aware decision engine for content negotia-
tion and adaptation in such environments [Lum 02]. The ZUMA platform for
smart home setups incorporates a Universal Content Router (UCR) compo-
nent to take care of format conversion and content transcoding [Gruenen 06].
The TranSquid network intermediary combines transcoding functionality with
a multi-level cache to improve and expedite Web object delivery in heteroge-
neous client spaces [Maheshwari 02]. Another example of a quality-adaptive
proxy cache, this time for layered encoded multimedia data, is the Mocha sys-
tem [Rejaie 01] in which the quality of cached content is adjusted according
to its popularity as well as the bandwidth capacity of interested clients. As
a final example, the recently introduced MPEG-21 standard is also concerned
with the concept of Universal Multimedia Access (UMA) and therefore spec-
ifies tools to assist with the (in-network) adaptation of multimedia content
[Vetro 05].

A specific subtopic in the field of intra-network content adaptation is proxy-
based video transcoding. Notable examples in this research domain include
the application-level video gateway proposed by Amir et al. [Amir 95], the
video transcoding gateway for wireless video access presented in [Lei 03], the
wireless video transcoding middleware by Aghera et al. [Aghera 03] and the
solution that is based on MPEG-21 technology from [Rho 05].

All content transformation systems cited thus far are proxy-based solutions
(i.e., the provided functionality is executed by an intermediate network node
that is deployed somewhere along the network route from content provider
to consumer). In contrast, Chandra et al. consider in [Chandra 00] the ap-

2.4 Network Traffic Engineering 35

plication of transcoding technology at the content origin. In particular, the
authors propose to leverage transcoding functionality to allow Web servers to
customize the size of the content (i.e., images) which constitute Web pages.
Experimental results show that the suggested approach provides Web servers
a certain amount of control over their upstream bandwidth consumption and
allocation, without adding excessive latency and without them having to re-
sort to ad hoc service denials. Furthermore, it is also confirmed that content
transcoding support enables sources to implement differentiated service by
facilitating heterogeneous treatment of incoming content request.

In the Server-Directed Transcoding (SDT) approach, content adaptation
is still performed at a network intermediary but in this case the transcoder
is explicitly guided by the origin server [Knutsson 03]. Stated differently, all
transcoding operations, while enforced at a proxy, are directed entirely by the
content source. The authors argue that traditional proxy-based transcoding
breaks the end-to-end model of the World Wide Web because the proxy is
unfamiliar with the semantics of the content. The proposed SDT scheme on
the other hand preserves end-to-end semantics while at the same time enabling
aggressive content transformation. The authors demonstrate that SDT can be
integrated into the HTTP protocol through a simple protocol extension and
present several examples of valuable server-directed transformations for image
content.

Zheng et al. present in [Zheng 06] MobiGATE (Mobile Gateway for the Ac-
tive deployment of Transport Entities), a mobile middleware framework with
extensive attention for service composition and coordination. MobiGATE’s
main objective consists of providing an environment in which new mobile ap-
plications can be easily and rapidly implemented by combining readily avail-
able application-level adaptation services as building blocks. Inspired by the
separation of concerns principle, a clear division is enforced between the com-
putational activities of individual services and their coordination. The benefit
of this approach is that it enables dynamic reconfiguration as well as reusabil-
ity of adaptation services across applications. As will be illustrated in chapter
5, the NIProxy’s multimedia service provision facility exhibits similar features
(although, compared to MobiGATE, its support for service composition and
coordination is less pronounced and elaborate).

A general-purpose proxy-based communication model for mobile hosts is
presented in [Zenel 99]. The model encompasses mechanisms to dynamically
download so-called filters (i.e., services) to network intermediaries, to interpose
these filters in client/server connections and to control filter operation. Anal-
ogous to NIProxy services, filters can exploit application-specific information
during their operation and aim to improve the perceived quality of the network

36 Background and Related Work

by dropping, delaying and/or transforming data that is exchanged between the
communicating parties. On the other hand, the proposed filtering model dif-
fers from the NIProxy in terms of intended purpose: the filtering approach
is primarily concerned with protocol performance optimization, whereas the
NIProxy’s service provision mechanism pursues the more comprehensive ob-
jective of improving end-user experience. As such, there exists a considerable
scope difference between both schemes. To demonstrate and evaluate the filter-
ing model, example filters for compressing text contained in HTTP responses,
NFS file data compression and TCP throughput optimization in error-prone
communication environments are presented.

Like the NIProxy’s service provisioning functionality, the AMPS (Active
Multimedia Proxy Services) proxy research platform is intended to support a
broad, composable and extensible collection of next-generation streaming ser-
vices [Zhang 04]. An important design goal of AMPS is software modularity.
The AMPS codebase is therefore composed of a series of modules which are
organized into three separate planes. The service plane provides system-wide
services such as resource management, the control plane implements control
signaling between the proxy and both the content source and destination,
whereas the data plane encompasses so-called stream graph modules which
each provide a specialized streaming operation. Another point of particular
interest in AMPS is scalability. Therefore, profiling studies were executed to
profoundly map the overhead of various system components. The conducted
performance analysis has identified the proxy’s CPU to be the bottleneck re-
source in the proposed design.

The Odyssey software platform promotes the establishment of a collab-
orative partnership between the system and the application [Noble 97]. In
particular, Odyssey provides centralized and coordinated support for resource
monitoring, notifies applications of relevant changes in resource availability
and enforces resource allocation decisions. Adaptation reasoning on the other
hand is left completely to the applications themselves. In other words, each
application is responsible for independently deciding how best to adapt to
modified resource availability when notified. The Odyssey system is specifi-
cally targeted at information access applications on mobile hosts.

In section 2.5, the Active Networking paradigm will be discussed and it will
become apparent that this methodology holds promising prospects in terms of
in-network service provision and delivery. An important economic drawback of
this approach however is that it requires substantial modifications to be made
to the network infrastructure. Amir et al. therefore suggest in [Amir 98] an
alternative to Active Networking which preserves compatibility with present-
day networks (i.e., the Internet) by restricting its attention to the deployment

2.4 Network Traffic Engineering 37

of application-level computation in the network (whereas Active Networking
also supports service delivery at lower levels of the layered networking model).
In particular, their so-called Active Service (AS) framework provides a pro-
grammable substrate on top of which application-level services can be built
and provided. A comparable approach is taken in [Banka 07], where Banka et
al. describe the AWON (Application aWare Overlay Networks) architecture
for application-aware service provisioning in overlay networks.

Nahrstedt et al. present in [Liang 05] and [Nahrstedt 05] an integrated
service composition framework for pervasive environments. The framework
specifically addresses the problem of information retrieval and visualization
in such environments. In particular, it allows for the collection, composi-
tion and customization of multimedia data and for the subsequent delivery
of the composite content to users located in a smart room. Both the users’
content interest and the presentational capabilities of the available display
devices are hereby taken into account. The framework’s organizational form
resembles a hourglass as it supports multi-source content input and is capa-
ble of disseminating the resulting aggregated content to multiple destinations
simultaneously.

Finally, the principle of providing and delivering services has not only man-
ifested itself in a plethora of disjoint research efforts, it has even led to the
emergence of a completely new architectural standard, the so-called Service-
Oriented Architecture (SOA) model [Barry 03]. In this paradigm, instead of
rigidly integrating functionality in applications, business logic and individual
functions are modularized and encapsulated as distinct units called services.
These services are made accessible over a network and can be leveraged as
building blocks to compose complete applications. The defining characteris-
tic of the SOA model is the loosely coupled nature of services: the service
interface is independent of its implementation and, as each service is a com-
pletely stand-alone entity, no explicit links are a priori defined between them.
This feature allows services to be flexibly assembled and even re-assembled,
which in turn empowers businesses to rapidly adapt, for example to changing
conditions, variable application requirements or heterogeneous user demands.
Moreover, the loose coupling facilitates novel functionality introduction as the
provision of a new service will not impact already existing services. Similarly,
existing services can be upgraded or their implementation can be improved
independently from each other; any application which relies on the upgraded
service will automatically reap the benefits of the service’s improved function-
ality.

38 Background and Related Work

2.4.3 NIProxy Contributions

The NIProxy’s bandwidth management functionality is largely inspired by
the pioneering research by Floyd and Jacobson on hierarchical link-sharing
[Floyd 95]. For instance, the NIProxy’s NTS methodology of organizing net-
work flows in a so-called stream hierarchy (see section 4.1) to a great extent cor-
responds to Floyd and Jacobson’s hierarchical class-based bandwidth sharing
approach. There are however also substantial differences. In the link-sharing
solution, bandwidth management is attained by applying queue management
and scheduling at the gateway node. More specifically, individual network
packets are dispatched to a collection of queues with unequal scheduling prior-
ity. In contrast, the NIProxy does not consider individual network packets but
instead operates at a logically higher level. In particular, the NIProxy deals
with network flows as a whole and hence grounds its NTS decisions on the
instantaneous bandwidth consumption of entire flows. Moreover, Floyd and
Jacobson have restricted their discussion to the distribution of the bandwidth
capacity of a network link among institutions, protocol families or aggregate
traffic types. In other words, their approach concentrates on inter-application
bandwidth brokering. The NIProxy extends this research by also addressing
intra-application bandwidth mediation. This is motivated by the fact that the
majority of modern distributed applications involve multiple network flows
with potentially heterogeneous behavior and requirements in terms of band-
width consumption. The NIProxy’s more fine-grained approach enables it to
effectively distribute bandwidth among the individual network flows which
jointly constitute the network traffic that is induced by a distributed applica-
tion.

Section 2.4.2 has revealed that multimedia service provision is a very active
research domain and that the concept in addition has already been adopted by
the industry in the form of the SOA paradigm. Comparing the NIProxy with
each individual system is not only practically infeasible, it is also hardly mean-
ingful. After all, although there might be minor functional incompatibilities
due to implementational differences and divergent emphases, all service-based
systems are grounded on the same foundations and therefore share similar
characteristics and advantages. In particular, each such system departs from
the idea of encapsulating functionality in stand-alone units that are readily
accessible via a computer network. The benefits that are associated with such
a loosely coupled design are numerous and for instance include the following:

Composition The possibility to combine multiple (independent) services into
a larger whole enables rapid prototyping and even development of dis-
tributed application

2.4 Network Traffic Engineering 39

Scalability Services not necessarily need to be hosted at a single centralized
location; instead, they may be scattered over the entire network topology

Extensibility Service provision and delivery platforms often allow their func-
tionality (i.e., their set of supported services) to be extended at run-time

Adaptability Their network-based location makes services very well suited
to executing adaptation operations (e.g., of content); as such, service
delivery systems might considerably contribute to the adaptability of
distributed applications

As will be discussed in detail in chapter 5, the NIProxy’s multimedia service
provision mechanism exhibits comparable traits and benefits.

Although all service-based systems share a homogeneous vision, it is appar-
ent from section 2.4.2 that research efforts exist which specialize in a particular
aspect of the service provision philosophy to distinguish themselves from other
approaches. This is not the case for the NIProxy. In particular, the NIProxy
aims to offer a general-purpose service provision platform that is as broadly
applicable as possible. Stated differently, the objective is not to excel in a
certain subtopic but instead to provide a solution that is exploitable by a het-
erogeneous and extensive set of distributed applications. Furthermore, as is
the case with the NIProxy’s bandwidth brokering facilities, the focus is not on
the service provision functionality by itself, but on its possibilities regarding
user QoE optimization.

In summary, the NIProxy does not innovate in terms of the traffic en-
gineering tools which it provides. What does distinguish the NIProxy from
other approaches is that it synthesizes these mechanisms in a single system
and in addition does so in an interoperable and collaboration-enabled manner.
Section 5.2 will discuss that the advantage of this holistic approach is that it
affords a myriad of extra possibilities. More importantly, as will be illustrated
multiple times in part II of this dissertation, it enables user experience opti-
mization to be risen to a performance level that transcends the results that
can be achieved by applying both mechanisms independently. This discus-
sion immediately uncovers another NIProxy hallmark: whereas many related
systems focus solely on technical parameters (e.g., QoS provision), the NI-
Proxy exerts its engineering functionality to achieve the higher-level objective
of QoE improvement. A final defining feature of the NIProxy’s traffic man-
agement support is its context sensitivity. Both the network traffic shaping
and multimedia service provision mechanisms have access to the NIProxy’s
complete catalog of contextual information which, as section 2.3 has estab-
lished, includes network-, terminal- and application-related knowledge. Al-

40 Background and Related Work

though context awareness is definitely not a unique trait of the NIProxy, few
traffic engineering systems include such a vast and diverse context repository.

2.5 Active Networking

Transportation networks are traditionally allotted a purely passive task. In
particular, their responsibility is typically confined to passively transferring
data from producer to consumer. The NIProxy however attempts to “acti-
vate” the network by directly partaking in the data dissemination process.
In particular, by engineering the transported traffic, the NIProxy unlocks the
possibility for the networking substrate to actively influence the QoE that
is witnessed by users of distributed applications. As such, the NIProxy’s
methodology bears significant resemblances to the fundamental principles of
the Active Network (AN) philosophy [Bush 01]. This paradigm namely also
bestows a much more active role on the communication network. Instead of
restricting its task to traditional bit hauling, the AN research discipline in
particular aims to transform the network infrastructure into a (highly) pro-
grammable environment in which the execution of customized computation
on transferred data is enabled [Tennenhouse 97]. The AN research was initi-
ated in 1994 by the Defense Advanced Research Projects Agency (DARPA),
a R&D agency of the United States Department of Defense which funds the
development of new technologies that are potentially useful to the US military
[DARPA 10].

2.5.1 Classification

In their position paper, Tennenhouse and Wetherall categorize active networks
according to the degree to which transported data and active code are inter-
woven [Tennenhouse 96]:

Programmable switches This category encompasses discrete AN solutions
in which the processing of network messages and the injection of cus-
tomized programs/code are architecturally disjointed. Stated differently,
the common data transfer task is completely separated from the pro-
gramming of the network. As such, network messages do not carry ac-
tive routines (i.e., code that will be executed by the components which
constitute the networking substrate); instead, the installation of active
programs on network nodes (i.e., routers) is supported through a discrete
mechanism such as an explicit signaling protocol. Each time a network
node intercepts a message, it will dynamically apply program(s) on it

2.5 Active Networking 41

based solely on information that is embedded in the message header.
Discriminating the deployment of programs from message handling is
an attractive alternative in case the privilege of network programming
should be reserved to the proprietor of the network (i.e., the network
operator).

Capsules In this integrated methodology, every network message is in fact
a complete program that will be executed by the intermediate network
components on the path from source to sink. The passive packets of
traditional network architectures are in this approach hence replaced
by active counterparts, which encapsulate active routines and possibly
also actual data. In the AN terminology, such messages are called cap-
sules. As they pass through the network, capsules will be executed at
each intermediate network node. Tennenhouse and Wetherall envisage
routers to dispatch incoming capsules to a transient execution environ-
ment, where they will then be safely evaluated. Through the provision
of external methods or built-in primitives, capsules might be provided
controlled access to network node resources that are external to the
transient environment (e.g., global information and services such as the
node’s routing table or non-volatile storage).

Both the discrete and integrated approaches enable the network infrastruc-
ture (i.e., its constituting components) to perform computation on traversing
packets and to potentially modify their contents. For either methodology, this
processing is per user or per application customizable. In the programmable
switches solution, the packet processing can be customized by the end-user or
the distributed application by inserting appropriate information in the packet
header (since the packet header will determine which active routine(s) will be
applied while the packets are in transit). The capsules philosophy on the other
hand affords the end-user or the application complete control over the active
programs that will be injected into the network; as such, these parties entirely
dictate the in-network computation that will be performed. It is apparent that
of both alternatives, the capsules approach represents the most extreme and
therefore also the most flexible and powerful application of the AN concept.

2.5.2 Benefits

The AN model allows for the interposition of user- or application-specified
computation between end-hosts that are communicating via a transportation
network. This principle entails a number of interesting and powerful opportu-
nities [Tennenhouse 96]:

42 Background and Related Work

Enabling new applications The possibility to host highly customizable ser-
vices inside the network is likely to facilitate the development and de-
ployment of new types of distributed applications. Examples in the con-
text of active content caching, user-aware network security and network
monitoring and administration are given in [Tennenhouse 97].

Infrastructural innovation Active networking holds the promise of acceler-
ating the pace of infrastructural innovation by decoupling network-based
services from the underlying hardware and by allowing new services to
be in real-time and on-demand installed in the infrastructure. Stated
differently, the AN philosophy enables improvements in respectively the
hardware and software domain to be disjointed. Both hardware ven-
dors and service developers can innovate their product individually; the
former party will hereby not be hampered by time-consuming software
standardization efforts, while the latter will not incur delay caused by
vendor consensus achievement.

Generalization In recent years, proprietary systems for enabling in-network
computation have proliferated, ranging from advanced firewalls over web
proxies with content adaptation functionality to routers with support
for nomadic and mobile users. Most systems address a specific issue
and additionally do so in an ad hoc, specialized fashion. This implies
that there is a lack of a common model, which in turn considerably
prohibits the individually developed solutions from interoperating with
each other. Tennenhouse and Wetherall claim that this situation will give
rise to an amalgam of stand-alone and presumably sub-optimal network-
based services. In contrast, the AN philosophy aims to “standardize”
the ability to deploy such services and hence to program the operation
of the network by providing generic architectural support as well as a
common programming platform.

Adaptive protocols Active networking offers the possibility to revolutionize
the way people think about transportation networks and communication
protocols. In particular, Tennenhouse and Wetherall propose to replace
traditional protocol stacks (see section 2.1.1) with tailorable and combin-
able protocol modules and building blocks to afford application-specific
processing. In other words, by applying a programming language per-
spective to networks and their protocols, a solid foundation is provided
for the development of adaptive protocols which will likely improve in-
teraction beyond the possibilities that are currently enabled by the ex-
change of fixed data formats.

2.5 Active Networking 43

The benefits of active networks can also be outlined from the opposite perspec-
tive, namely in terms of the issues and shortcomings of conventional networks
which they overcome [Tennenhouse 97]. These encompass the impediment to
efficiently integrate new technology and standards into the shared network in-
frastructure, poor performance caused by the layered protocol model and the
resulting introduction of redundant operations at multiple levels of the proto-
col stack, and the impracticability to accommodate novel innovative services
and distributed applications in the existing architectural design.

2.5.3 Achievements

Wetherall et al. present in [Wetherall 99] the ANTS (Active Node Transfer
System) concept which encompasses both a general AN architecture and a
toolkit. The ANTS architecture focuses on the promise of AN research of
achieving interoperability through the definition of a generic programmable
network model instead of having to rely on the conventional, lengthy process
of standardizing individual communication protocols. The ANTS toolkit is
a Java-based prototype implementation of the ANTS architecture that has
been realized to experiment with the development of active, adaptive and/or
application-specific protocols. In particular, besides providing a run-time en-
vironment to enable nodes to participate in an active network, the toolkit
entails a protocol programming model which allows users and applications
to customize the forwarding of their packets. In an ANTS-based network,
the introduction of a new protocol therefore amounts to specifying the active
routines that will be executed at the intermediate network nodes.

Like the ANTS toolkit, the protocol boosters research [Marcus 98] aims to
stimulate the design of and experimentation with innovative protocols. Marcus
et al. present a methodology for optimistic protocol design which is founded on
the principle of incremental protocol construction through the dynamic combi-
nation of so-called protocol boosters. The twofold objective is to accelerate the
evolution of general-purpose protocols as well as to annul their inefficiencies.
The former issue is rooted in lengthy standardization processes, while the lat-
ter is explained by the fact that general-purpose protocols trade performance
for the ability to cater to heterogeneous network environments by minimiz-
ing the functionality that is required from the directly underlying layer in the
protocol stack. The protocol boosters approach on the other hand allows pro-
tocols to optimize their efficiency by adapting (i.e., being re-programmed) to
the current network environment (e.g., LAN, WiFi, . . .). This methodology
allows protocols to be designed assuming the most optimistic case, with addi-
tional functionality being incorporated in the protocol in the form of boosters

44 Background and Related Work

on an as-needed basis. An example booster is presented which enables pro-
tocols to cope with the noisy nature of wireless networking technologies (by
adding Forward Error Correction protection). Two implementation platforms
for the protocol booster methodology are described. In the first platform, pro-
tocol boosters are implemented as loadable kernel modules for the GNU/Linux
operating system, whereas the second platform is a rapidly reprogrammable
FPGA-based hardware prototype. Marcus et al. claim that their methodol-
ogy can be viewed as an important step toward a fully programmable network
infrastructure.

In [Legedza 98], Legedza et al. put forward the proposition that there
exists a variety of valuable network services and active protocols which involve
in-network processing and discuss their potentially beneficial impact on the
end-to-end performance of distributed applications. They ratify their claim
by examining the performance of an active protocol which performs intra-
network caching of highly dynamic content such as stock quotes. Simulation
results highlight that the active caching scheme not only reduces the load on
the content servers and the intermediate routers, but also curtails average
round-trip hop counts by approximately 18 percent.

The feasibility of AN technology to achieve efficient service customization
is investigated by Steenkiste et al. in [Steenkiste 02]. The authors observe
that there is a real need for service customization support as it is not uncom-
mon for different users to require slightly dissimilar variants of a particular
network-based service. Instead of implementing multiple service instances as
a series of independent active programs, a much more elegant methodology
is proposed which consists of breaking the service into a baseline component
that provides the service’s basic (i.e., shared) functionality and a number of
customization code modules through which users are able to fine-tune the
service to meet their specific requirements. Due to the availability of the
baseline component, the customization modules will typically be confined in
complexity as well as size. According to the terminology from section 2.5.1,
the base component is combined with a screened run-time substrate to form
an execution environment, whereas each customization code module can be
regarded as an active program. The proposed approach is illustrated through
the presentation of three example customizable network services, of which the
most notable enables users/applications to tweak the QoS provision behavior
of routers according to their potentially heterogeneous QoS requirements.

Lyijynen et al. present in [Lyijynen 03] the Lightning Active Node En-
gine (LANE) active network platform and apply it to address the content
adaptation requirements that stem from user terminal diversity. The LANE
architecture encompasses two distinct types of active network entities, the

2.5 Active Networking 45

Active Server (AS) and Active Router (AR). Resource-intensive and compu-
tationally complex tasks (i.e., active applications) are always executed by AS
components, while the AR components are bestowed exclusively with packet
routing responsibilities. Both entity types are implemented in Java. The con-
tent conversion case study is implemented as an active application and the
authors identify that the AN approach allows the service to be freely relo-
cated inside the network. This in turn offers diverse optimization options as
it enables the service’s deployment location to be optimized with regard to
currently prevailing conditions.

The Network Processors Group (NPG) of the Georgia Institute of Technol-
ogy (Georgia Tech) adopts the vision of the network infrastructure being an
active and programmable computational entity which executes certain classes
of computations that would otherwise have to be allocated to general-purpose
end-host CPUs [GT NPG 10]. In [Gavrilovska 05], they explore the poten-
tial of exploiting heterogeneous multi-core systems which include specialized
communication support (e.g., in the form of network processors) as efficient
and flexible execution platforms for distributed streaming applications. In
particular, they propose to interconnect such multi-core platforms into a net-
work overlay on top of which stream manipulation services such as content
transcoding can be deployed. Individual stream processing actions are hereby
dynamically mapped to those platform resources that are best suited for them.
As an example, communication cores or specialized communication hardware
will as much as possible be dedicated to the processing of communication-
related tasks, since these platform components are optimized for this type of
operations. Experimental results confirm a performance improvement for dis-
tributed streaming applications. Since the proposed overlay solution includes
programmable network hardware, it can be considered as a modest attempt
at active networking.

Lefèvre et al. have explored the possibility to synthesize active network-
ing technology and grid computing research. In [Lefèvre 01], they present the
Active Grid (A-Grid) architecture which exploits the Tamanoir framework, a
prototype active network implementation [Gelas 00], to support the communi-
cation requirements of grid environments and applications. Specific attention
is hereby given to the provision of reliable multicast support as well as QoS
management for data streams in grid computing environments via active net-
work services.

46 Background and Related Work

2.5.4 Discussion and Comparison with the NIProxy

Although there is definitely substantial common ground between AN research
and the NIProxy, it is not really feasible to compare both approaches. Active
networking represents a completely novel paradigm which radically abandons
the premises of current-day networks and completely revises their task and
responsibilities. Transforming the networking substrate into a programmable
environment definitely yields promising and powerful options in terms of, for
instance, network-based traffic engineering, traffic adaptation and service pro-
vision. Consequently, the AN methodology provides ample opportunities with
regard to user QoE optimization.

On the downside, as it is a revolutionary networking mindset that has only
fairly recently emerged, the AN technology lacks maturity and still suffers
from a considerable number of open challenges. An important issue is for
example the efficient encoding of active routines. Recall that in the capsules
approach each network packet corresponds to an active program. As a result,
active routines will need to be efficiently encoded to keep the size of these
capsules acceptable and to curtail their bandwidth requirements. Additionally,
should active programs be binary encoded or, conversely, carried as source
code written in a particular programming language? Binary representations
will yield maximal performance, however at the expense of portability. The
latter alternative on the other hand is a platform-independent solution, yet the
source code will need to be compiled at each active networking node (which
is a time-consuming process). Another open problem is uniform naming and
addressing of network node resources such as the CPU or persistent storage.
To achieve interoperability, active applications require a shared understanding
as to which resources are available on the node on which they are hosted as
well as how these resources are named. Since node resources are potentially
shared by concurrent active applications, a fairness model will also need to be
developed to prevent an active application from monopolizing them. A final
and related challenge is security. Which node resources should be available to
which active applications and to which extent? This will at least require some
form of user authentication and authorization constructs.

Another very important disadvantage of the AN philosophy is its incom-
patibility with the current network infrastructure. Active networking demands
part of the network hardware to be replaced with components that are capable
of executing active applications. As was already discussed in section 2.1.3, his-
torical evidence strongly counts against such a requirement due to the serious
financial repercussions which it entails. In particular, economical considera-
tions have prohibited technologies with similar requirements, like for instance

2.6 A Taxonomy of QoS/QoE Frameworks 47

the IntServ and DiffServ QoS architectures, from obtaining wide-scale adop-
tion. Notice that since an active network will typically require a vast number
of active nodes to unveil its full potential, the necessary financial investments
are even likely to exceed those that are required for an IntServ or DiffServ
deployment.

A final observation which pleads against the AN approach is the limited
attention which it currently seems to be receiving. Whereas the AN research
initially flourished under impulse of the DARPA funding, the interest in the
topic appears to have rapidly dwindled. This is for instance exemplified by
the just described open challenges: a lot of these issues were already identified
in the position paper by Tennenhouse and Wetherall [Tennenhouse 96], but
to date remain unsolved. The decrease in activity may imply that researchers
(and research sponsors) are ever less convinced of the potential and/or eco-
nomical feasibility of the AN paradigm.

In contrast, the NIProxy does not break the current networking model,
nor is it a radically novel concept. Conversely, the NIProxy represents a prag-
matic solution to user QoE optimization that is readily utilizable in existing
IP-based networks and, in particular, the Internet. The NIProxy does not
match the active networking approach in terms of traffic engineering options
and the thereby enabled QoE optimization possibilities. As an example, per-
forming operations and optimizations at the network or transport layer of the
protocol stack will typically be much less straightforward to achieve (if even
possible at all). This is explained by the larger scope of the active network-
ing paradigm: the NIProxy was never intended to be a generic architecture
which enables the operation of the network to be completely programmable.
Instead, it aims to be a cost-effective solution for user QoE optimization with
an exclusive focus on application-layer techniques. Finally, with regard to eco-
nomic considerations, notice that the NIProxy’s functionality does not come
for free since the networking substrate will need to be extended with NIProxy
instances. It will however commonly suffice to insert instances at a limited
number of strategic locations within the network topology (see section 3.5);
as a result, the required financial investment will normally only be marginal.

2.6 A Taxonomy of QoS/QoE Frameworks

The literature review that has been presented thus far has uncovered a num-
ber of divergent criteria according to which systems that are concerned with
QoS and/or QoE provision can be categorized. To conclude this chapter, the
most relevant of these possible classification axes will be recapitulated and the
NIProxy will be situated on each of them.

48 Background and Related Work

A first significant classification criterion is the level of the layered network-
ing model at which the framework conceptually operates (see section 2.1.1).
The IntServ and DiffServ architectures that have been described in section
2.1.3 are examples of low-level (i.e., network-layer) solutions. The NIProxy
on the other hand operates exclusively at the application layer, the topmost
echelon of the layered networking model. This implies that the NIProxy ap-
proaches the problem of user QoE optimization purely from the perspective
of the distributed application itself and that it does not rely on low-level,
potentially specialized constructs during its operation.

Secondly, QoS/QoE frameworks can be orthogonally categorized on the
basis of their compatibility with prevailing networking technology and, in par-
ticular, the Internet. The discussion in this chapter has indicated that, broadly
speaking, two methodologies exist to address the lack of QoS/QoE provision
features in present-day transportation networks. The first approach consists of
designing and deploying a new generation of networks with adequate, built-in
QoS/QoE optimization support, without worrying about compliance with the
current Internet architecture and protocols during the process. Dovrolis refers
to this approach as the clean-slate paradigm [Dovrolis 08]. Example solutions
in this category are the IntServ and DiffServ platforms (see section 2.1.3) and
systems that adhere to the Active Networking model (see section 2.5). The sec-
ond methodology proposes to maintain current networks and to extend them
with novel functionality where needed. An important objective of this class
of evolutionary solutions is hence not to break the network architecture that
is in place today. Since the NIProxy strives for complete compliance with the
Internet, it belongs to this latter category. The two methodologies have oppo-
site advantages and drawbacks [Dovrolis 08]. In particular, while a clean-slate
design is likely to yield a completely optimized and highly efficient solution,
it suffers from cost-efficiency issues since it discards not only the tremendous
financial investments that have been made over the last decades in terms of
Internet infrastructure, but also the practical experience and empirical know-
how that have been accumulated through years of extensive usage. In contrast,
since evolutionary solutions largely reuse the existing Internet hardware and
know-how, they are characterized by a minimal time-to-market and modest
deployment costs; the disadvantage of their compatibility on the other hand is
that it limits their operational possibilities and that it will likely prevent them
from achieving optimal results. Which of these methodologies represents the
most suitable approach to introduce worldwide QoS/QoE provision support
is a highly subjective question that largely depends on the mindset of the
practitioner. Empirical evidence however largely points in the direction of the
evolutionary approach: despite the relative maturity of a number of proposed

2.6 A Taxonomy of QoS/QoE Frameworks 49

clean-slate technologies such as IntServ and DiffServ, they have seen far from
universal adoption due to the huge financial commitments which they require.

A final interesting measure for classification is deployment location. In
particular, systems for QoS/QoE optimization can be characterized as being
either end-system or in-network located solutions. End-system frameworks
need to be integrated in the distributed application itself (commonly the client
software but sometimes also the server software). This is typically the most
straightforward way to support QoS/QoE provision. On the other hand, end-
system approaches are likely to require considerable effort from the application
developer. Concrete examples of end-system solutions include the Congestion
Manager framework that has been described in section 2.4.1 and the server-
side transcoding approach proposed by Chandra et al. (see section 2.4.2). The
second category consists of solutions that are deployed inside the network (e.g.,
hosted on network proxies). The NIProxy obviously falls under this category.
An attractive feature of such solutions is their reusability: contrary to end-
host located approaches, the functionality of in-network solutions can usually
be readily leveraged by multiple distributed applications simultaneously. This
is especially important for commercial products since high applicability max-
imizes potential revenue. An additional advantage of network-based solutions
over end-system alternatives emerges in multi-application environments. A
user might be running multiple distributed applications concurrently. If in
this case the QoS/QoE support is embedded in the applications themselves,
correct interoperation between the different approaches might not be guar-
anteed, which in turn will yield outcomes that are suboptimal at best. In
contrast, an in-network framework is in such situations capable of maintain-
ing a global picture and will hence allow for the generation of optimized results.
As a final remark, the class of network-based systems can be further subdi-
vided into completely generic and transparent solutions on the one hand and
hybrid solutions which demand (modest) modifications to the software of the
distributed application on the other. In the latter case, the necessary end-host
software modifications will typically be confined to interfacing concerns, while
the bulk of the actual QoS/QoE functionality will still be located inside the
transportation network. As will become apparent in section 3.4, the NIProxy
is an example of such a hybrid solution.

Part I

Network Intelligence Proxy

Overview

This part forms the “theoretical” portion of the dissertation as it will pro-
foundly discuss the Network Intelligence Proxy. In particular, this part aims
to familiarize the reader with the NIProxy and its approach to QoE optimiza-
tion. This will be done in a top-down fashion. As a result, chapter 3 will first
provide an overview of the NIProxy’s fundamentals and intended purposes.
In addition, it will outline the methodology which the NIProxy adheres to to
achieve its objectives. Technical details have been deliberately omitted from
this initial chapter since it is specifically intended to serve as an entry point
into the biotope of the NIProxy. The two subsequent chapters are dedicated
to the traffic engineering techniques that are incorporated in the NIProxy
and that enable it to influence the QoE of users of distributed applications.
More specifically, chapter 4 will describe the NIProxy’s bandwidth brokering
and network traffic shaping functionality, whereas chapter 5 will dilate on
its support for hosting services and for applying them to transiting network
traffic. The rationale behind both techniques will be presented, as well as cru-
cial decisions regarding their design and implementation. Both chapters will
also present a representative example to further clarify the operation of the
described traffic engineering mechanism. Chapters 4 and 5 hence already en-
compass a certain amount of technical information, but still primarily provide
relatively high-level descriptions. All implementation-related information is
namely clustered in chapter 6, the final chapter in this part, which will discuss
the design of the NIProxy’s software architecture and which will describe the
low-level details of its implementation.

Chapter 3
Objectives and Methodology

The Network Intelligence Proxy (NIProxy) is a context-aware proxy server
or network intermediary. Like any proxy, it needs to be included in the net-
work topology, where it needs to be interposed in the network path between
sources and destinations. The objective of the NIProxy can be summarized as
maximizing the satisfaction or QoE of users of distributed applications. The
NIProxy attempts to achieve this objective by outfitting IP-based transporta-
tion networks with traffic engineering tools to enable them to actively control
and possibly adapt the network communication behavior of distributed appli-
cations. Wherever possible, the NIProxy’s traffic management decisions are
coordinated by its accumulated contextual knowledge.

3.1 Context Introduction in the Network

As alluded to by its name, the NIProxy’s methodology is centered around the
introduction of “intelligence” or “awareness” in the networking infrastructure.
To fill up its intelligence repository, the NIProxy actively collects contextual
information that can be categorized into three distinct groups.

56 Objectives and Methodology

3.1.1 Network Awareness

The first context source that is queried by the NIProxy is the transportation
network and the contextual knowledge in this case takes the form of quantita-
tive network-related measurements and statistics. To obtain this type of data,
the NIProxy encompasses an active network probing framework which enables
estimation of the throughput, latency and error characteristics of communica-
tion links [Wijnants 05b]. The framework is largely inspired by the work by
Wolski [Wolski 97b]. As is illustrated in Figure 3.1, link latency is measured
by recording the time that passes between transmitting an arbitrarily small
probe and receiving an acknowledgment for it. This amount of time actually
equals the round-trip time; dividing it by two yields an estimate of the link
latency (assuming a symmetrical delay in both directions). To determine the
throughput of a network link on the other hand, the framework times how
long it takes to emit a probe packet of significant size (e.g., 1000 bytes) and
to receive an acknowledgment for it. The link bandwidth capacity can sub-
sequently be calculated by dividing the used probe size by the recorded time
minus the measured round-trip time. In mathematical notation, using the
terminology from Figure 3.1:

estimated throughput =
data size

data transfer time− estimated RTT
(3.1)

Finally, for each monitored network link, the framework also stores the total
number of transmitted probes and the number of probes that were not ac-
knowledged before a predefined time-out interval (meaning either the probe
got lost on the link, or the acknowledgment did). These figures provide an
insight in the error characteristics and, in particular, the packet loss rate of
the communication link.

The network sensing framework is exploited to periodically probe the net-
work links which connect the NIProxy to the end-points of the distributed
applications which it is currently servicing. The outcome are measurements
which provide the NIProxy with a snapshot of the state of network connections
at a given moment in time. It is possible for this state to fluctuate consider-
ably over time. Also, the produced link measurements might not always be
completely accurate. The network probing framework therefore incorporates
a prediction engine. In particular, each time a certain network connection was
successfully probed, the results are combined with the measurements obtained
during previous probing iterations to forecast the future state of the connec-
tion. The prediction engine employs mean- and median-based predictors for
respectively forecasting future link throughput and latency [Wolski 97a].

3.1 Context Introduction in the Network 57

Figure 3.1: Link latency and throughput determination using active probing.

It is apparent that the NIProxy’s incorporated network probing framework
is relatively rudimentary and that it is mostly suitable for estimating the per-
formance of singular network links and wired connections which encompass
only of a restricted number of intermediate hops. Accurate estimation of the
capacity of multi-hop routes or complex network connection types like for in-
stance wireless channels is likely to require more advanced network probing
techniques. It is important to note however that such techniques (e.g, the
pathvar tool by Jain and Dovrolis [Jain 05]) could readily be integrated in
the NIProxy. Furthermore, it is not a requisite that the network-related mea-
surements are computed by the NIProxy itself. This information could for
instance just as well be derived from network simulation outcomes or it could
be obtained by contacting external entities that are specialized in network
performance estimation (e.g., the Spirent SmartBits hardware [Spirent 10]).
To summarize, although the currently implemented network sensing frame-
work might prove unfit to accurately estimate network channel performance,
it is nonetheless appropriate to assume that the NIProxy disposes of adequate
network-related measurements and information.

Finally, besides awareness of the status of the transportation network and
prevailing channel conditions, the NIProxy’s network awareness also com-
prises knowledge of the bandwidth requirements of network flows. To acquire

58 Objectives and Methodology

this knowledge, the NIProxy simply monitors the network traffic that passes
through it and records its bandwidth consumption.

3.1.2 Application Awareness

The second type of context which is amassed by the NIProxy consists of in-
formation regarding the serviced distributed applications. The context source
in this case is the distributed application itself. Applications can provide the
NIProxy with any application-related knowledge which they deem relevant
or that may be valuable with regard to the QoE optimization process. As
a result, the NIProxy’s application-related context might vary considerably
depending on the kind of distributed application under consideration. As an
example, due to their radically divergent requirements and characteristics, the
application context for respectively a multi-player computer game and a video
conferencing application will most likely be completely different. As a general
rule however, the more context the distributed application forwards, the more
information the NIProxy will have at its disposal to direct its operations and
hence the higher the probability of successful QoE optimization will be.

One possible example of knowledge which could contribute to the NI-
Proxy’s application context is the relationship, in terms of importance or
significance, that exists between the network traffic that is generated by a
distributed application. All but the simplest distributed applications typically
require the simultaneous dissemination of heterogeneous types of data (e.g.,
control messages, voice data, audio and/or video feeds, file data, etcetera).
These different traffic classes will typically not be equally crucial for the cor-
rect functioning of the application. For instance, the loss of control data is
likely to have a largely detrimental impact on the operation of the application
and might even lead to undefined behavior. Failure to receive a number of
voice or video packets will on the other hand probably be less problematic.
It might hence be wise for the application to inform the NIProxy of this in-
equality in the importance of network traffic types so that it can be taken
into consideration during QoE optimization. As an example, based on this
knowledge the NIProxy could decide to give the transmission of control traffic
precedence over voice or video dissemination. Besides importance disparity be-
tween network traffic classes, intra-class significance differences are also likely
to occur. In other words, the influence on user QoE of individual network
flows within one particular network traffic class might also vary considerably.
Consider a video conferencing application as an example. The relevance of
individual video streams, which in this case each represent a certain remote
participant, will probably fluctuate throughout the video conferencing session

3.1 Context Introduction in the Network 59

(e.g., a participant who was previously passively attending the conference now
starts to actively partake in the current discussion). Also relaying such intra-
class flow importance information enables the NIProxy to take deliberate per
flow decisions.

3.1.3 Terminal Awareness And User Preferences

The NIProxy’s final context category concerns knowledge of the end-user ter-
minal. In the early days of computer networking, the devices employed by
users to connect to networks and to run distributed applications uniformly
consisted of desktop computers which all exhibited comparable capabilities
and constraints. Due to the popularization of handheld devices and users’
rising interest in mobile network access, we are now however living in an era
of ubiquitous and pervasive computing. A direct consequence of this evo-
lution is the loss of uniformity in the end-user device space. The range of
network-capable devices grows larger every day, each having specific features,
characteristics, limitations, hardware support and so on. It seems appropriate
for a user experience optimization framework like the NIProxy to be able to
react to such heterogeneity. Terminal awareness for instance allows for the
delivery of content that is tailored to the capabilities of the device from which
it was requested. As an example, due to their limited screen size, handheld
devices need to spatially downscale high-resolution images or video fragments
before such content can be displayed. Since the bandwidth requirements and
processing overhead (caused by, for instance, decoding) is directly proportional
to the resolution of the content, a more resource-efficient strategy would be
to enforce resolution reduction prior to delivering the content to the handheld
device.

Several solutions have been developed for the representation of terminal
capabilities. The majority of the early approaches were based on proprietary
formats. The main drawback of such proprietary specifications is their in-
compatibility. Distributed applications which employ different formats will
not be able to exchange terminal information with each other. As over the
years the number of proprietary solutions proliferated, the need for consensus
became ever more apparent and led to the development of two standardized
specifications. The first standard, Composite Capability/Preference Profiles
(CC/PP) [Woodrow 04], is maintained by the World Wide Web Consortium
(W3C), the main international standards organization for the World Wide
Web (WWW). Unsurprisingly, the CC/PP standard concentrates on WWW
issues and in particular on enabling handheld devices such as cell phones and
PDAs to efficiently and effectively access Web content [Gimson 03]. The Us-

60 Objectives and Methodology

age Environment Description (UED) standard [ISO/IEC 04] on the other hand
has been developed by the Moving Picture Experts Group (MPEG) as part of
their MPEG-21 multimedia framework [ISO/IEC 02]. CC/PP and MPEG-21
UED are XML-based and both also support, besides terminal characteristics,
the specification of user preferences.

Of both standards, MPEG-21 UED was selected for terminal awareness
acquisition in the NIProxy. This decision is motivated by the standard’s con-
siderable focus on multimedia. As improving the multimedia handling capabil-
ities of transportation networks forms an important aspect of the NIProxy’s
user QoE optimization objective, MPEG-21 UED provides exactly the fea-
tures which the NIProxy requires from a language for terminal capabilities
specification.

MPEG-21 UED divides the description of the usage environment into the
following four dimensions [Vetro 05]:

• The terminal capabilities category describes the end-user device itself
and includes information regarding

– hardware properties; e.g., processor speed, storage characteristics
and memory capacity

– software properties; e.g., information concerning the operating sys-
tem and media format support

– display capabilities; e.g., screen resolution and supported refresh
rates

– user interaction support; e.g., the presence of a microphone or a
pointing device

– power characteristics; e.g., remaining battery lifetime

• Knowledge of the network connection of the device is grouped in the net-
work characteristics category; elements are provided to describe not
only static network properties like, for instance, the theoretical through-
put of the connection, but also to communicate the current condition of
the network connection, which can fluctuate dynamically over time

• The user characteristics class enables the representation of the user
and his preferences; it encompasses elements to denote

– the user itself; e.g., user name and e-mail address

– possible auditory or visual impairments of the user; e.g., deafness
or color vision deficiency

3.2 Traffic Management Techniques 61

– the user’s physical location and mobility characteristics

– content, presentation and modality conversion preferences; e.g., to
which type of content does the user give preference and exactly how
does the user want this content to be presented on his terminal?

• The natural environment characteristics pertain to the natural and
physical environmental conditions that surround the user like, for in-
stance, lighting properties and background noise level

An example MPEG-21 UED document, which specifies characteristics and
properties from each of the four usage environment description categories, is
provided in appendix B.

Important to notice is that the NIProxy does not define how terminal
information and user preferences should actually be determined. Some of the
terminal’s properties could for example automatically be detected by executing
hardware analysis tools on the end-user device. Other information might be
explicitly provided by the user, for instance through a Graphical User Interface
(GUI). The only requirement that is imposed by the NIProxy is that the
terminal and user preferences data is provided in the form of a valid MPEG-
21 UED profile.

Support for terminal and user awareness has only fairly recently been in-
corporated in the NIProxy. The suitability of the MPEG-21 UED standard for
representing this context category and the validity of the followed approach
have both been confirmed by means of small-scale pilot studies in dedicated
test environments [Creemers 09]. However, the added value and true potential
of terminal and user awareness with regard to QoE optimization has yet to
be determined. In particular, involving it in more extensive experiments and
realistic environments represents an interesting direction for future research.
Notice that this implicates that all the experimental results that will be pre-
sented in part II of this dissertation have been achieved without considering,
let alone exploiting, this particular type of context.

3.2 Traffic Management Techniques

Gathering contextual information by itself of course does not enhance the
user experience, it is merely a means which enables it. The NIProxy there-
fore exerts its contextual awareness to improve the multimedia traffic han-
dling capabilities of IP-based networks and hence to enable them to influence
user satisfaction. This is achieved by furnishing the transportation network
with two complementary traffic engineering facilities. The provided techniques

62 Objectives and Methodology

Figure 3.2: Inbound versus outbound traffic engineering.

are network traffic shaping and multimedia service provision and will be pro-
foundly discussed in chapters 4 and 5, respectively. In summary, the network
traffic shaping functionality enables the coordination and orchestration of the
bandwidth consumption of the network traffic that is induced by distributed
applications; its multimedia service provision framework on the other hand al-
lows the NIProxy to act as a service delivery platform and as such unlocks the
possibility to process the (multimedia) data that flows through the network
in a theoretically boundless manner.

As section 5.2 will describe in more detail, its dual traffic engineering facil-
ities are not incorporated in the NIProxy as independent elements; instead, an
integrated design has been adopted which enables both techniques to supple-
ment each other and to cooperate during QoE optimization. This approach
distinguishes the NIProxy from many related frameworks (see the findings
from the literature review in section 2.4 for corroboration) and forms an im-
portant contribution to the field of QoE optimization research. In particular,
the experimental results which will be presented in part II of this dissertation
will confirm that this symbiotic solution yields powerful extra possibilities in
terms of QoE optimization that are not available in case both mechanisms are
applied in isolation from each other.

3.3 Inbound and Outbound Optimization

The NIProxy’s dual traffic engineering techniques can be applied in the in-
bound as well as outbound flow direction. As Figure 3.2 clarifies, these terms
are defined from the viewpoint of a NIProxy-managed client:

3.4 Network Intelligence Layer 63

Inbound Network data that is destined for a NIProxy client is said to follow
the inbound flow direction. Stated differently, inbound network traffic
is emitted by a certain source, intercepted by the NIProxy and then
(possibly) forwarded to one or more hosts which it is currently servic-
ing. Possible synonyms for the inbound keyword are “incoming” and
“downstream”.

Outbound Outbound network traffic is defined as the collection of network
flows for which a NIProxy client acts as source. In other words, the
outbound keyword is employed to denote network flows which originate
from hosts that are connected to a NIProxy instance. Possible synonyms
include “outgoing” and “upstream”.

Notice that situations may arise in which two hosts which are both man-
aged by a NIProxy instance (conceivably even the same instance) are engaged
in a communication session. In such a scenario, the data that is exchanged
between both hosts will conceptually follow the inbound flow direction from
the perspective of one host, while the other will regard it as outbound traffic
(and vice versa in the case of bidirectional data transmission).

For inbound network flows, the goal of the NIProxy’s network traffic shap-
ing mechanism exists of regulating and optimizing their downstream delivery
to the NIProxy client. In contrast, in the outbound flow direction, the up-
stream bandwidth consumption of the network traffic which is transmitted by
the NIProxy client itself will be managed. Regarding the multimedia service
provision platform, inbound services will be applied to data that is destined
for the NIProxy client, whereas outbound services will process network flows
which originate from such a client.

Of the two supported flow directions, inbound network traffic shaping and
multimedia service provision is likely to have the largest and most immediate
impact on the QoE that is experienced by the NIProxy client. The majority
of the discussions in part I and the results in part II of this doctoral thesis will
therefore focus on the inbound course. An exception to this rule is chapter 10,
which is specifically devoted to outbound traffic engineering and which will
exemplify that outbound bandwidth brokering and service delivery also have
a number of meaningful applications that might, most plausibly indirectly,
influence user QoE.

3.4 Network Intelligence Layer

As could have already been inferred from the discussion thus far, the NIProxy
is, contrary to a typical web proxy, not a transparent network intermediary.

64 Objectives and Methodology

Figure 3.3: The Network Intelligence Layer (NILayer) support library.

Clients of distributed applications need to explicitly connect to and commu-
nicate with a NIProxy instance before they can take advantage of its QoE
optimization features. The communication between the NIProxy and the dis-
tributed application in addition needs to adhere to a proprietary protocol, the
so-called Network Intelligence (NI) protocol.

The fact that the NIProxy is not transparent implies that the software of
the distributed application will need to adapted. To streamline this process
and to minimize the amount of required modification effort, a generic support
library called the Network Intelligence Layer (NILayer) has been developed
for inclusion in the application software. As Figure 3.3 illustrates, the support
library conceptually positions itself between the application and transport lay-
ers of the TCP/IP protocol stack and implements all low-level aspects related
to client-NIProxy communication. In particular, the NILayer implements the
NI protocol at client-side and exports an API for

• initiating connection setup and executing the log in procedure

• supplying the NIProxy with application-related context

• serializing and propagating MPEG-21 UED profiles containing terminal
characteristics and user preferences data

• constructing and managing the stream hierarchy maintained by the NI-
Proxy (see section 4.7)

3.4 Network Intelligence Layer 65

• registering and unregistering application-layer protocols (see section
6.2.3)

In addition, the support library automates the process of responding to net-
work probes issued by the NIProxy. The NILayer and its exported API hence
for a large part relieve the distributed application from the responsibilities
which the NIProxy imposes on it.

In the connection setup phase, the NILayer first establishes a Transmis-
sion Control Protocol (TCP) connection between the application software and
the NIProxy. On success, the TCP channel will be used to implement the NI
protocol, starting with the log in procedure. In other words, all NI protocol
commands will always be transmitted over this connection. This approach
is motivated by TCP’s reliability and ordered delivery features [Postel 81b];
these are very interesting assets for this type of communication since failed
and, to a lesser extent, out-of-order protocol command delivery will typically
be unacceptable. Once the log in procedure has completed successfully, the
NILayer supplements the TCP link with a connection of the User Datagram
Protocol (UDP) type. UDP provides none of TCP’s communication guaran-
tees, which makes it a lightweight transport-layer protocol that is very suitable
for the transmission of time-sensitive data [Postel 80]. The exchange of effec-
tive data (i.e., actual data as opposed to NI protocol commands) between
the distributed application and the NIProxy can be carried out over either
the TCP or UDP channel, depending on its characteristics and requirements.
Delay-insensitive yet loss-intolerant data like, for instance, an image is likely
to benefit from the transportation guarantees that are offered by the TCP con-
nection. UDP on the other hand is presumably the recommended candidate
for the propagation of time-critical information and for real-time streaming
purposes. In either case, data dissemination between the distributed appli-
cation and the NIProxy will always occur in a unicast fashion, irrespective
of the network communication strategy that is adhered to by the distributed
application itself (see section 6.2.3 for more information).

The NILayer support library has been designed for reusability and maxi-
mal applicability. It has deliberately been kept as generic as possible to en-
sure that it can be incorporated in a wide variety of distributed applications.
Consequently, any application-specific functionality and knowledge has been
barred from the support library; instead, it only provides general functional-
ity that is potentially useful to a multitude of distributed applications. Note
that this implies that the NILayer facilitates the NIProxy-related tasks that
are imposed on the distributed application rather than completely eliminating
them.

66 Objectives and Methodology

Figure 3.4: Introducing an intermediate NILayer auxiliary application to en-
able closed-source application to benefit from NIProxy functionality.

Modifying distributed applications might somtimes prove problematic or
even completely impossible, for instance in the case of legacy or closed-source
software. A possible solution to this problem is to exploit the NILayer to
implement a separate auxiliary application which is subsequently deployed in
close proximity to the application end-point (i.e., ideally it would be deployed
on the device on which the distributed application is running). As is depicted
in Figure 3.4, the NILayer auxiliary application will take care of the communi-
cation with the NIProxy on behalf of the distributed application, which hence
will not require modification. For instance, since the auxiliary application is
topologically located very near to the end-point of the distributed application,
the network awareness that is obtained by probing the auxiliary application
will for a large part also apply to the distributed application itself. As another
example, by sniffing and interpreting the network traffic that originates from
and is destined for the application end-point, the auxiliary application might
be able to supply the NIProxy with (a limited degree of) application-related
context. It is apparent however that this strategy should only be used as a
last resort since it will normally not allow the distributed application to reap
the full potential of the NIProxy. This will in turn yield QoE optimization
results that are suboptimal at best. Stated differently, whenever possible, di-
rect integration of the NILayer support library in the distributed application
software is largely advocated.

3.5 Deployment 67

3.5 Deployment

There are theoretically no constraints on the location where the NIProxy can
be incorporated in IP-based transportation networks. Not all locations in
the network topology are however equally fit for NIProxy deployment. To
maximize its QoE optimization potential, the NIProxy should be deployed at
(or close to) junction points where network performance alters significantly.
Doing so will enable the NIProxy to mitigate the mismatch in network per-
formance that exists at these locations by managing and possibly adapting
network traffic before it reaches the lesser performant part of the network.
Stated differently, at such junction points, the NIProxy can exert its traffic
engineering functionality to guarantee that the resource consumption of the
distributed application conforms to the limitations of the remainder of the net-
work connection and, more importantly, to make deliberate decisions about
the exploitation of the capacity that is actually available so that the user’s
QoE is maximized.

An example of a promising location for NIProxy deployment in a Wide
Area Network (WAN) context is the conceptual boundary between the core of
the network and the access network. Whereas the network core will usually be
sufficiently capacitated to transport all network traffic that is introduced by
the distributed application, the same will not necessarily be true for the access
network. In a setting involving residential users for instance, this boundary
manifests itself at the ISP gateway where the user’s last mile connection is
linked to the ISP backbone (e.g., at DSLAM level in xDSL-based access net-
works). Analogously, another suitable location to incorporate the NIProxy is
at the transition from a wired to a wireless network. As a result, it might be
interesting to coincide the NIProxy with a wireless access point.

No restrictions apply to the number of NIProxy instances that can be si-
multaneously deployed in one particular communication network. Especially
for large-scale networks (e.g., the Internet) it would make sense to incorpo-
rate multiple NIProxy instances. By scattering NIProxy instances over the
network topology, it becomes possible for users at geographically dispersed
locations to concurrently benefit from the NIProxy’s QoE optimization op-
erations. Users could in this case connect to one of the NIProxy instances
that are deployed nearby in the network topology so that a bounded client-to-
proxy hop count and delay is guaranteed. Another possible motive for multi-
ple NIProxy instance deployment is load balancing and scalability. The QoE
optimization operations that are performed by the NIProxy might require sig-
nificant amounts of computational power. This is particularly true for the NI-
Proxy’s multimedia service provision mechanism since services might be espe-

68 Objectives and Methodology

Figure 3.5: Offloading NIProxy instance selection responsibility to a central-
ized management entity.

cially computationally intensive. A representative example is the static video
transcoding service that will be presented in section 5.3. As will be described,
this service enables on-the-fly reduction of the bitrate of H.263-encoded video
fragments via transcoding, which is a time-consuming and complex operation.
Since the computational power of the devices on which the NIProxy instances
are hosted is not limitless, they might become overwhelmed as the number
of connected clients rises. Overloaded NIProxy instances are likely to stop
functioning as expected or required, which in turn might yield poor QoE opti-
mization results. Deploying additional NIProxy instances on separate devices
is a straightforward approach to address this issue. A more advanced solution
might involve the (temporary) transfer of computational tasks from a heav-
ily loaded NIProxy instance to a more idle peer. At the moment, such task
transfer functionality is however not yet supported.

In case multiple NIProxy instances are available, the transportation net-
work should ideally also include a management entity which automates the
process of NIProxy instance selection for clients. In particular, the manage-
ment entity would be responsible for assigning clients to a particular NIProxy
instance. As is illustrated in figure 3.5, in this setup, a new client would
connect to the manager instead of directly to a particular NIProxy instance.
The manager would then reply with the IP address of the NIProxy instance
to which the client should connect. The management element could base
its client allocation decisions on multiple factors, including client/NIProxy

3.6 The NIProxy as Part of Larger QoE Frameworks 69

network proximity and current NIProxy load. Exploratory research in this
direction has already been performed [Sels 09].

3.6 The NIProxy as Part of Larger QoE Optimiza-
tion Frameworks

Ideally, a QoE optimization system like the NIProxy should be able to satisfy
the QoE requirements of users of all possible distributed applications. Due to
the large diversity in user expectations and preferences, application charac-
teristics, possible multimedia content optimizations and so on, this is however
neither a realistic nor practically feasible objective. The NIProxy provides a
number of QoE optimization options that are potentially useful to a multitude
of distributed applications. Using the NIProxy as a stand-alone entity is hence
definitely justifiable as it will in many situations lead to an improvement in
the QoE witnessed by the user. The NIProxy could however also be combined
with other QoE management components, preferably solutions which concen-
trate on forms of QoE optimization which are not explicitly addressed by the
NIProxy. By intelligently coordinating and exploiting the particular features
and specialisms of its composing elements, such an integrated framework will
normally be able to produce improved QoE optimization results that are not
attainable by any of its constituting components individually. Examples of
the enhanced QoE optimization potential of collaborating QoE systems will
be presented in chapters 12 and 13.

Chapter 4
Network Traffic Shaping

Network traffic shaping (NTS) is the first traffic engineering facility that is
provided by the NIProxy to enable IP-based networks to influence the QoE
of users of distributed applications. The NIProxy’s accumulated contextual
knowledge is in this case exploited to in-network orchestrate the bandwidth
consumption of distributed applications. An important objective for the NTS
process is to ensure that distributed applications respect their available band-
width capacity, since failure to do so might result in over-encumbered network
connections and hence congestion. This in turn is likely to have seriously detri-
mental effects on the quality of the data dissemination. Within the constraints
of the bandwidth availability, the NTS process is responsible for deciding how
bandwidth should be distributed among the network flows that are involved
in the execution of the distributed application. As an example, in case of
a drop in available throughput, how should network flow bandwidth assign-
ment be reshuffled? Due to the high throughput requirements and sensitivity
to packet loss (a common consequence of network congestion) of multimedia
content, network traffic shaping forms an important tool to arm transportation
networks against the complications that are introduced by the dissemination
of this type of data. This chapter will provide an in-depth description of

72 Network Traffic Shaping

the operation and implementation of the NIProxy’s network traffic shaping
framework.

4.1 Arranging Network Traffic in a Stream Hierar-
chy

The NIProxy implements network traffic shaping by organizing network flows
in a stream hierarchy [Monsieurs 05][Wijnants 08b]. The goal of this tree-like
structure is to capture the relationships that exist between network traffic that
is introduced by a distributed application. The stream hierarchy supports both
fine- and coarse-grained relationship expression, as relations can be defined on
a per flow basis as well as using flow aggregates. In other words, the stream
hierarchy enables the specification of bandwidth distribution guidelines for

• individual network flows (e.g., how should bandwidth be apportioned
among audio stream X and video stream Y?)

• collections of network flows (e.g., what is the relationship between audio
traffic and video traffic as a whole and how should bandwidth hence be
distributed over both traffic classes?)

The body of the stream hierarchy is formed by internal nodes which each
implement a certain bandwidth distribution strategy. As such, they dictate
the bandwidth allocation process. Leaf nodes on the other hand do not provide
any NTS functionality but instead represent actual network streams (e.g., a
particular video flow). Multiple classes of internal as well as leaf nodes exist,
each having specific characteristics and modi operandi. These will be described
in sections 4.2 and 4.3, respectively.

The NIProxy’s network traffic shaping operation is controlled entirely by
the types of internal nodes that are used and the way these nodes are composed
to model the general layout of the stream hierarchy. Once this layout has
been constructed and assuming the stream hierarchy is kept up-to-date (e.g.,
newly initiated network flows are adequately incorporated in it), performing
network traffic shaping simply amounts to appointing the correct bandwidth
amount to the hierarchy root node. The internal nodes, commencing with
the root node, will recursively distribute their assigned bandwidth value over
their children according to the bandwidth distribution scheme which they
implement. Eventually, portions of the total bandwidth capacity will reach
one or more leaf nodes in the stream hierarchy, at which point this bandwidth
amount will be reserved for the transmission of the network stream that is
associated with the leaf node.

4.2 Internal Node Types 73

To be able to cater to dynamic events and to guarantee that the produced
bandwidth allocation will at all times be correct, the NIProxy periodically
repeats the NTS process. Such a dynamic event could for instance be the
termination of a network flow. As a network flow ceases to exist, it should be
removed from the stream hierarchy and the bandwidth designation should be
revised since any bandwidth that was previously reserved for the terminated
stream has become available for distribution over the remaining flows. Another
example of a possible dynamic event is a shift in the relationship between
network flows or flow aggregates, which necessitates a readjustment of the
bandwidth partitioning among the involved (collections of) flows.

The stream hierarchy methodology for managing the bandwidth consump-
tion of distributed applications consumes computational resources. Given the
periodic repetition of this process, care has to be taken to minimize the com-
putational overhead which it introduces. This is achieved by the incorporation
of a caching scheme for bandwidth allocation values in the stream hierarchy.
Only for subtrees that were affected by a dynamic event or that have changed
since the previous NTS iteration, new bandwidth distribution results will be
calculated (and subsequently cached). Nodes belonging to unaltered stream
hierarchy subtrees simply reuse their cached value since recalculation would
in these cases yield an identical result and would hence merely waste scarce
computational resources.

4.2 Internal Node Types

The internal nodes structure the stream hierarchy and steer the bandwidth
brokering process by designating bandwidth to their children in a specific
manner. This section will provide a detailed description of the bandwidth
allocation behavior that is implemented by the different types of internal nodes
[Wijnants 08b].

4.2.1 Mutex

The most simple type of internal node is the Mutex. As alluded to by its
name, it implements mutual exclusion behavior. The shared resource in this
case equals the bandwidth that has been reserved for the Mutex node, while
the entities that compete for this resource correspond to the child nodes. In
other words, a Mutex node ensures that at all times at most one of its chil-
dren will consume bandwidth. The child selection procedure is a function of
both the available bandwidth amount and the bandwidth requirements of the
children. More specifically, the distributable bandwidth BW is allotted in its

74 Network Traffic Shaping

Figure 4.1: Example Mutex node operation.

entirety to the child node which exhibits the largest still satisfiable bandwidth
requirement (i.e., the child with the highest bandwidth consumption ≤ BW);
none of the other children will receive any bandwidth. In case no child node
with reconcilable bandwidth demands exists, the subtree that is rooted at the
Mutex node will consume no bandwidth at all.

Figure 4.1 illustrates the bandwidth distribution approach that is imple-
mented by the Mutex node type through a simple example. The entire band-
width amount that is available to the Mutex node is dedicated to C, the child
node with the largest still satisfiable bandwidth requirement. As a result, the
complete Mutex subtree consumes 80 BW. The superfluous capacity, 20 BW,
remains unused and becomes available for use by siblings of the Mutex node
in the stream hierarchy, if any.

4.2.2 Priority

Children of this type of internal node have a priority value p ∈ N associ-
ated with them and bandwidth is partitioned statically in order of descending
priority. In particular, the bandwidth amount BW that is available to the
Priority is first allocated to child node c with the largest priority value pc ,
resulting in a child bandwidth consumption of BWc ≤ BW . In case this child
does not fully consume the bandwidth amount which it was assigned, the
excess bandwidth (i.e., BW − BWc) is subsequently designated to the node
with the second largest priority value. This process is repeated until either all
available bandwidth has been distributed or all children have been considered.
In summary, Priority children are allocated the fraction of BW that is left
unconsumed by peer nodes with a higher priority value.

An illustrative example of the Priority node’s operation is depicted in
Figure 4.2. As node D has the highest priority value, it is first presented the
distributable bandwidth and consumes half of it. The remaining 50 BW is

4.2 Internal Node Types 75

Figure 4.2: Example Priority node operation.

subsequently made available to node C, which has the second highest priority
value. The dedicated amount however does not suffice to satisfy C’s bandwidth
requirements and hence C consumes no bandwidth. Finally, nodes B and A are
considered, in this order, and respectively granted 50 and 40 BW, which results
in a respective bandwidth consumption of 10 and 20 BW. The accumulated
bandwidth usage of the Priority subtree hence equals 80 BW.

4.2.3 Percentage

The Percentage internal node type implements a two-phase bandwidth reg-
ulation process. The Percentage node starts by granting each child c its cor-
responding percentage value pc ∈ [0 , 1] of the distributable bandwidth BW .
In other words, child c is apportioned a bandwidth amount

BWc = pc × BW

Child percentage values are hereby scaled so that they sum up to unity:∑
children

[pchild] = 1

After executing this initial phase, a portion of BW might be left unallocated
due to children not fully consuming their assigned bandwidth percentage. If
so, the Percentage node enters the second phase of its execution, where it
attempts to distribute this excess bandwidth by assigning it to child nodes on
a one-by-one basis, in order of decreasing percentage value. The second phase
in other words allows children to upgrade their bandwidth consumption based
on surplus bandwidth inherited from phase 1, hereby favoring children with
high percentage values.

Figure 4.3 exemplifies the operation of the Percentage node type. In
the initial phase, nodes A and B receive 70 and 30 percent of the available

76 Network Traffic Shaping

Figure 4.3: Example Percentage node operation.

bandwidth capacity, respectively. At the beginning of phase 2, only 40 BW
has already been consumed (by node A). The residual 60 BW is in the second
phase first assigned to node A, the child with the highest percentage value.
As node A cannot exploit this additional bandwidth to upgrade its bandwidth
consumption, the 60 BW is subsequently allocated to node B, which employs
it to satisfy its bandwidth requirement of 40 BW. The bandwidth consumption
of the Percentage node in this example hence totals 80 BW.

4.2.4 WeightStream

Like Percentage nodes, the WeightStream node type operates in two consec-
utive phases. In the first phase, all children are considered collectively and
the available bandwidth BW is partitioned among them as a function of both
their current weight value wc ∈ [0 , 1] and their maximal bandwidth consump-
tion MaxBWc . In mathematical notation, each child node c is apportioned a
bandwidth amount BWc as follows:

BWc = wc ×MaxBWc × f ; f =
BW∑

children [wchild ×MaxBWchild]

In this formula, the factor f includes the combined weighted maximal band-
width consumption of all children. It is a scaling factor as it enforces that, on
completion of the initial phase, the collective child bandwidth consumption will
not exceed the available bandwidth capacity (i.e.,

∑
children [BWchild] ≤ BW).

The second phase of the WeightStream’s bandwidth distribution strategy
mimics the operation of the Percentage node type. In other words, any
bandwidth which is left unallocated in the initial phase is exploited in the
second stage to attempt to increase the bandwidth usage of individual child
nodes successively, this time however in order of decreasing weight value. No-
tice that the total of child nodes’ weight values not necessarily needs to equal
1.

4.2 Internal Node Types 77

Figure 4.4: Example WeightStream node operation.

The bandwidth distribution policy of the WeightStream node type is exem-
plified in Figure 4.4. In this example, the bandwidth values that are granted to
children A, B and C in the first phase respectively amount to 68.57, 28.57 and
2.85 BW. Notice that the sum of these individual amounts is already smaller
than the total bandwidth volume that is available to the WeightStream node.
On the basis of the initially assigned values, only node A is capable of sat-
isfying its bandwidth requirements. The total bandwidth consumption upon
completion of phase 1 hence corresponds to 60 BW. In the second phase of the
WeightStream’s operation, node A, the child with the highest weight value,
is considered first. Node A however has no use for the 40 BW that is inher-
ited from the first phase. The next node to consider according to the weight
value hierarchy is child B, whose unsatisfied bandwidth requirement exactly
matches the superfluous bandwidth volume. Consequently, node B completely
seizes the still available bandwidth, at which point the execution of the second
phase of the WeightStream node is terminated as there is no bandwidth left to
divide. The cumulative bandwidth consumption of the WeightStream subtree
hence equals 100 BW, the input bandwidth volume.

4.2.5 WeightData

As is reflected in their names, WeightData and WeightStream are related inter-
nal node classes. They implement an identical bandwidth brokering approach,
except the WeightData type disregards the maximal bandwidth consumption
of its children [Wijnants 08a]. As a result, the bandwidth allocation that is
enforced in the initial phase equals

BWc = wc × f ; f =
BW∑

children [wchild]

Although their implementation differs only minimally, the WeightData
and WeightStream classes produce radically divergent bandwidth brokering

78 Network Traffic Shaping

Figure 4.5: Example WeightData node operation.

results. This is confirmed by the example that is provided in Figure 4.5.
The depicted stream hierarchy is identical to the one that was described in
section 4.2.4, both structurally and in terms of the weight values and band-
width requirements of child nodes; the only difference is that the root node
has been substituted with a WeightData instance. The bandwidth distribu-
tion outcomes of both setups are however far from alike. In particular, in the
WeightData example, the initial child node bandwidth allocations correspond
to 53.36, 33.35 and 13.34 BW for nodes A, B and C, respectively. Only for
node C, the appointed bandwidth capacity exceeds the required amount. The
residual bandwidth after the execution of the first stage consequently equals
90 BW. The order in which children are consulted in the second phase is iden-
tical to the situation in section 4.2.4. As a result, the excess bandwidth is first
allotted to node A, which subtracts 60 BW from it to satisfy its bandwidth
requirements. Next, node B is consulted, whose bandwidth demands surpass
the remaining 30 BW. Finally, node C is considered, again without effect as
it is already operating at maximal bandwidth consumption. The cumulative
bandwidth utilization in this case hence amounts to 70 BW (versus 100 BW
in the WeightStream example). Additional illustrations of the differences be-
tween the WeightStream and WeightData node types in terms of bandwidth
distribution behavior will be provided during the discussion of the NIProxy’s
experimental evaluations in part II of this thesis.

As will be discussed in detail in chapters 8 and 9, the WeightData node
type was introduced due to WeightStream’s empirically observed failure to
adequately manage bandwidth in the presence of non-real-time data traffic.
In particular, the inclusion of the maximal bandwidth consumption of child
nodes in the distribution scheme has shown to cause unexpected behavior in
case at least one child represents a non-real-time bulk data transfer (e.g., the
transmission of a file).

4.3 Leaf Node Types 79

4.3 Leaf Node Types

A leaf node in the stream hierarchy always corresponds to an actual network
flow. As is the case for internal stream hierarchy nodes, there also exist mul-
tiple leaf node classes [Wijnants 08b]. However, whereas internal nodes are
categorized according to their bandwidth distribution approach, the classifi-
cation of leaf nodes is based on their capabilities to control and modify the
bandwidth consumption of the network stream which they represent.

4.3.1 Discrete Leaf Node

Leaf nodes belonging to the discrete category define a discrete number of
increasing bandwidth levels and are capable of toggling the bandwidth us-
age of the network flow which they represent between those levels. In its
most rudimentary form, a discrete leaf node supports only two levels, which
correspond to respectively a zero and maximal stream bandwidth consump-
tion. This kind of discrete leaf node is in other words confined to turning its
associated network flow off and on and can hence only effectively model single-
quality network flows in the stream hierarchy. To be able to correctly manage
scalable or multi-layer encoded network traffic, more advanced discrete leaf
node implementations will typically be required which specify one or multiple
intermediate bandwidth consumption levels that lie in between the extremes
of turning the stream off and forwarding it at its maximal bitrate. Scalable
network flows namely consist of a base layer, which provides the transported
content at a certain baseline quality, and one or more enhancement layers,
which each enhance the reception quality of the content in a particular man-
ner. Although this type of network traffic in theory enables dynamic control
over its transmission rate, a source might consistently transmit all layers of
the scalable network stream and leave it up to the destination to select and
receive only those layers which it currently requires or is capable of processing.
Consequently, a suitable discrete leaf node for this type of network traffic
would include a number of monotonously increasing bandwidth levels, where
each higher level would permit the forwarding of an additional layer to the
destination.

Discrete leaf nodes are very lightweight. They demand a minimal book-
keeping effort as the supported discrete levels and their corresponding band-
width values need to be stored. The operation of this class of leaf nodes how-
ever does not require complex or time-consuming processing to be performed
on the network flow which they are associated with. In particular, whenever
a discrete leaf node is granted an amount of bandwidth by its parent in the

80 Network Traffic Shaping

stream hierarchy, it will exploit this bit budget to simply switch the embodied
network flow to its largest satisfiable discrete bandwidth consumption level.
This implies that discrete leaf nodes introduce nearly no computational over-
head. As will be elaborated on in chapter 8, they are therefore very well suited
to represent real-time network traffic in the stream hierarchy, since such traffic
is characterized by stringent reception delay constraints and hence needs to
be received by the destination in a timely manner.

4.3.2 Continuous Leaf Node

Unlike discrete leaf nodes, the class of continuous leaves is able to mod-
ify their associated stream’s bandwidth consumption in a continuous manner.
Stated differently, these nodes define an entire bandwidth consumption range
instead of a discrete number of bandwidth values and they provide function-
ality to set their corresponding flow’s bandwidth usage to an arbitrary value
within this interval. In its most complete form, the lower bound of the band-
width range that is provided by a continuous leaf node equals zero, while the
upper bound coincides with the associated stream’s maximal bandwidth con-
sumption or the throughput of the destination’s network connection, whichever
is lower. When a leaf node of the continuous category is apportioned an
amount of bandwidth by its parent in the stream hierarchy, its corresponding
network flow will be forwarded at exactly this rate1.

Continuous leaf nodes are obviously more powerful than their discrete
counterparts since they enable additional flexibility and dynamism to be in-
troduced in the network traffic shaping process. This however comes at the
expense of increased resource consumption and processing requirements. In
particular, contrary to discrete leaf nodes, the operation of continuous
leaves typically requires the adoption of resource-intensive and possibly com-
putationally complex techniques like, for instance, mid-stream buffering, real-
time transcoding and/or dynamic rate control. As a result, the continuous
leaf node type is innately less tailored to the management of real-time network
traffic (although, as will be demonstrated in chapter 13, they could nonethe-
less effectively be used for exactly this purpose). On the other hand, chapter 8
will establish that their provided functionality makes them obvious candidates
for handling non-real-time data like a file transfer.

1This statement assumes that the allocated bit budget is enveloped in the supported
continuous bandwidth consumption interval. In case the reserved bandwidth amount is
smaller than the lower bound of the supported range, the associated stream will not be
dedicated any bandwidth; conversely, whenever the bit budget exceeds the upper bound, the
forwarding rate will match this upper limit, which implies that a fraction of the leaf node’s
granted bandwidth will remain unexploited.

4.4 Maximal Bandwidth Consumption 81

Table 4.1: Calculating the maximal bandwidth consumption of stream hierar-
chy nodes.

Node Type Maximal Bandwidth Consumption

Discrete leaf node Bandwidth value that is associated with the largest
discrete level

Continuous leaf node Upper bound of the supported bandwidth con-
sumption range

Mutex The maximal bandwidth consumption of the child
with the highest bandwidth requirements

Priority,
Percentage,
WeightStream,
WeightData

Sum of the maximal bandwidth usages of all child
nodes

4.4 Maximal Bandwidth Consumption

In the discussion thus far, the term “maximal node bandwidth” has appeared a
number of times. It is possible for stream hierarchy nodes to support various
bandwidth consumption amounts. This is true for both leaf and internal
nodes. An example in the former category is a discrete leaf node which
defines multiple non-zero bandwidth levels. For internal nodes, it is even the
rule rather than the exception. Internal nodes act as root of subtrees in the
stream hierarchy and their bandwidth consumption is an accumulation of the
bandwidth usage of their children. As a result, internal node bandwidth usage
can often take on a range of values. Maximal bandwidth therefore refers to
the amount of bandwidth which a node can at most consume. Table 4.1
summarizes how this value is computed for the different leaf and internal node
types.

4.5 Sibling Dependencies Framework

The NIProxy’s bandwidth management mechanism includes a framework that
enables dependencies to be specified and enforced between sibling nodes in
the stream hierarchy [Wijnants 09b]. Siblings are in this context defined
as nodes which share the same parent. Since this is a relatively recent ad-

82 Network Traffic Shaping

dition, so far only the SD BW ALLOC CONSTRAINED dependency has been de-
fined. The set of supported dependency types could however readily be ex-
tended, for example based on future network traffic shaping requirements.
The SD BW ALLOC CONSTRAINED dependency introduces a bandwidth alloca-
tion constraint between sibling nodes in the stream hierarchy. In particular,
the existence of such a dependency between nodes A and B specifies that node
B is allowed to consume bandwidth if and only if A’s bandwidth consumption
is non-zero. In case this restriction is violated, node A is allowed to alter
the current bandwidth distribution outcome by “borrowing” the bandwidth
amount that was assigned to node B. If the combined bandwidth reserved for
nodes A and B remains insufficient to satisfy node A’s minimal bandwidth
requirements, both nodes will be turned off and a new network traffic shaping
iteration will be performed from which the subtrees that are rooted at nodes
A and B are virtually excluded. As a result, the bandwidth that was originally
designated to node B will become available for the other nodes in the stream
hierarchy (recall that node A’s bandwidth consumption was zero in the initial
iteration). If on the other hand the additional bandwidth does enable node A
to switch to its minimal non-zero bandwidth consumption, node A is allowed
to do so; any bandwidth that remains from the combined amount will sub-
sequently be allocated to node B. Note that this latter value will inherently
be smaller than the bandwidth that was at first reserved for node B, which
implies that node B might be forced to lower its bandwidth consumption or
might even get completely disabled. An example of the operation of the sibling
dependencies framework will be given in chapter 11.

4.6 Overflow Prevention Buffer

The bandwidth behavior of network flows that are managed by the NIProxy
(i.e., which are incorporated in a client’s stream hierarchy) might alter outside
of the NIProxy’s control. It is apparent that the NTS scheme will need to react
to such changes so that the correctness of the bandwidth brokering outcome
is ensured.

A first possibility is that the throughput of a network stream changes
permanently or at least for a prolonged period of time. For example, the
data source might for whatever reason fundamentally modify its transmission
rate. Such long-term bandwidth changes are automatically dealt with quite
adequately by the NIProxy’s NTS framework. In particular, the NIProxy’s
estimate of the flow’s bandwidth consumption will gradually converge to the
new value, from which point on the validity of the bandwidth distribution
results will again be guaranteed. As a result, no specific functionality or

4.6 Overflow Prevention Buffer 83

constructs have been implemented to address this issue.
The bitrate of network traffic might on the other hand also exhibit swift

and very temporary variations. The absence of a rate controller at the origin,
for instance, could lead to severe fluctuations in flow bandwidth consumption
(i.e., short periods of either decreased or increased throughput). Such bursty
changes are more problematic to cope with compared to the previously de-
scribed steady bandwidth modifications. In particular, due to the short-lived
nature of these bursts and due to the fact that the NIProxy updates its flow
bandwidth requirement measures only periodically (typically once every sec-
ond, see section 6.2.2 for more information), the sudden drop or increase in
bandwidth consumption might sometimes remain unnoticed by the NIProxy
for a short period of time. This will in turn cause the NTS scheme to base its
calculations on incorrect values, with potentially faulty bandwidth brokering
decisions as outcome. In case the fluctuation yields a momentary reduction in
throughput, the consequences will typically be acceptable, if not negligible: it
will at most result in an incomplete exploitation of the available bandwidth
during a short time interval because the NIProxy temporarily overestimates
the bandwidth requirements of the involved flow. Conversely, if the bandwidth
usage is subject to sudden peaks, the situation becomes more troublesome. In
this case, the variation might cause the NIProxy to temporarily underrate the
flow’s bandwidth consumption, which might in turn lead to infringement of the
available bandwidth capacity. Failure to respect the bandwidth constraints of
a network connection will typically entail detrimental effects such as conges-
tion, elevated delay and/or an increased packet loss ratio. Since such network
anomalies are in turn likely to negatively impact user QoE, it is apparent that
connection overflow should be prevented as much as possible.

To address the issue of possible violation of network link capacity due to
ephemeral surges in the throughput of network traffic, the NIProxy’s NTS
framework is furnished with an overflow prevention buffer. In particular,
it is possible to exclude a fraction of the available bandwidth volume from
the bandwidth allocation process. This portion will hence not be distributed
among the involved network flows, but will instead be exerted to fulfill the
role of safety buffer so that a certain amount of resilience to swift increases in
network flow bandwidth consumption is guaranteed. In the optimal case, the
overflow prevention buffer will completely neutralize bandwidth usage peaks
and will as such prevent link capacity violations from occurring. In case the
bandwidth margin does not suffice to absorb the sudden increase, it will at
least moderate its impact. The operation of the overflow prevention margin
will be exemplified in chapters 8 and 9.

Parametrization of the size of the safety buffer is supported, even on a per

84 Network Traffic Shaping

client basis. As a result, it is possible to attune it to the current context of
use. Possible factors which might influence the determination of the buffer
size include the composition of the network traffic mix and knowledge of the
existence of a network flow with a bursty bandwidth consumption behavior.
Note that this implies that it is just as well possible to completely disable the
safety buffer (i.e., set its size to zero) in environments in which its presence
is unnecessary or undesired. As an example, certain users might prefer not to
include a NTS safety margin so that the utility of their bandwidth capacity is
at all times maximized and are prepared to cope with the resulting heightened
risk of network connection overflow.

4.7 Stream Hierarchy Construction and Manage-
ment

Constructing and governing the stream hierarchy nearly exclusively falls under
the responsibility of the managed client. Certain aspects of stream hierarchy
management can be implemented autonomously by the NIProxy, without di-
rection from the managed client; an example hereof will be described in section
5.3.1. The bulk of the stream hierarchy operations however does require client
participation. In particular, the following tasks are imposed on the client:

• devising and installing a suitable general structure for the stream hier-
archy

• guaranteeing that the stream hierarchy remains up-to-date (i.e., that all
relevant network traffic is adequately incorporated in it)

Both topics will be discussed in more detail next. Before proceeding however,
ascertain that the stream hierarchy is maintained entirely at the NIProxy. By
delegating tasks and decisions concerning the stream hierarchy to the client,
it becomes necessary for the client to communicate desired stream hierarchy
actions to its NIProxy instance. This responsibility is alleviated by the avail-
ability of the client-side NILayer support library. In particular, as was men-
tioned in section 3.4, the NILayer implements the NI communication protocol
and a part of its exported API is devoted specifically to stream hierarchy-
related information exchange between the distributed application and the NI-
Proxy. Furthermore, to coordinate and accelerate the decision making process
for operations that are related to the stream hierarchy, the NILayer stores a
simplified representation of the stream hierarchy at client-side. This stripped
version does not contain any NTS functionality; instead, it simply provides the

4.7 Stream Hierarchy Construction and Management 85

Figure 4.6: Notifying the NIProxy’s NTS mechanism of the fact that the user
prefers audio to video through appropriate stream hierarchy organization.

client with a “read-only” view that is consistent with the stream hierarchy’s
current state at NIProxy-side. As a result, the client can found its decisions on
this local simplified copy, this way effectively eliminating unnecessary stream
hierarchy-related communication between the client and the NIProxy.

4.7.1 Global Stream Hierarchy Layout Determination

Selecting a suitable stream hierarchy layout can be considered as an act of
providing the NIProxy with application awareness. Indeed, the global orga-
nization of the stream hierarchy indicates how the different network streams
in which the client is interested relate to each other, in terms of significance
for the client. For example, to inform the NIProxy that it attaches larger
importance to audio as compared to video, the client could devise a stream
hierarchy layout which resembles the one depicted in Figure 4.6. In this (con-
ceptual) example, the client has captured its preference for audio by relying
on some type of differentiating internal node to distinguish between audio and
video network traffic and by subsequently assigning the grouping audio node
a higher value than its video sibling. Which internal node classes should be
employed as root of the stream hierarchy and as grouping audio and video
node (i.e., Priority, Percentage, WeightStream or WeightData) depends on
the user’s preferences and possibly some other application-related information.
As a result, the responsibility for making such decisions would again lie with
the client.

86 Network Traffic Shaping

4.7.2 Stream Hierarchy Governance

The data which a distributed application injects in the transportation network
during its execution might not be homogeneous over time. In particular, the
composition of the generated network traffic ensemble is likely to vary since
new network flows might at run-time be initiated, while others conversely
might be terminated. The managed client bears the responsibility for keeping
its stream hierarchy in sync with the network traffic production behavior of
the distributed application. In particular, since only network traffic that is
represented in the stream hierarchy is accounted for by the NIProxy’s NTS
process, the client needs to ensure that all active network flows in which it
is interested are adequately included. In contrast, discontinued network flows
will typically need to be purged from the stream hierarchy to prevent them
from wastefully hogging scarce network bandwidth; as an additional incentive,
a smaller stream hierarchy size will typically amount to a faster operation of
the NTS algorithm.

Supposing the client has perfect and complete knowledge of the distributed
application’s network traffic production scheme and of the scheme’s evolution
over time, it could entirely autonomously modify the state of its stream hier-
archy to correctly reflect the current situation. This is unfortunately often an
unrealistic assumption. For a video conferencing application, for instance, it
is typically impossible to predict how many users will be participating in the
session and which type of network traffic (e.g., voice, video, shared whiteboard
data, etcetera) each will inject in the network. To address this issue and hence
to facilitate the client’s task of keeping its stream hierarchy up-to-date, the NI-
Proxy and the NILayer auxiliary library jointly implement a stream detection
as well as stream termination notification mechanism.

To enable the client to be notified of the discovery of concrete network
flows, the NI protocol entails a message type through which a managed client
can indicate to the NIProxy that particular network traffic categories (e.g., au-
dio data, video data, P2P data, etcetera) need to be block-ed (see also section
6.2.2). Whenever the NIProxy detects a network flow which conceptually be-
longs to a block-ed traffic category and which the NIProxy’s NTS framework
in addition has not encountered before, a so-called stream peek is generated.
Besides concretely identifying the newly discovered network stream, a stream
peek also encompasses a limited amount of the data that was intercepted on
the stream and which hence triggered the stream detection. The constructed
stream peek is subsequently forwarded to the client (according to the NI pro-
tocol) instead of the detected flow itself. Upon arrival, the client will need to
decide on the desired future treatment of the discovered network stream and

4.7 Stream Hierarchy Construction and Management 87

will need to communicate its decision back to the NIProxy (again using a NI
protocol message). The client can specify three possible actions:

• accept the discovered network flow (i.e., the NIProxy should uniformly
forward all future network packets which are intercepted on this flow to
their destination)

• drop the discovered network flow (i.e., the NIProxy should uniformly
discard all future network packets which are intercepted on this flow)

• incorporate the discovered network flow in the stream hierarchy

The first option is mainly interesting for network streams which should al-
ways be delivered to the destination and which have only marginal bandwidth
requirements. An example could be control data; such data is typically imper-
ative for the correct functioning of the distributed application and, compared
to multimedia traffic, usually consumes negligible bandwidth amounts. As a
result, it might be justifiable to permanently accept such network traffic with-
out including it in the NIProxy’s bandwidth brokering calculations. The drop
decision on the other hand could, for example, be exploited in case the client
judges that the detected network traffic should under no circumstances con-
sume bandwidth. Finally, by adhering to the last alternative, the NIProxy’s
NTS framework will start reckoning with the new network stream during its
bandwidth management operations. Notice that, through clever stream hi-
erarchy organization, it is possible to enforce stream priority and hence to
ensure that certain network traffic will always be forwarded by the NIProxy,
in case sufficient bandwidth is available to do so. Consequently, although it is
likely to require some additional effort from the client, the stream hierarchy
approach is preferred to the permanent accept action, especially for network
traffic of significant volume, since it will yield more complete and correct (i.e.,
optimal) bandwidth management results.

Compared to the stream detection notification scheme, which actually im-
plements a simple form of admission control, the stream termination coun-
terpart is more straightforward. As will be discussed in section 6.2.2, the
NIProxy monitors network flow liveliness (through expiration counters). As
soon as the termination of a particular network flow is deduced, each client to
which the flow was relevant will be informed. The notified clients can subse-
quently undertake any necessary action, which is likely to at least encompass
the removal of the terminated flow from their stream hierarchy at NIProxy-
side. The notification is again conveyed in the form of a NI protocol message.

88 Network Traffic Shaping

Figure 4.7: A comprehensive stream hierarchy and the resulting bandwidth
brokering outcome.

4.8 A Comprehensive Example

A concrete example of a fairly comprehensive stream hierarchy is provided in
Figure 4.7. The root of the stream hierarchy consists of a Priority node and
has two direct children, nodes A and D, which are of type Percentage and
Mutex and which are assigned a priority value of 1 and 0, respectively. The
Percentage node in turn has two children of its own, namely continuous leaf
node B with a percentage value of 0.2 and discrete leaf node C which has
a percentage value of 0.8. Node B’s bandwidth consumption can assume an
arbitrary value in the range [0, 30] BW; node C on the other hand supports 3
discrete bandwidth levels which respectively consume 0, 20 and 40 BW. Mutex
node D also serves as parent for two leaf nodes (i.e., E and F), which are this
time however both of the discrete type. Both leaf nodes define 3 discrete
levels which correspond to bandwidth requirements of 0, 10 and 50 BW for
node E and 0, 20 and 40 BW for node F.

In the provided example, the distributable bandwidth equals 100 BW. As
was described in section 4.1, the network traffic shaping process is initiated by
appointing this bandwidth amount to the hierarchy root node. As this node
is of type Priority, the bandwidth budget is first presented in its entirety to
node A, the child with the highest priority value. At this point, the two-phase
bandwidth brokering policy that is implemented by the Percentage node type
is started, with 100 BW as input bandwidth. In the initial stage, this results in
a bandwidth allocation of respectively 20 and 80 BW to nodes B and C. Since
node B’s assigned bandwidth value falls within its supported continuous range,

4.8 A Comprehensive Example 89

its effective bandwidth consumption is set to exactly this amount. Node C
on the other hand leverages the granted bandwidth to switch to discrete level
2. The cumulative bandwidth consumption of the subtree that is rooted at
Percentage node A therefore equals 60 BW at the end of the first stage of
A’s bandwidth brokering scheme. The unexploited 40 BW is in the second
phase first dedicated to child node C (because it has the largest percentage
value associated with it). As this node is however already operating at its
maximal discrete level (i.e., the level with the largest corresponding bandwidth
consumption), the superfluous bandwidth cannot be allocated here. Next,
node B is considered, which subtracts 10 BW from the apportioned amount
to increase its bandwidth consumption to the upper limit of its supported
interval. This concludes the second stage of node A’s operation, yielding a total
subtree bandwidth consumption of 70 BW. The remaining bandwidth budget
(i.e., 30 BW) is subsequently transferred to Mutex node D, the second child of
the stream hierarchy root node. This budget suffices for both its children (i.e.,
leaf nodes E and F) to enable their discrete level 1. Notice however that the
bandwidth requirements that are associated with these levels are unequal (i.e.,
10 BW for node E versus 20 BW for node F). Since the bandwidth allocation
strategy of the Mutex node type dictates that the input bandwidth is allotted
exclusively to the child with the largest still satisfiable bandwidth demand,
the available 30 BW is reserved for leaf node F. The assigned bandwidth is
exploited by child F to activate its discrete level 1. The current network traffic
shaping iteration is thereby concluded since all nodes of the stream hierarchy
have been considered. The complete stream hierarchy hence consumes 90 BW
and leaves 10 BW unexploited.

Chapter 5
Multimedia Service Provision

The previous chapter has discussed network traffic shaping, the first traffic
engineering technique that is supported by the NIProxy. The topic of this
chapter is multimedia service provision, the NIProxy’s second tool to affect
network data dissemination and hence user QoE. The NIProxy acts as ser-
vice provision and delivery platform, meaning it provides a substrate for the
execution of services on (multimedia) network streams as they pass through
it. In other words, the NIProxy introduces the possibility to perform process-
ing on multimedia traffic during its dissemination through the communication
network. The range of services that can be provided is theoretically limitless,
spanning from completely generic to highly application-specific and from very
lightweight to computationally complex. Examples include simple data filter-
ing, the transcoding and transmoding of multimedia data, network flow en-
cryption to increase security and privacy, services which increase the resilience
of network traffic to transmission errors, and so on. Analogous to the network
traffic shaping functionality, the multimedia service provision framework is
context-aware, which implies that NIProxy services can consult the NIProxy’s
repository of contextual information. This feature enables the implementation
of highly effective services, as it allows them to attune their operation to the
current context of use and hence to make sure that the processing which they

92 Multimedia Service Provision

implement will actually lead to an improvement of the end-user experience.
The contextual knowledge could however also be exploited for secondary pur-
poses, for instance to optimize the efficiency of resource-intensive services. Its
service provision facilities enable the NIProxy to address the growing adapt-
ability and dependability requirements of emerging distributed applications,
since it allows multimedia content to be meticulously reconciled with, for in-
stance, current channel conditions or the hardware limitations of the end-user’s
terminal.

5.1 Pluggable Design

Implementation-wise, the multimedia service provision framework adheres to
a pluggable design [Wijnants 07]. Services correspond with NIProxy plug-
ins that can be on-demand loaded and unloaded during NIProxy execution.
In other words, the functionality which is implemented by services can dy-
namically be plugged into the NIProxy when desired or as it is demanded by
current contextual conditions. Conversely, when a service is no longer needed,
its plug-in is unloaded, this way effectively freeing up NIProxy resources so
that these can be employed for other purposes. All of this can be done at
run-time (i.e., without requiring a NIProxy reboot).

By opting for a plug-in-based design, services become stand-alone enti-
ties that are conceptually separated not only from each other but also from
the NIProxy’s general software architecture. This decoupling confers several
advantages; the most important ones are enumerated below:

• The process of adding new services to the NIProxy is simplified and ac-
celerated. Providing a new service never requires that changes are made
to the NIProxy’s software architecture. Instead, it suffices to simply
implement a new NIProxy plug-in

• Third-party service development is facilitated since the necessity for ser-
vice implementers to have extensive knowledge of the NIProxy’s internals
is eliminated

• Due to services being dynamically installable during operation, maxi-
mal flexibility is guaranteed and run-time extensibility of the NIProxy’s
functionality is achieved

• Contrary to the NIProxy itself, services are not required to be generic.
While the provision of truly generic services whose functionality can

5.2 Network Traffic Shaping Interoperation 93

be exploited in heterogeneous contexts is definitely supported, provid-
ing services that are to a lesser or larger degree tailored to a specific
distributed application is just as well possible. Although this latter
class of services physically resides at the NIProxy (as plug-ins), they can
be conceptually thought of as being part of the distributed application
which they are targeted at. Supporting both application-independent
and application-specific services enlarges the applicability of the NI-
Proxy since it enables the provision of valuable and efficient services for
a wide variety of distributed applications, even concurrently. As such,
the need to deploy and administer separate network infrastructure for
each distinct application is eliminated, which in turn is likely to yield
considerable expenditure curtailment.

Despite their isolation from each other, inter-service collaboration is en-
abled through the notion of service chaining. Multiple services, each imple-
menting a well-delineated function, can be combined to form a service chain.
Services belonging to a chain are applied consecutively so that the output that
is produced by a constituting service serves as input for the next service in
the chain. The support for service chaining in other words enables collabo-
rative processing of single network streams by multiple, possibly independent
NIProxy services. One way of looking at a service chain is as a complex ser-
vice whose functionality equals the composition of the singular functions that
are provided by its constituting services. Service chains can be personalized
on a per client basis, this way yielding an increased amount of flexibility and
enabling the NIProxy to efficiently satisfy each user’s particular requirements
and constraints.

5.2 Network Traffic Shaping Interoperation

A distinctive trait of the NIProxy is that interaction between its both traffic
engineering techniques is supported. In particular, instead of treating the net-
work traffic shaping functionality and multimedia service provision framework
as isolated entities, the NIProxy allows them to interoperate and collaborate
with each other. To be more precise, services are able to query and even
influence and supplement the bandwidth brokering strategies which the NTS
mechanism draws up for NIProxy clients.

Practical experience and experimental evaluations have corroborated that
this feature enables the development of services with a high level of effec-
tiveness, performance and resource-efficiency. More importantly however, the
proposition is put forward that it affords a myriad of end-user QoE optimiza-

94 Multimedia Service Provision

tion possibilities and results which could not be attained by applying both
mechanisms independently. This argument will be illustrated and confirmed
numerous times in part II of this dissertation, where the NIProxy’s practical
QoE optimization performance will be evaluated through the presentation of
several experimental results.

5.3 A Representative Example: Static Video Trans-
coding

This section will discuss the operation and implementation of an example
service which introduces real-time H.263 video transcoding functionality in
the NIProxy [Wijnants 07]. The service in other words enables the NIProxy
to lower the bitrate of H.263-encoded video by on-the-fly reducing its quality
parameters. The service will also serve as demonstrator of the interoperability
potential of the NIProxy’s network traffic shaping and multimedia service
provision functionality (see section 5.2). The video transcoding service has
been exploited in numerous NIProxy experiments. An example of the results
that are achievable by the service will for instance be presented in chapter 7.

As input, the video transcoding service accepts the H.263 video stream as
it is intercepted by the NIProxy; the produced output equals the transcoded
version of this bitstream. At load-time, the operation of the service can be
configured by specifying the required quality parameters for the output video.
Spatial, temporal and video quality downscaling is supported through the spec-
ification of the desired output resolution, framerate and bitrate1, respectively.
Once an instance of this service is running however, altering the output video
parameters becomes impossible. Consequently, the service is said to imple-
ment static transcoding, as all bitstreams that are generated by a particular
instance of the service will exhibit identical quality characteristics and will
consume largely comparable amounts of network bandwidth. At a later stage
of this PhD research, a dynamic video transcoding service has also been imple-
mented which is not confined to a single output quality but instead supports
video transcoding to a range of qualities and bitrates. This dynamic variant
will be described in chapter 13.

1The video transcoding service attempts to satisfy the desired bitrate solely by adjusting
the quality parameter (Q-factor) and by increasing the step size for quantizing the transform
coefficients. In other words, a bitrate transcoding target leaves the video resolution and
framerate unaltered.

5.3 A Representative Example: Static Video Transcoding 95

Figure 5.1: Example stream hierarchy before and after modification by the
static video transcoding service.

5.3.1 Stream Hierarchy Incorporation

Instead of physically arriving at the NIProxy, transcoded video streams are
automatically generated by the video transcoding service. This service in
other words introduces a new type of network traffic of which the NIProxy
is by default unaware. To inform the NIProxy of the existence of this new
flow type and to ensure that it is taken into consideration during bandwidth
brokering, it needs to be introduced in the stream hierarchy. The static video
transcoding service therefore extends the stream hierarchy by including a new
discrete leaf node for each distinct video flow that it processes. The new
node is linked to the transcoded video stream and is added as a sibling of
the node that represents the original version. The incorporated discrete leaf
node defines two bandwidth levels which respectively correspond with a zero
and maximal bandwidth consumption. The maximal bandwidth consumption
of the transcoded video flow is determined on the basis of the target output
bitrate that is set for the service instance. Once this incorporation has been
completed, the NIProxy’s network traffic shaping mechanism can start making
deliberate decisions about which video version to assign bandwidth to.

Figure 5.1 exemplifies the stream hierarchy modification operations that
are performed by the static video transcoding service. As can be seen, in the
unmodified stream hierarchy, the Original Quality (OQ) of the video stream
is represented by a subtree which consists of a Mutex internal node and a
leaf node that corresponds with the actual network flow. In the updated
stream hierarchy, the video transcoding service has incorporated an additional
discrete leaf node to embody the Transcoded Quality (TQ) of the video flow;
the new node was made a sibling of the original video node (i.e., OQ).

In the just described example, an intermediate internal node of the Mutex
type was relied on to relate the nodes which are linked to the original and

96 Multimedia Service Provision

transcoded video versions in the stream hierarchy. This approach might be
a good practice in many situations in which multiple content versions are
involved. Such variants namely differ in their encoding but otherwise transport
identical content (e.g., in this case exactly the same video fragment); as a
result, for bandwidth efficiency reasons, a destination will typically not want to
receive multiple of these versions simultaneously. Such behavior can effectively
be enforced by grouping the different quality variants of a single flow as the
sole children of a Mutex node.

Recall from section 4.7 that the client software bears the responsibility for
ensuring that the quality grouping node (i.e., the Mutex node in the previous
example) is included in the stream hierarchy. To alleviate this responsibil-
ity, the NILayer support library (see section 3.4) provides constructs through
which the client software can register the classes of network traffic whose trans-
ported content is available in multiple qualities. Each time the client software
initiates the incorporation of a network flow which belongs to one such class,
the NILayer will automatically make sure that a quality grouping node is in-
serted in the stream hierarchy before the representation of the network flow
itself is added. By default, an internal node of the Mutex type is used as in-
termediary node, but this behavior can be overridden by the client software
when registering the multi-quality network traffic class with the NILayer.

5.3.2 Mode of Operation

To determine whether intercepted video frames (i.e., network packets ex-
changed on a particular video flow) need to be processed, the video trans-
coding service exploits its interface to the NIProxy’s network traffic shaping
framework. More precisely, incoming video frames are transcoded if and only if
consultation of the appropriate stream hierarchy indicates that the transcoded
version of the video stream to which the intercepted frames belong is currently
enabled (i.e., the discrete leaf node which represents the transcoded video
version is set to its non-zero bandwidth consumption level). As a result, the
computational footprint of the service is kept to a minimum since unnecessary
transcoding operations are at all times avoided.

5.3.3 NTS Interoperation

The static video transcoding service comprehensively demonstrates the possi-
bility for the NIProxy’s network traffic shaping and multimedia service provi-
sion facilities to conspire and the potential benefits that are entailed by such
cooperation. In particular, section 5.3.1 has illustrated that a NIProxy service
is able to alter and extend stream hierarchy instances and hence to influence

5.3 A Representative Example: Static Video Transcoding 97

the NIProxy’s bandwidth brokering operations. On the other hand, section
5.3.2 has exemplified that network traffic shaping decisions in turn might ef-
fectively direct the operation of NIProxy services, which in this case yielded
an increased computational efficiency.

5.3.4 Implementation

The service is implemented according to the cascaded pixel-domain approach
to transcoding [Vetro 03]. In this methodology, a video bitstream is transcoded
via a decode/encode cascade. Stated differently, the bitstream is first decoded
and subsequently completely re-encoded with modified quality settings. The
advantages of this category of transcoding algorithms are their ease of im-
plementation and the resulting perceptual quality, which is quite high. Their
main drawback however are their computational complexity and low efficiency.
The bitstream is transferred from the compressed domain to the pixel-domain
and back again, hereby effectively discarding all of the compressed information
that is present in the original bitstream. More efficient transcoding schemes
attempt to reuse (part of) this compressed data to reduce their computational
overhead. As the service was intended as a proof-of-concept rather than a
commercial product, transcoding efficiency and performance were not consid-
ered to be imperative and hence the choice for the cascaded video transcoding
scheme is justified. To perform the actual decoding and encoding, the service
employs libavcodec, the multi-platform audio and video codec library of the
open source FFMPEG project [FFMPEG 10].

Since video transcoding is a stateful process, a separate transcoder instance
is maintained for each individual video stream. In particular, on the discovery
of a video stream, the service automatically instantiates a new transcoder
and couples it with the just detected flow. Each packet that is subsequently
intercepted on this network flow will be processed by this particular transcoder
instance. Conversely, when a video stream is classified as terminated, its
associated transcoder is destructed and purged.

Chapter 6
Software Architecture

The NIProxy is a completely software-based system that is coded exclusively
in the C++ programming language. Other than it running the GNU/Linux
operating system, the NIProxy does not require any support or specific func-
tionality from the hardware on which it is installed. This lack of dependence on
particular hardware maximizes its deployment possibilities. Stated differently,
the NIProxy can be hosted on any networking-enabled and GNU/Linux-based
device.

This chapter will shed some light on the NIProxy’s implementation by ex-
ploring its codebase and high-level software architecture. Two software archi-
tecture descriptions will actually be presented. Approximately in the middle
of this PhD research, the NIProxy has namely been subjected to a complete
redesign and code refactorting. This decision was motivated by the fact that
practical experimentation with the original NIProxy realization had uncovered
a number of limitations, disadvantages and shortcomings. These could nearly
all be attributed to the initial software architecture, which turned out to be
too rigid and unintuitive. The refactoring phase halted the progress of the
NIProxy for a considerable amount of time (i.e., approximately three months)
because the time which was invested in redesign and refactoring could not be

100 Software Architecture

devoted to the implementation of new features or improvements. The refac-
toring decision has nonetheless proven to be the right one. Upon completion,
the NIProxy’s codebase and design had namely become much more robust,
manageable and susceptible to extension. Both maintaining existing NIProxy
functionality and introducing new features hence became considerably more
straightforward and less cumbersome compared to the initial NIProxy instan-
tiation. As a result, the time that has been spent on refactoring was more
than compensated for by the higher pace with which NIProxy code extensions
and modifications could afterwards be applied. The refactored version of the
NIProxy’s software architecture is still in use today and all QoE optimization
results that will be presented in part II of this thesis have been produced us-
ing this NIProxy revision. For completeness reasons, a sample of the most
significant accomplishments of the original NIProxy design will be provided in
appendix A.

An important remark in this context is that the redesign applied exclusively
to the underlying implementation. The NIProxy’s objectives and methodology
(as described in chapter 3) were determined at the very beginning of this PhD
period and were carefully retained during the redesign and refactoring process.
Stated differently, the goal of the refactoring operation consisted of improving
the efficiency of the NIProxy’s implementation instead of addressing hiatuses
or issues in its methodology and fundamental principles.

6.1 Netfilter-Based Design

The implementation of the initial version of the NIProxy was founded upon the
netfilter and iptables frameworks of the GNU/Linux operating system. This
section will therefore first introduce both tools and summarize their func-
tionality before exploring the actual software architecture of this NIProxy
instantiation.

6.1.1 Netfilter

Netfilter is a software framework which provides packet handling, manipu-
lation, mangling and filtering facilities within the 2.4 and 2.6 series of the
GNU/Linux kernel [Netfilter 10][Bandel 01]. It is licensed under the GNU
General Public License (GPL) and was introduced in 1998 as the redesigned
and heavily improved (for instance, in terms of security) successor of the
GNU/Linux 2.2 ipchains and GNU/Linux 2.0 ipfwadm tools. The netfilter
framework was devised and designed by Rusty Russell, based on his experi-
ence as author and driving force of the ipchains predecessor.

6.1 Netfilter-Based Design 101

Figure 6.1: Netfilter packet traversal diagram for the IPv4 protocol stack
[Netfilter 10].

For each network protocol, netfilter defines a set of hooks for which kernel
modules can register interest in the form of a callback function. Each hook
corresponds to a well-defined location in a packet’s traversal of a particular
network stack. As an example, the different hooks which are defined for the
IPv4 protocol are depicted in Figure 6.1. This figure illustrates that

• incoming IPv4 packets which are destined for a local process will always
first cross the prerouting hook and subsequently the input hook before
they will be handed over to the receiving application

• IPv4 packets that are not addressed to the local GNU/Linux machine
but instead need to be forwarded (i.e., routed) will successively traverse
the prerouting, forward and postrouting hooks

• IPv4 packets that are generated and transmitted by a local process
need to successfully pass the output and postrouting hooks before
they will be output on the transmission channel

Whenever a network packet arrives at a protocol hook, the network proto-
col will invoke the netfilter framework with the packet and the hook number
as parameters. Netfilter will subsequently verify whether interest has been
registered for this particular protocol and hook. If so, the associated callback
function will be launched. In case multiple callback functions were installed
for the same protocol and hook, these will be triggered consecutively, in order
of registration. Each callback function is allowed to inspect and even alter
the packets which it is handed over at its own discretion. After it finishes its
processing, the callback must return the (possibly modified) network packet
to the netfilter framework and must specify further packet treatment by issu-
ing a verdict. The most straightforward verdicts are NF ACCEPT and NF DROP

102 Software Architecture

which instruct netfilter to let the network packet continue its traversal of the
network stack and to discard it at the current hook, respectively.

All operations that have been described thus far are performed entirely
inside the GNU/Linux kernel. Netfilter however also supports network packet
treatment in userspace via the NF QUEUE verdict. In case a (kernelspace) call-
back function issues this verdict for a certain network packet, netfilter will
asynchronously transfer it (i.e., using a FIFO queue) from the kernel to a
userspace application for further processing. This functionality is provided
because kernel module coding requires considerable skill and attention from
the programmer. These modules namely run directly inside the GNU/Linux
kernel, which implies that incorrect module behavior caused by, for instance,
dangling pointers or improper memory addressing might compromise the sta-
bility of the entire operating system and can hence have a disastrous impact.
In contrast, implementing userspace applications is much more programmer-
friendly and is hence likely to be the preferred approach in case the packet
handling involves complex (i.e., everything but straightforward) logic. Analo-
gous to a netfilter kernel module, the userspace application must accompany
the network packet with a verdict and subsequently return it to the netfilter
framework once it has finished its processing. Keep in mind however that there
will always be a minor speed penalty associated with transferring packets from
the kernel to userspace and that a NF QUEUE-based strategy might hence not
be a valid alternative in absolutely time-critical scenarios.

To exemplify netfilter’s mode of operation, suppose that a kernel module
has been implemented which discards packets on the basis of some classifica-
tion method and that this module registers interest for the IPv4 input hook.
As a result, arriving IPv4 packets that match the rules in the classification
scheme will be assigned a NF DROP verdict and will hence never be delivered
to the local process for which they were originally destined.

6.1.2 iptables

Using callback functions that are implemented in kernel modules to perform
operations on network packets is a non-trivial approach which might only be
suitable for at least moderately seasoned GNU/Linux administrators. To also
open up (part of) the netfilter functionality to typical GNU/Linux users, a
generic table mechanism called iptables has been developed on top of it which
facilitates IPv4 network packet selection in userspace [Netfilter 10, Bandel 01,
Underwood 01]. iptables defines multiple table structures which each enforce
packet selection for a specific purpose. Examples include the “filter” table
(which is employed for IPv4 packet filtering) and the “nat” table (which is

6.1 Netfilter-Based Design 103

used during Network Address Translation). A table in iptables consists of
a number of chains, which in turn are checklists of rules. The “filter” table
for instance encompasses three built-in chains: input, forward and output.
These chains are respectively responsible for filtering network packets which
are destined for a local socket, packets that are being relayed through the
GNU/Linux machine and locally-generated packets. Looking again at Figure
6.1, it can be seen that these chains conceptually coincide with the homonymic
hooks in the underlying netfilter framework. As a result, each time an IPv4
packet arrives at one of these hooks, the corresponding chain will be consulted
to determine the fate of the packet.

An iptables chain consists of zero or more rules, which each specify how
a network packet should be handled in case its header matches the condi-
tions that are specified in the rule. Available rule verdicts include NF ACCEPT,
NF DROP and NF QUEUE. These verdicts are semantically identical to their name-
sakes in the netfilter infrastructure. Other possible rule verdicts are a jump
from the current chain to another (user-defined) chain inside the same table
as well as the command to resume packet matching at the following rule in
the higher-layer (i.e., invoking) chain (through the NF RETURN keyword). These
latter verdict types enable a hierarchical packet selection solution, for instance
by allowing for the encapsulation of related rules in a dedicated chain.

When a chain is invoked, the conditions that are specified by its consti-
tuting rules will be checked consecutively against the header of the network
packet under consideration. In case the check fails, the next rule in the chain
will be consulted. On the other hand, as soon as a match occurs, iptables will
execute the verdict that is associated with the current rule. In case the end
of a chain is reached (i.e., no rule in the current chain matches), the default
verdict as specified by the chain’s policy will determine the fate of the packet.

By default, the tables contain only the built-in chains. iptables however
provides a (command-line) front-end through which these can be supplemented
with user-defined chains. This interface in addition allows users to insert
new rules in chains, to remove existing rules from them, to modify the pol-
icy of chains, to inspect table information, etcetera. As such, iptables is a
user-friendly solution that unlocks IPv4 packet selection on the GNU/Linux
operating system for kernel programming agnostics.

As a concluding remark, iptables counterparts are available for network
protocols other than IPv4. In particular, ip6tables and arptables enable
packet selection for respectively IPv6 and the Address Resolution Protocol
(ARP). Finally, ebtables provides packet filtering and manipulation options
at the datalink layer (i.e., for Ethernet frames). Given the NIProxy’s focus on
IPv4-based telecommunications networks, these counterparts will not be elab-

104 Software Architecture

orated on; the interested reader is referred to the netfilter/iptables homepage
[Netfilter 10].

6.1.3 Implementation

The initial variant of the NIProxy was implemented as a GNU/Linux userspace
process which relied on the iptables framework (and hence, indirectly, the
netfilter framework) for packet interception [Wijnants 05b, Wijnants 05c,
Wijnants 06]. In particular, the iptables tool served a dual purpose. First
of all, it was exploited to directly enforce trivial packet filtering and routing
behavior on the machine on which the NIProxy was deployed. As an example,
to guarantee the generation of reliable latency and throughput estimates, the
NIProxy’s active network probing framework (see section 3.1.1) requires a min-
imization of the delay that its network communication incurs from components
other than the probed communication channel. This behavior was achieved
by inserting rules into the input and output chains of the “filter” table which
specified that NIProxy-initiated network probes as well as the responses that
are solicited by these probes should be provided immediate passage (by issu-
ing a NF ACCEPT verdict). The second application of the iptables functionality
was to NF QUEUE all network packets which actually belonged to the commu-
nication session of one of the NIProxy’s currently connected clients to the
userspace process.

The software architecture of the userspace process is schematically summa-
rized in Figure 6.2. The NIProxy userspace process was functionally decom-
posed into two major subsystems: a generic base layer and a plug-in mech-
anism. The generic base layer clustered several general functions and was
completely application-agnostic. The plug-in subsystem on the other hand
ensured NIProxy extensibility as it enabled the run-time inclusion of extra
(possibly application-specific) functionality. This section will proceed with a
description of the exact responsibilities of both subsystems.

Generic Base Layer

The generic base layer formed the heart of the NIProxy’s initial software ar-
chitecture. On the one hand, it encompassed basic support code that is likely
to recur in any implementation of a proxy entity. An example is user man-
agement functionality. The base layer therefore provided modules for client
connection establishment and for performing client-NIProxy communication.
On the other hand, the base layer included functionality that was tailored to
the NIProxy’s specific objectives, methodology and design approach. In this
latter category, it was responsible for:

6.1 Netfilter-Based Design 105

Figure 6.2: Schematic overview of the software architecture of the initial ver-
sion of the NIProxy.

• Receiving packets from kernelspace and for reinjecting packets in the ker-
nel after they had been processed by the NIProxy userspace process. As
is depicted in Figure 6.2, the base layer guaranteed that an intercepted
network packet was transferred to userspace if and only if the NIProxy
instance was actually interested in it (i.e., in case the packet belonged to
the communication session of a currently connected client); other pack-
ets simply flowed through the NIProxy without modification and even
without ever leaving kernelspace. To control which packets needed to be
transferred to userspace, the iptables framework was leveraged.

• Collecting and managing the NIProxy’s contextual knowledge. Notice
that this was limited to network and application awareness, as terminal
intelligence was not yet supported at this stage of the NIProxy’s lifecycle.

Plug-in Subsystem

The central component of the plug-in subsystem was the plug-in manager
which enabled and managed the installation of plug-ins on top of the generic
base layer. Firstly, plug-ins were able to register interest for certain network
streams with the plug-in manager. After storing such stream interest informa-
tion locally, the plug-in manager relayed it to the generic base layer, where it

106 Software Architecture

was translated into an appropriate iptables command to ensure that packets
which were exchanged on the specified flow would start to be NF QUEUE-ed
to userspace. Secondly, when a network packet was actually transferred to
userspace, it was the responsibility of the plug-in manager to dispatch it to
the plug-in which had specified interest for the flow which this packet was logi-
cally part of. If more than one such plug-in was installed, the plug-in manager
sequentially delivered the packet to all those plug-ins, hereby following the
order in which they had registered interest for the stream. After a plug-in
had finished processing a network packet, it needed to return the (possibly
modified) packet to the plug-in manager together with a verdict. The plug-in
manager only continued the traversal of any subsequent interested plug-ins
in case the just consulted plug-in returned a NF ACCEPT decision; otherwise,
the packet was immediately dropped by issuing a NF DROP iptables verdict.
Finally, as soon as the last plug-in in the sequence of interested plug-ins was
reached, the plug-in manager made sure that the network packet and the ver-
dict that was returned by this plug-in were handed over to the generic base
layer for reinsertion into kernelspace.

To further clarify the operation of the plug-in manager, consider the ex-
ample scenario which is depicted in Figure 6.2. In this use case, two separate
plug-ins (i.e., the highlighted plug-ins X and Y) have registered interest for
the network flow which the incoming packet belongs to. However, plug-in X
was the first to do so. Consequently, the plug-in manager would start travers-
ing the sequence of interested plug-ins by handing the intercepted packet to
plug-in X. Upon completion of its processing (during which the network packet
could possibly have been modified), plug-in X issues a NF ACCEPT verdict. As
a result, the plug-in manager would subsequently dispatch the (potentially
altered) network packet to plug-in Y. Since this is the last interested plug-in,
the packet and the verdict returned by plug-in Y would be reinserted into the
kernel.

The just presented scenario clearly exemplifies that the implementation
of the plug-in subsystem allowed for multiple plug-ins to collaborate on a
single network stream. Of course, cooperating NIProxy plug-ins needed to be
carefully geared to each other. For instance, in case plug-in X had issued a
NF DROP instead of a NF ACCEPT verdict in the previous example, plug-in Y
would have never received the packet, even though it had registered interest
for it.

An important advantage of the developed design for this subsystem was
that it enabled the provision of generic as well as application-aware plug-ins.
To be more precise, although the plug-ins physically resided inside the network
(i.e., on the machines which hosted the NIProxy instances), they could con-

6.2 Refactored Design 107

ceptually be considered as forming a part of the distributed application which
they serviced. Consequently, in contrast to the base layer, plug-ins were not re-
quired to be generic but instead could leverage application-specific knowledge
as well as provide application-dependent functionality. For instance, in section
A.1.4 the implementation of a video transcoding plug-in for the initial NIProxy
instantiation will be presented which was targeted at a particular Networked
Virtual Environment (NVE) application. This application supports real-time
video communication between users but requires them, for reasons of scal-
ability, to stream not just one but three predefined qualities of the images
captured by their webcam. The video transcoding plug-in was implemented
to relieve NVE clients from this burden. In particular, the plug-in generated
the two remaining video qualities that are required by the NVE by on-the-fly
transcoding the highest quality version of a user’s webcam input. As a result,
scarce client upstream bandwidth was economized since it now sufficed for
NVE clients to transmit only this latter fidelity of their video stream. Sections
A.1.7 and A.2.2 in appendix A will present condensed descriptions, including
experimental results, of two additional examples of application-aware plug-ins
for the initial NIProxy implementation.

6.2 Refactored Design

6.2.1 Motivation

Practical experimentation with the netfilter-based NIProxy implementation
revealed a number of limitations, disadvantages and shortcomings. A crucial
issue turned out to be the rigidity of its underlying software architecture. As
development progressed, introducing new functionality and features became
ever more cumbersome and time-consuming; in addition, it began to require
increasing numbers of implementational anomalies and inconsistencies, which
in turn gave rise to maintainability issues. A second substantial drawback of
the initial design was the absence of a clear-cut location for the NIProxy’s
network traffic shaping functionality. Rather than it being an integral part of
the software architecture, the NTS algorithm was integrated in the NIProxy
by encapsulating it in a plug-in. This plug-in registered interest for all pos-
sible data streams and, for each intercepted network packet, issued either a
NF ACCEPT or NF DROP decision after consultation of the current bandwidth
brokering strategy for the client which the packet was destined for. Besides
this solution being hardly optimal from a software engineering perspective,
the NTS plug-in often needed to be amended on a per application basis (by
implementing a customized plug-in that extended or even completely overrode

108 Software Architecture

the original). Furthermore, collaboration between the network traffic shaping
functionality and other NIProxy plug-ins was not optimally supported, which
rendered the NIProxy’s dual QoE optimization techniques somewhat detached
and incompatible.

Being faced with these observations, the alternatives were either to con-
tinue working with the netfilter-based software architecture and to cope with
its shortcomings as best as possible, or to execute a profound redesign. The
latter alternative is obviously the recommended long-term solution since it
structurally addresses the identified issues instead of merely working around
them. On the downside, redesign and refactoring consume time and result
in a period of functional status quo. As the issues with the original software
architecture were recognized fairly early in the course of this PhD research,
scheduling a refactoring phase was considered to be a justifiable overhead. Af-
ter all, reworking the NIProxy’s software architecture was not only expected
to improve the performance and effectiveness of its already available func-
tionality, it was also anticipated to result in considerable time savings during
the future implementation of new features and QoE optimization tools in the
remainder of the PhD period.

To summarize, after careful deliberation, it was decided to completely re-
work and refactor the netfilter-based design. The objective of this operation
was to improve the flexibility and robustness of the software architecture,
without however compromising the general NIProxy methodology (i.e., while
staying faithful to the majority of its chief ideas and principles).

6.2.2 Implementation

Figure 6.3 depicts a high-level blueprint of the NIProxy’s refactored software
architecture [Wijnants 07][Wijnants 09a]. As is illustrated, the software ar-
chitecture on the one hand comprises a number of static components that are
not related to a particular client. Depicted are the Network Probing, Con-
nection Establishment, Client Administration and Terminal Aware-
ness Repository modules. The former contributes to the NIProxy’s network-
related awareness as it implements the active probing framework which was
described in section 3.1.1. The Connection Establishment module is responsi-
ble for processing incoming connection requests and for completing the client
log in procedure, while the Client Administration module manages the list of
currently logged in clients (which are, conform to the terminology that was
outlined in section 1.3, labeled NIProxy clients in Figure 6.3). Finally, the
Terminal Awareness Repository component centralizes the NIProxy’s termi-
nal and user preferences knowledge (see section 3.1.3). It is implemented as

6.2 Refactored Design 109

Figure 6.3: Schema of the software architecture of the refactored NIProxy
implementation.

a singleton repository which maintains terminal information for all active NI-
Proxy clients and is globally accessible in the NIProxy’s software architecture.

On the other hand, the design also includes a packet processing chain
(PPC), a composite object whose instances are always linked to a single NI-
Proxy client. An inbound as well as outbound version of the PPC exists, both
of which are instantiated immediately after a client has successfully logged in
to the NIProxy. Network packets which are intercepted from the Wide Area
Network (WAN) are fed to the inbound chain that is coupled with the NI-
Proxy client for which they are destined. Conversely, network traffic that is
generated by a NIProxy client itself ought to traverse the client’s associated
outbound PPC. Notice from these descriptions that the inbound and outbound
denominations match the flow direction terminology from section 3.3. As its
name insinuates and as will be described more precisely next, each PPC in-
stance adequately processes the network packets that flow through it. During
their passage, packets are accompanied by a description of the network flow
on which they are transmitted. After successful chain traversal, the (possibly
transformed) network packet will be forwarded to its actual destination.

110 Software Architecture

The packet processing chain is a compound object that links together mul-
tiple software components [Wijnants 07]:

Packet Receiver Ensures that all necessary network packets will be re-
ceived by the chain as input. In case of the inbound PPC, this com-
ponent will intercept the packets that belong to flows in which the asso-
ciated NIProxy client is currently interested (i.e., that are destined for
this client). Analogously, the Packet Receiver of the outbound PPC will
seize all network packets that are emitted by the corresponding NIProxy
client.

Bandwidth Manager Implements network traffic shaping and is responsi-
ble for enforcing the bandwidth arbitration strategy that is devised for
the associated NIProxy client.

Stream Manager Performs network stream bookkeeping. Its principal task
is to record the bandwidth requirement of individual network flows. This
is achieved by simply adding the size of the intercepted packet to the
current bandwidth consumption value of the network flow that is iden-
tified by the stream description which accompanies the packet. Flow
bandwidth consumption is measured and aggregated over a configurable
time interval; typically an interval of one second is used to yield per
second bandwidth consumption information. Besides stream bandwidth
usage monitoring, the Stream Manager stores all other kinds of network-
related information and is, for instance, responsible for signaling other
components of the detection of the instantiation of a new flow and for
keeping track of stream aliveness. The latter is achieved by governing
an expiration timer for every active network flow which is reset each
time a packet is intercepted on it; as soon as a timer expires, a stream
termination signal will be emitted. Notice that this component hence
plays an important role in the stream termination notification mecha-
nism that was described in section 4.7.2. Also remark that, combined
with the Network Probing module, the Stream Manager constitutes the
NIProxy’s repository of network-related context.

Service Manager Manages the loading and unloading of services on behalf
of its associated NIProxy client and applies the currently loaded services
to the network packets which it receives.

Packet Forwarder Transmits completely processed packets to their desti-
nation.

6.2 Refactored Design 111

Of these components, the Bandwidth Manager and the Service Manager are
the most important ones since they embody the two network traffic engineering
techniques which are currently provided by the NIProxy. This section will
therefore continue by describing the implementation and the mode of operation
of these entities in more detail.

Bandwidth Manager

The Bandwidth Manager encapsulates the NIProxy’s network traffic shaping
algorithm that has been described in chapter 4. As a result, it is responsible
for maintaining and managing its associated client’s stream hierarchy and
for executing the bandwidth distribution process. In the inbound PPC, this
component will manage the NIProxy client’s downstream bandwidth. In the
outbound counterpart, it is the upstream client bandwidth consumption that
will be shaped.

Every time the Bandwidth Manager is handed over a network packet, it
consults the appropriate (i.e., downstream or upstream) stream hierarchy to
compute a verdict for it. Three possible packet verdicts are defined:

block Indicates that the packet belongs to a network flow that the NTS
framework is not yet familiar with.

accept Indicates that the network stream on which the packet is transferred
is known to the bandwidth distribution algorithm and that the algorithm
in addition has decided to allocate bandwidth to this stream.

drop Indicates exactly the opposite as an accept decision (i.e., the packet is
transported on a recognized network stream which should currently not
be allocated bandwidth).

As is illustrated in Figure 6.4, the Bandwidth Manager actually appears
twice in both the inbound and outbound packet processing chain. The first
time it is accessed, it simply ensures that a block-ed network packet does
not continue its traversal of the chain. In the inbound variant, prior to ter-
minating the PPC execution for the block-ed packet, a stream peek will be
transmitted to the sink (i.e., the NIProxy client) by the Packet Forwarder
component. The peek includes information which identifies the network flow
to which the intercepted packet belongs as well as a limited amount of data
from the packet’s payload. Combined, the inbound Bandwidth Manager’s
first appearance and the Packet Forwarder entity hence implement the NI-
Proxy’s auxiliary blocked stream notification mechanism which was described

112 Software Architecture

(a) Inbound PPC

(b) Outbound PPC

Figure 6.4: Inter-component packet flow conditions in the packet processing
chain.

in section 4.7.2. Remember from this previous discussion that, based on the
information that is available in the received peek, the client is responsible for
determining the way future packets on the block-ed network stream should
be treated by the NIProxy. Also notice that the blocked stream notification
system is omitted at the corresponding location in the outbound PPC. In the
outbound case, the NIProxy client has knowledge of and complete control over
the involved network flows (since it is the client itself that emits them). As
a result, it is assumed that the client explicitly makes the NIProxy aware of
each of its outbound flows and explicitly specifies how each should be handled
by the network traffic shaping scheme. Like all client-NIProxy communica-
tion, the exchange of stream peeks as well as client-specified hints regarding
the desired future treatment of block-ed network flows adheres to the NI
protocol.

The second occurrence of the Bandwidth Manager fulfills an identical task
in both the inbound and outbound implementation of the PPC. In particular,
it guarantees that only network packets for which an accept decision is com-
puted will be output on the appropriate network link for transmission to their
destination. Stated differently, only packets which are conceptually part of a
network flow for which the NTS algorithm has reserved capacity will be allowed
to actually consume bandwidth. Packets which are assigned a drop verdict
are not relayed to the Packet Forwarder but instead are discarded at this stage
in the packet processing chain to prevent them from illegally claiming either

6.2 Refactored Design 113

downstream or upstream client bandwidth. Finally, block-ed packets will also
be discarded and instead, analogous to the behavior during the first encounter
of the Bandwidth Manager component in the inbound PPC, a stream peek
will be forwarded to the NIProxy client.

Service Manager

Besides bandwidth mediation, the NIProxy also supports multimedia service
provision as a traffic engineering technique. In the refactored software archi-
tecture, this functionality is provided by the Service Manager component. As
was previously discussed in section 5.1, services are implemented as NIProxy
plug-ins. The Service Manager is first of all able to dynamically load and
unload these plug-ins during NIProxy operation. This behavior can either be
triggered by the NIProxy itself or could be initiated by a NI protocol com-
mand that was issued by the NIProxy client. Secondly, the Service Manager
performs stream interest accounting. In particular, it provides an interface
through which services can register (and unregister) interest for one or mul-
tiple network flows. A service could, for instance, automatically register its
stream interest at load-time. Third and most importantly, the Service Man-
ager is responsible for directing the application of services on intercepted net-
work flows. Whenever a network packet is delivered to the Service Manager,
it will consecutively pass it to the currently installed services that have regis-
tered interest for the network stream on which the packet is transported. The
service traversal order will hereby equal the sequence in which the services
have registered interest for the network flow that is currently being processed.

As soon as a plug-in is handed over a packet, it can process it any way
it seems fit. This implies that it is allowed for a NIProxy service to alter
(part of) the content of the packets which it receives or to even completely
replace it (e.g., in case of a video frame, by transcoding it to a lower quality).
Besides the network packet itself, it is also possible for services to modify the
description which accompanies the packet and which identifies the network
flow to which it belongs. This facility is, for instance, valuable for services
which actively transform a network flow. As an example, the static video
transcoding service from section 5.3 updates the associated stream description
to indicate that the output packet no longer belongs to the original video flow
but instead its transcoded variant. By doing so, any subsequent services as
well as components that succeed the Service Manager in the PPC will be able
to ascertain that they are dealing with a transcoded video packet. Another
possibility for a service is to specify that the processing of the input packet by
subsequent services, if any, should be aborted and that the Service Manager

114 Software Architecture

Figure 6.5: Clarification of the packet flow within a NIProxy service chain.

should drop the packet to halt its processing and to purge it from the PPC. In
Figure 6.4, this option is only visualized for “Service 1” to prevent the scheme
from becoming needlessly complex, but it is indeed available for all NIProxy
services. Finally, services are allowed to spawn completely new packets during
their operation and hence to produce multiple packets as output.

Once a service has completed the processing of the current network packet,
its produced output (i.e., the possibly altered input packet combined with its
associated stream description, as well as any newly generated packets and
their stream descriptions) will be transfered by the Service Manager to the
next interested service. As such, the Service Manager implements the service
chaining principle from section 5.1 and hence enables inter-service collabora-
tion. In case a service produces multiple output packets, these will sequentially
flow through the remainder of the list of interested services (and afterwards one
at a time through the subsequent components in the current PPC iteration)
as is exemplified in Figure 6.5.

By now it should be apparent why the Bandwidth Manager component is
consulted twice during a single PPC iteration. Its first occurrence ensures that
the processing is ceased for packets which are transmitted on network flows
that have not yet been incorporated in the NIProxy’s network traffic shaping
strategy for the corresponding client. Actual decisions regarding bandwidth
allocation however have to be deferred at this stage of the PPC since the
intercepted packet still needs to pass through the client’s service list. Ser-
vices are namely allowed to modify input packets so that they logically start
belonging to a different flow. In addition, services might spawn completely
new packets and it will need to be confirmed whether or not these packets
are entitled to transmission bandwidth. Therefore, the Bandwidth Manager
is contacted again after service processing is complete, at which point the
client’s current bandwidth allocation scheme is actually imposed. Services’

6.2 Refactored Design 115

ability to conceptually transfer packets between network flows (by updating
their associated stream description) and to spawn additional network packets
also explains the presence of the blocked stream notification scheme at the sec-
ond Bandwidth Manager appearance in the outbound packet processing chain
(see Figure 6.4(b)). The stream descriptions which are output by the Service
Manager no longer necessarily identify network flows which are emitted by
the NIProxy client itself. As a result, the client will need to be notified of the
existence of these novel outbound streams, so that it can instruct the NIProxy
on their required future treatment.

As was stated in section 5.2, a defining property of the NIProxy is the
possibility for its two provided end-user QoE optimization tools to conspire.
Adequate support for this feature is probably the most significant improvement
that is introduced by the refactored software architecture (recall from section
6.2.1 that it was only deficiently supported in the netfilter-based implemen-
tation). As is suggested in Figure 6.3 in the form of dashed arrows, NIProxy
services are provided with an interface to both the Bandwidth Manager and
Stream Manager instances in their encompassing PPC. Through the former
interface, services are able to consult the current bandwidth brokering strategy
which the NIProxy’s network traffic shaping mechanism has formulated for its
associated client. This information could, for instance, be applied to optimize
service execution efficiency. More importantly, this interface even allows for
services to alter or extend the stream hierarchy instance that is maintained for
the corresponding client. As such, it becomes possible for services to effectively
influence the NIProxy’s bandwidth brokering operations. An example hereof
was already presented in section 5.3.1 in the context of the NIProxy’s static
video transcoding service. The second interface on the other hand enables ser-
vices to access as well as supplement the NIProxy’s network-related contextual
knowledge. For instance, in case service processing results in a modification
of the size of the input packet or in case it introduces additional packets, the
interface with the Stream Manager can be exploited to update the bandwidth
consumption measurements of the involved network streams accordingly. An
illustration of this concept is again provided by the static video transcoding
service, which supplies the Stream Manager with information regarding the
bandwidth requirements of transcoded video flows.

PPC Technicalities

To conclude this section, some minor technical details regarding the imple-
mentation of the packet processing chain are succinctly enumerated below:

• Every PPC stands on its own and completely shields its constituting soft-

116 Software Architecture

ware component instances. In particular, it is impossible for component
instances to address components that belong to a different PPC.

• Since the NIProxy maintains separate packet processing chains on a per
client basis, each client has personal instances of the PPC’s comprised
software components.

• The above observation also applies to the Service Manager component
and the NIProxy services. As a result, the refactored software archi-
tecture enables the NIProxy to provide each client with a personalized
service list that is tailored to its specific needs and/or constraints.

• For each client, the inbound and outbound equivalents of the Bandwidth
Manager, Stream Manager and Service Manager components correspond
to a single instance [Wijnants 09a]. In other words, a client’s inbound
and outbound PPC share their Bandwidth Manager, Stream Manager
and Service Manager instances. In case of the Bandwidth Manager,
for example, this instance simultaneously maintains the corresponding
client’s downstream and upstream stream hierarchy and ensures that
the correct variant is consulted depending on the flow direction of the
data packets which it is handed over. Similarly, the type of services that
are applied by the Service Manager (i.e., either inbound or outbound)
is simply determined by the direction of the network flow to which the
intercepted network packet belongs.

6.2.3 Application-Layer Protocol Support

As was already discussed in section 3.4 and as is again illustrated in Figure 6.3,
the basic communication that occurs between a client and its NIProxy instance
follows the Network Intelligence (NI) protocol. This proprietary protocol con-
ceptually introduces a new layer in between the transport and application
layers of the TCP/IP protocol stack; it is employed by application software
and proxy to establish a connection and to subsequently exchange commands
and events. As an example, the NI protocol enables the distributed applica-
tion to steer the global operation of the NIProxy (e.g., by instructing it to
load or unload a specific service) and to provide the NIProxy with application
awareness (e.g., through adequate stream hierarchy construction; see section
4.7.1). Recall that at client-side, NI protocol handling is to a large extent per-
formed by the NILayer support library. As a result, only minor modifications
to the software of the distributed application will in general be required for
the application to be able to start leveraging the NIProxy’s features.

6.2 Refactored Design 117

Distributed applications however typically implement end-to-end commu-
nication and data exchange according to one or more specific protocols which
logically operate on top of the NI layer in the protocol stack. To enable QoE
optimization, the NIProxy needs to be able to cope with such Application-
Layer Protocols (ALPs) and might benefit from knowledge of their internal
operation. In the netfilter-based software architecture, this issue was “circum-
vented” by exploiting the iptables framework to perform packet selection and
by devolving the responsibility for application-layer protocol parsing and han-
dling upon NIProxy plug-ins. More specifically, all possible application-layer
network flows were simply NF QUEUE-ed to userspace and it was assumed that
at least one plug-in contained sufficient knowledge of the application’s commu-
nication scheme to be able to interpret these flows and to deduce which type
of data they carried. As such, the need for explicit application-layer protocol
support in the general software architecture was eliminated. The drawback
of this approach, besides it being inelegant, was that it yielded an environ-
ment in which nearly every plug-in was exclusively tailored to one specific
distributed application. In case reuse of plug-in functionality across multiple
distributed applications was intended, the plug-in needed to incorporate code
which enabled it to understand each individual application’s communication
semantics.

During the refactoring operation, it was decided that this issue needed to
be more properly addressed by making ALP support an integral part of the NI-
Proxy’s software architecture. As Figure 6.3 depicts, an Application-Layer
Protocol Manager (ALP Manager) module was therefore introduced and
the NI protocol was extended to allow clients to (un)register ALPs with the
NIProxy. On the reception of a request to register a certain application-layer
protocol, the ALP Manager performs two actions. It first of all instantiates
an Application-Layer Protocol Communication (ALP Communication)
entity to enable application and proxy to communicate according to the spec-
ified application-layer protocol. In other words, the ALP Communication
instance bears the responsibility for correctly parsing and processing the ALP
messages that are transmitted by the NIProxy client. Secondly, the ALP Man-
ager ensures that the NIProxy is able to intercept and forward data that is ex-
changed conform to the application’s communication scheme. This is achieved
through the installation of respectively a new ALP Packet Receiver and
ALP Packet Forwarder element1. Unregistering an application-layer pro-

1In Figure 6.3, the modules for packet reception and transmission in the inbound as well
as outbound PPC lack the ALP prefix in their designation and are represented as a single
object. The depicted components actually correspond to wrapper objects which encompass
one or multiple ALP Packet Receiver and ALP Packet Forwarder instances, respectively.

118 Software Architecture

tocol on the other hand results in the destruction of the objects that were
instantiated on the protocol’s registration. Also note that the NIProxy al-
lows clients to have multiple ALPs registered at the same time. This way,
support is attained for distributed applications which rely on more than one
application-layer protocol as well as scenarios in which a client is running
multiple distributed applications concurrently.

As a final remark, notice that the ALP Manager requires knowledge of
ALP semantics to be able to instantiate the different components that are
necessary for its proxy-side processing. To guarantee maximal flexibility and
to achieve run-time extensibility, it should be possible to incorporate support
for a particular ALP in the NIProxy without requiring a reboot and without
demanding a modification or even recompilation of its codebase. Given the
large parallelism with the requirements that were identified for the NIProxy’s
multimedia service provision mechanism, a similar plug-in-based design was
resorted to to address ALP knowledge extensibility. In particular, through
the NI protocol, the application software can deliver ALP knowledge to the
NIProxy in the form of a dynamically (un)installable plug-in.

6.3 Summary

The NIProxy is a completely software-based entity for the GNU/Linux oper-
ating system which is coded exclusively in the C++ programming language.
This chapter has explored the NIProxy’s implementation and has provided
an insight in the evolution of its codebase and software architecture. In
its initial design, the NIProxy was implemented as a generic base layer on
top of which potentially application-aware plug-ins could be installed. The
application-independent base layer only offered basic, proxy-related function-
ality to maximize NIProxy usability. A plug-in subsystem allowed this generic
functionality to be extended with additional capabilities via encapsulation in
dynamically loadable plug-ins, which could be either universally applicable or
tailored to the needs and characteristics of a particular distributed applica-
tion. To achieve network packet selection, this NIProxy instantiation relied
on the netfilter/iptables framework to manipulate the packet filtering table of
the GNU/Linux kernel.

Based on empirical findings, approximately halfway the PhD period the
netfilter-based NIProxy implementation underwent a vigorous refactoring. Ex-
perimental evaluation had namely unveiled a number of constraints and short-
comings which could practically integrally be attributed to the NIProxy’s ini-
tial design. Also, due to the software architecture lacking flexibility, introduc-
ing new functionality became increasingly cumbersome, time-consuming and

6.3 Summary 119

unintuitive. The objective of the refactoring was therefore to improve the de-
sign and robustness of the software architecture, however without renouncing
the global NIProxy methodology or any of the NIProxy’s founding principles
in the process.

The redesign resulted in an increased functional decomposition and hence
a much more modularized software architecture. By more closely complying
with the separation of concerns paradigm [Sommerville 06], the maintainabil-
ity of the refactored NIProxy implementation was drastically improved. In
the new design, which is still in use at the time of writing, the NIProxy pro-
vides both an inbound and outbound packet processing chain (PPC) instance
for each currently connected client. These composite objects group together
a number of software modules and define the way data flows between them.
Combined, the constituting software components are responsible for process-
ing the data packets that are destined for a NIProxy-managed application
end-point (in the inbound PPC) as well as those which are transmitted by the
end-point itself (in the outbound case). Due to the high level of modularity,
the current software architecture enables the implementation of a particular
constituting component to be swapped without impacting any of the other
software modules in the PPC.

Distributed over the entire chapter, a number of concrete advantages of
the refactored software architecture over the original implementation has been
highlighted. The most important benefits are recapitulated in the following
enumeration:

• In the initial design, the NIProxy relied on the netfilter/iptables frame-
work to perform packet selection and mangling. Since this framework
is only available on the GNU/Linux operating system, NIProxy deploy-
ment was limited to network nodes running GNU/Linux. The refactoring
operation eliminated this dependency, this way opening up the possibil-
ity to port the NIProxy to other platforms and operating systems.

• The refactored software architecture exhibits improved robustness, main-
tainability, flexibility and extensibility. This not only beneficially im-
pacted the performance and effectiveness of the functionality which was
already available prior to the refactoring, it in addition enables acceler-
ated incorporation of new NIProxy features.

• Both versions of the NIProxy implementation supported the multime-
dia service provision principle. However, whereas in the initial design a
service corresponded to a global entity which applied to all clients simul-
taneously, the NIProxy now provides personal service instances on a per

120 Software Architecture

client basis. The drawback of the former scheme is that it required each
service to perform at least a moderate amount of client administration
and accounting. This in turn gave rise to undesirable service code bloat.
In contrast, in the current design, client administration and accounting
is tackled centrally (i.e., by the Service Manager).

• The netfilter-based design was missing adequate application-layer pro-
tocol support. Instead of explicitly addressing this issue in the soft-
ware architecture, the responsibility for ALP parsing and processing
was placed with the plug-ins. This design decision again contributed to
service code bloat and code duplication since ALP-related functionality
possibly needed to be repeated across multiple plug-ins.

• During the redesign, specific attention was given to the proper integra-
tion of the network traffic shaping functionality in the software architec-
ture. An indirect yet extremely important effect hereof was the transfor-
mation of the NIProxy’s dual traffic engineering methods from isolated
techniques into fully collaboration-enabled QoE optimization partners.
The extensive interoperation possibilities between the NTS and multime-
dia service provision schemes have turned out to become a distinguishing
feature of the NIProxy (see the findings from the comparative literature
study that were presented in section 2.4.3 for confirmation).

Given all these improvements, scheduling a refactoring period has shown to be
legitimate and definitely not in vain. Stated differently, temporarily suspend-
ing the functional evolution of the NIProxy and instead allocating attention
to its redesign has proven to be the only viable long-term solution.

Part II

Practical QoE Optimization
Results

Overview

After the rather theoretical discussion of the NIProxy and its facilities in the
previous part, part II will present the outcomes and findings of a number of
practical studies. In particular, each time the NIProxy was extended with new
functionality and features for QoE optimization, it was subjected to an exper-
imental evaluation. This part will describe the results of these evaluations in
a largely chronological order. Stated differently, the subsequent chapters will
each focus on a specific challenge in terms of user experience improvement and
will present incrementally more elaborate and sophisticated practical results.
Please see section 1.4 for a detailed outline as well as a summarized description
of each constituting chapter.

All results that will be provided in this part have been captured objec-
tively, for instance by tracing the traffic that traversed the transportation
network during the conducted experiment. For each test, the recorded results
will be interpreted analytically, after which conclusions will be drawn regard-
ing their implications on user perceived QoE. Notice that this implies that
the presented conclusions will be rather speculative in nature since to date
traditional usability research methods (e.g., user surveys) have not yet been
exerted to formally confirm them. The achieved experimental results are how-
ever of such a magnitude that their beneficial influence on user QoE will be
intuitively evident. Nonetheless, since subjective interpretations and human
factors play a significant role in QoE optimization, collecting qualitative feed-
back regarding the NIProxy’s performed operations by means of user studies
is an important topic of future research.

As a related remark, note that the NIProxy is merely a framework for
QoE optimization rather than a ready-made solution. The NIProxy offers a

124

number of facilities via which the QoE of users of distributed applications
may be improved. However, whether an improvement in user QoE is actually
achieved largely depends on how these facilities are exactly applied. Stated
differently, the NIProxy’s behavior needs to be tweaked to the context of use if
actual QoE optimization is to be attained; (subjective) user feedback is likely
to play a crucial role in this process, which again underscores the importance
of submitting the NIProxy to qualitative studies.

The NIProxy being a framework for QoE optimization also implies that
the evaluations that will be described in this part are mainly meant to provide
the reader with an idea of the NIProxy’s QoE optimization potential. As a
result, the absolute values and the statistical significance of the realized exper-
imental results are of lesser importance. Every chapter will therefore present
experimental findings that are representative of the NIProxy’s competence for
addressing the QoE optimization challenge that is under investigation. None
of the chapters will include a statistical analysis of the achieved results.

Chapter 7
Reference Scenario and Baseline Results

As was discussed in chapter 6, approximately halfway the course of this doc-
toral research, the NIProxy has undergone a major refactoring of its software
architecture. The redesign operation was followed by an incremental improve-
ment and expansion of the QoE optimization tools that are provided and
supported by the NIProxy. This chapter will present the results of a practi-
cal evaluation of the NIProxy immediately after completion of the refactoring
effort [Wijnants 07]. This particular instantiation of the NIProxy can be con-
sidered the post-refactoring reference version: only elementary network traffic
shaping functionality was supported and the set of available services was lim-
ited to the static video transcoding service that was described in section 5.3.
In addition, support for outbound traffic engineering was not yet provided.
The QoE optimization results that will be presented in this chapter hence
represent baseline achievements which will be further extended and embel-
lished in subsequent chapters (e.g., through the incorporation of new specific
functionality in the NIProxy).

126 Reference Scenario and Baseline Results

7.1 Evaluation Environment

The first practical trial of the revised version of the NIProxy was performed
using an in-house developed Networked Virtual Environment (NVE) applica-
tion. At the time of evaluation, this application was leveraged regularly by
our research department to test new ideas and principles regarding network
communication. Given its academic background and intended purpose, the
NVE application did not set great store on virtual environment and avatar
visualization. Users were presented a top-down two-dimensional view of the
shared world in which they were embodied by a colored circle with viewing
vector (see Figure 7.1). In contrast, a major point of interest of the application
was interpersonal communication and in particular the effect of the network
traffic that it introduces on the transportation network. Users were therefore
provided with real-time voice as well as webcam video streaming capabilities
as means to communicate with remote peers. The speex and H.263 codecs
were employed for voice and video compression, respectively.

Before the test process could be initiated, the application had to be modi-
fied so that it was capable of connecting to the NIProxy and, in a later stage,
of providing the NIProxy with application awareness. The availability of the
NILayer auxiliary library, which was introduced in section 3.4, turned out
to facilitate this task tremendously. The largest obstacle proved to be the
NVE application’s awareness manager1. In particular, due to its straight-
forward implementation, the awareness manager was incapable of providing
sufficiently detailed information regarding the relative importance of the net-
work traffic which was generated by the application. This in turn resulted in
a non-optimal operation of the NIProxy. To mitigate this problem, an addi-
tional scheme was implemented on top of the awareness manager to enable
more fine-grained stream importance determination. In particular, to simu-
late the attenuation of the strength and hence audibility of a voice signal with
increasing distance (as occurs in the physical world), the scheme assigned im-
portance to voice traffic inversely proportionally to the spacing in the virtual
world between the local user and the stream source. This implies that as a
remote user was virtually positioned more distantly from the local user, the

1Awareness management in a NVE (and possibly other types of distributed systems) is
concerned with identifying which objects and information are of relevance to a particular
user [Singhal 99]. As such, it is typically exploited to manage (i.e., restrict) the amount of
information that must be received and processed by a client. In this experimental evaluation,
client-side manipulation of the NVE’s communication scheme by the awareness management
system was disabled. Instead, the traffic engineering task was fulfilled by the NIProxy,
hereby relying on the client’s awareness manager as primary source of application-related
intelligence.

7.2 Experiment Description 127

latter would attach lower relevance to the former’s voice stream. For video
traffic on the other hand, the scheme not only resorted to virtual distance
but in addition considered virtual orientation information. As a video source
moved farther out of the Field of View (FOV) of the local user, an increasing
penalty value was subtracted from the importance of its emitted video stream.

It is worth noting that the implemented stream importance determination
scheme is not particularly tailored to the considered application and would
in fact make more sense for a NVE application which provides users with a
first-person perspective in an immersive 3D virtual world. It was nonetheless
decided to employ this scheme because it allowed for a clear and comprehensive
investigation of the NIProxy’s added value in terms of user QoE optimization.

7.2 Experiment Description

In the just described evaluation environment, multiple experiments were con-
ducted. This chapter will report on only one such test because the results
that were generated during this experiment are representative of the bene-
fits, in terms of user QoE optimization, that were attainable by the initial
instantiation of the refactored NIProxy.

Four NVE clients were involved in the experiment, of which only one was
connected to a NIProxy instance. The three remaining clients, which will
be denoted by C1, C2 and C3, ran the unmodified version of the test appli-
cation and hence did not leverage any of the NIProxy’s functionality. The
clients simulated four geographically dispersed residential users which were
interconnected by a Wide Area Network (WAN), to which each was connected
through an access link. An NIProxy instance was deployed on the transition
point where the managed client’s last mile connection and the WAN con-
verged. The goal of the experiment hence consisted of investigating the way
the NIProxy controlled the last mile dissemination of multimedia data and,
more broadly, of registering the multimedia experience that was witnessed by
the managed user.

To confine the complexity of the results, only one type of multimedia traffic
was considered in the experiment. Uncomplicated baseline results improve in-
telligibility and, more importantly, enable meaningful comparison with results
which will be presented in future chapters. Given the multimedia stream-
ing alternatives supported by the NVE application (i.e., audio and video),
it was decided to opt for video because it is more demanding on the trans-
portation network, especially in terms of bandwidth consumption. Resorting
to video streaming in addition allowed for the investigation of the NIProxy’s
multimedia service provision mechanism and, in particular, of the static video

128 Reference Scenario and Baseline Results

Figure 7.1: Screenshot of the NVE application which illustrates the client
positioning in the virtual world during the experiment.

transcoding service from section 5.3, the sole service that was implemented at
this point in the NIProxy’s lifecycle.

The experiment logically spanned three distinct intervals. Within each
interval, all contextual factors were invariant, while every interval transition
was triggered by a change in one or more conditions. The client positioning in
the virtual world during the experiment is illustrated in Figure 7.1. It appears
that in the initial interval, the NIProxy client was oriented towards clients C1,
C2 and C3, which were consequently all enclosed in its FOV. After approx-
imately 35 seconds, the NIProxy client navigated along the depicted dashed
path to arrive at a new virtual location, at which point the second interval
of the experiment commenced. Notice that at this point C3 fell outside the
NIProxy client’s FOV. Again approximately 40 seconds later, the transition
to the third experiment interval was triggered by artificially decreasing the
downstream bandwidth that was available to the NIProxy client. In particu-
lar, during the third interval the NIProxy client had a downstream bandwidth
of only 160 Kilobits per second (Kbps) at its disposal, against 240 Kbps during
the first two intervals.

The NIProxy’s static video transcoding service was configured to perform
video quality as well as resolution reduction. The quality relation between the
original and transcoded video variants is exemplified in Figure 7.1, where the
video streams of remote clients C1 and C3 on the one hand and client C2 on
the other are running at original and transcoded fidelity, respectively.

7.3 Experimental Results 129

Figure 7.2: Stream hierarchy maintained during the experiment.

7.3 Experimental Results

The stream hierarchy that was maintained for the managed client during the
experiment is depicted in Figure 7.2. An internal WeightStream node was
used to distinguish the remote video sources from each other. The stream
hierarchy was constructed entirely by the NIProxy client itself, except for
the edges in blue and the leaf nodes with a blue outline, which were added
by the NIProxy’s static video transcoding service. In particular, each leaf
node that was instantiated by the NIProxy client represented the Original
Version (OV) of a specific video stream, whereas its sibling corresponded to
the Transcoded Version (TV) of this stream. These transcoded counterparts
did not belong to the test application’s communication scheme but instead
were generated automatically by the video transcoding service. Both the OV
and TV leaf nodes were of the discrete type and defined 2 discrete levels
which corresponded to a zero and maximal stream bandwidth consumption,
respectively. As was explained in section 4.3.1, the leaf nodes were in this
experiment hence confined to toggling their associated network flow between
an off and on state. Finally, in line with the reasoning from section 5.3.1,
an internal node of type Mutex was exploited to cluster the two fidelities of
each video stream, this way effectively preventing the NIProxy client from ever
receiving both versions simultaneously.

Recall from section 7.1 that virtual distance as well as virtual orientation
information served as basis for the client-side calculation of relative stream
significance. In the experiment, the outcome of the stream importance deter-
mination scheme was translated into appropriate weight values for the subtrees
which represented the 3 remote video sources in the stream hierarchy. Notice
that in Figure 7.2 all weight values are depicted in pairs. The uppermost value

130 Reference Scenario and Baseline Results

of each pair applied during the first interval of the experiment, while the value
below it applied during the two following intervals. The identical weight values
for the latter two experiment periods are explained by the fact that no user
relocations occurred at the transition from the second to the third interval.

The exact calculation of video source importance, and hence of their corre-
sponding weight values, occurred as follows. In the first experiment interval,
all remote clients lay in the NIProxy client’s FOV. As a result, stream sig-
nificance depended solely on the virtual distance between the NIProxy client
and the individual sources. Consequently, the video stream transmitted by C3
was assigned the highest weight value, while C2’s video stream received the
lowest. However, at the end of the first interval, the NIProxy client traveled
to a new virtual location, which resulted in shifts in stream importance. In
particular, during the second and third experiment period, C1 was considered
to be the most important video source because it was now located nearest to
the NIProxy client and in addition was contained in its FOV. Furthermore,
although the virtual distance between the NIProxy client and clients C2 and
C3 was almost identical, C2’s video stream was allocated a significantly higher
weight value since C3 resided outside of the NIProxy client’s virtual viewing
angle.

Based on the just described stream hierarchy, the NIProxy client’s down-
stream bandwidth was brokered as is illustrated in Figure 7.3. The depicted
network trace indicates which video streams were received by the NIProxy
client during the experiment and at which quality, the bandwidth consumed
by each and the total amount of downstream bandwidth that was available to
the NIProxy client. For instance, in the first interval, the NIProxy client had
a downstream bandwidth of 240 Kbps at its disposal and this bandwidth was
exerted by the NIProxy for the delivery of

• the original version of the video streams from C1 and C3

• the transcoded version of C2’s video stream

This situation is reflected in the screenshot in Figure 7.1. Notice the cor-
respondence between the delivered video qualities and the NIProxy client’s
stream hierarchy: during the first interval, the subtrees which represented
C1’s and C3’s video stream were assigned a higher weight value compared to
the subtree that was associated with C2’s video stream.

The network trace that is shown in Figure 7.3 comprehensively demon-
strates the capabilities and benefits, in terms of QoE enhancement, of the
initial version of the refactored NIProxy. First, it illustrates that the NI-
Proxy delivered an important contribution to congestion avoidance on the

7.3 Experimental Results 131

Figure 7.3: Stacked graph which visualizes all video network traffic received
by the NIProxy client during the experiment.

managed client’s access link, since the downstream capacity of the client’s last
mile connection was at all times respected. Stated differently, no more traffic
was forwarded to the NIProxy client than its network connection could han-
dle. Consequently, packet loss and packet latency were kept to a minimum
throughout the experiment, which in turn resulted in the reception of the dis-
seminated multimedia data at client-side under ideal circumstances. The final
outcome was an optimal playback of the received video traffic and hence a
maximal viewing experience for the user. Secondly, the last mile downstream
bandwidth that was actually available to the NIProxy client was partitioned
correctly (i.e., in accordance with relative stream significance). In particular,
the multimedia flows that the NIProxy client deemed most important were at
all times delivered at the highest possible quality, conceivably at the expense
of less important network traffic. The two achievements that have been de-
scribed thus far can be attributed to the NIProxy’s NTS mechanism and, more
specifically, to the exploitation of respectively network and application aware-
ness during bandwidth brokering. In contrast, the third benefit is related to
the NIProxy’s service delivery facilities. The presented experimental results
namely also exemplify the user QoE optimization options that are unlocked
by the static video transcoding service and hence, through generalization, by
the NIProxy’s multimedia service provision platform. In the absence of such a
service, shortage of client downstream bandwidth might force the NIProxy to

132 Reference Scenario and Baseline Results

mercilessly drop specific video flows on a quite regular basis. Now however, it
becomes in such situations possible for the NIProxy to still forward (some of)
the video streams which would otherwise have needed to be discarded to the
managed client, albeit in a lower quality. Notice that this is not merely the
merit of the video transcoding functionality that is provided by the service,
but to a large extent also of the service’s correct interaction with the NTS
process. Although no formal user inquiry was conducted, it seems intuitively
apparent that the ability to deliver a lower-fidelity video stream instead of no
video at all is likely to appeal to (at least a considerable subset of) users of
distributed applications. In any case, if the video transcoding behavior and
its implications on the bandwidth brokering outcome would not be desired by
a particular person, it can easily be disabled for this user as NIProxy services
are applied on a per client basis.

For reasons of completeness, this section is concluded with some remarks
on the experiment and the presented results:

• Notice from the chart in Figure 7.3 that not all original video streams
consumed identical amounts of network bandwidth. For instance, the
original version of C3’s video stream demanded considerably more band-
width compared to the video streams that were sent out by C1 and C2.
This was caused by the difference in complexity of the streamed video
content. In particular, the webcams of clients C1 and C2 recorded a
static scene which did not change at all during the experiment, while
C3’s webcam captured the face of a user (see Figure 7.1).

• The bandwidth consumption of the original video stream did not in-
fluence the bitrate of the transcoded version of this stream. As was
described in section 5.3, the NIProxy’s static video transcoding service
needs to be configured with a target bitrate on instantiation. All output
video streams that will be generated by a service instance will adhere to
the specified target bitrate, irrespective of the bandwidth consumption
of the input flows. In this experiment, the target bitrate equaled 50
Kbps.

• A considerable amount of the NIProxy client’s downstream bandwidth
remained unused during the second interval of the experiment. This is
explained by the fact that this idle bandwidth did not suffice to boost
C3’s video stream to a higher quality and that it could not be exploited
in any other way (i.e., all other multimedia flows that were involved in
the experiment were already running at maximal quality).

7.4 Conclusions 133

7.4 Conclusions

The refactoring of its software architecture (see chapter 6) represented an im-
portant milestone in the NIProxy’s lifecycle. Since then, the NIProxy’s func-
tionality and capabilities have been further improved and extended. This was
however achieved without radically modifying the underlying software archi-
tecture. As a result, the version that was yielded by the refactoring operation
can be considered to be the most basic and limited instantiation, with regard
to supported QoE optimization options, of the NIProxy in its current form
(i.e., at the time of writing). Through the discussion of the outcome of a
representative experiment, this chapter has investigated the results that could
be attained by this initial post-refactoring NIProxy implementation. In other
words, this chapter has illustrated the most elementary QoE optimization ca-
pabilities that are available in the current revision of the NIProxy. As such,
it has provided a point of reference against which the reader will be able to
offset improvements and extensions that were introduced after the redesign
phase and which will be presented in subsequent chapters.

The presented experimental findings were generated using a top-down 2D
NVE application which was leveraged regularly in our research department to
investigate, explore and evaluate networking-related concepts at the time of
the NIProxy refactoring. In the experiment, a NIProxy instance was respon-
sible for regulating the downstream transmission of NVE-related traffic over a
user’s access connection. Three important baseline observations were distilled
from the produced results:

• By exploiting its network awareness during network traffic shaping, the
NIProxy succeeded in preventing over-encumbrance of the user’s network
connection. As such, it contributed to a stable network environment,
which in turn resulted in optimal data delivery.

• The network traffic shaping process was directed by the NIProxy’s appli-
cation awareness, which led to an intelligent distribution, from the user’s
point of view, of the available downstream access bandwidth over the in-
volved network traffic. In this particular scenario, the user received the
flows that he deemed most important at maximal quality, conceivably
at the expense of less important network traffic.

• The ability for NIProxy services, in this case exemplified in the form
of the static video transcoding service from section 5.3, and the NTS
framework to collaboratively address the user QoE optimization task
was confirmed, as were the benefits that are potentially unlocked by
such collaboration.

134 Reference Scenario and Baseline Results

Since these findings can be attributed to the most primary functionality of
the current revision of the NIProxy, they will recur in a similar form in subse-
quent chapters. These chapters will however in some way embellish or further
extend the baseline results that were already achieved here through the intro-
duction of particular improvements or by addressing a specific facet of user
QoE optimization. This implies that subtraction of the baseline achievements
from the results that will be presented in future chapters will disclose their
specific contributions.

Chapter 8
Combined Real-Time and Non-Real-Time Network Traffic

Shaping

Depending on its characteristics, multimedia content is transmitted over the
transportation network in either a real-time or non-real-time fashion. Real-
time network flows have stringent timing constraints and therefore require
timely arrival at the destination. An example is a video fragment in a video
streaming environment. Chapter 7 has already confirmed that the NIProxy’s
NTS framework is able to adequately cope with this class of network traffic.
Non-real-time network traffic on the other hand exhibits more relaxed delay
constraints but in contrast typically requires perfect and reliable delivery to
the destination. These hallmarks are for instance manifested in a file trans-
fer. Although the foundations for managing the latter type of traffic were
present in the NIProxy’s NTS scheme from the very outset (in the form of the
continuous leaf node category), empirical findings have unveiled that extra
functionality was required if the goal was to achieve sensible results. This
chapter is exactly devoted to this topic as it will report on the incorporation
of practical support for the shaping of non-real-time network traffic in the NI-
Proxy [Wijnants 08b]. As will become apparent, this involved the adoption of
specialized buffering as well as rate control techniques. Through experimental

136 Combined Real-Time and Non-Real-Time NTS

validation, the NIProxy’s capability to successfully manage client downstream
bandwidth in the presence of competing real-time and non-real-time network
traffic will be demonstrated. The attained experimental results will in addition
be collated with the default scenario in which the NIProxy is not exploited.
This qualitative comparison will expose a substantial improvement in user
QoE in case the NIProxy’s NTS functionality is leveraged.

8.1 Real-Time versus Non-Real-Time Network Traf-
fic

One possible way to roughly categorize network traffic is to distinguish between
real-time and non-real-time network flows:

• Real-time data flows transport content or media with real-time char-
acteristics, such as interactive audio and video. As a result, real-time
network traffic is very sensitive to delay and needs to be delivered to
the destination “in time”. Outmoded delivery renders the received data
worthless and has hence a just as detrimental impact as lost data. Real-
time network flows are typically continuous, long-lived streams that are
transmitted using a relatively basic and hence lightweight transport- or
application-layer protocol such as the User Datagram Protocol (UDP)
[Postel 80] or the Real-time Transport Protocol (RTP) [Schulzrinne 03].

• In contrast, non-real-time network traffic does not impose similar strict
demands on its delivery period, although in many situations it is still
preferable to receive the transported content as soon as possible. On
the other hand, while real-time network traffic can typically cope with
small amounts of packet loss, non-real-time content should usually be
delivered reliably and free of errors. This explains the popularity of more
advanced transport-layer protocols like, for instance, the Transmission
Control Protocol (TCP) [Postel 81b] for handling the dissemination of
non-real-time content. Non-real-time network traffic is often bursty and
relatively short-lived in nature and typically carries information such as
file or P2P data.

The real-time versus non-real-time classification can also be considered
from the perspective of network traffic elasticity. Real-time network traffic
is typically injected in the network at a certain rate and lacks network- or
transport-layer mechanisms to adapt its data throughput and hence band-
width consumption. Note that this definition does not necessarily imply that

8.2 Implementation 137

the source emits the data at a fixed rate. Streaming a media fragment that
was encoded according the the Variable Bitrate (VBR) approach is for in-
stance likely to yield a data flow whose bandwidth consumption fluctuates
considerably over time1. A real-time flow will however typically not adapt
its behavior and bandwidth consumption to the state of the transportation
network and is therefore considered to be non-elastic. In contrast, elastic traf-
fic displays the ability to dynamically determine and adjust its transmission
rate according to the network’s currently prevailing delay and throughput val-
ues. As an example, TCP includes a network congestion avoidance scheme
that is based on an additive-increase multiplicative-decrease (AIMD) strat-
egy [Tanenbaum 02]. In short, the protocol cautiously increases the trans-
mission rate as long as the network is sensed as being congestion-free, but
rapidly reduces its data throughput on congestion detection (in an attempt
to guarantee high network performance). Since non-real-time network traffic
is disseminated predominantly using TCP, this type of traffic will usually be
elastic.

8.2 Implementation

During the NIProxy’s design phase, it was already anticipated that the man-
agement of real-time and non-real-time network traffic would likely demand
considerably dissimilar approaches. To address this issue, the NIProxy’s net-
work traffic shaping scheme from the very beginning included different types of
leaf nodes (see section 4.3). In particular, the discrete leaf node class was de-
veloped for the purpose of managing real-time flows, whereas its continuous
counterpart was envisioned to do the same for non-real-time network traffic.
The discrete leaf nodes have been found to be competent to fulfill their
expected purpose without requiring significant modification or additional sup-
port. Empirical evidence has however established this to be untrue for the
continuous category. This section will elaborate on the complementary func-
tionality that needed to be implemented to enable effective non-real-time net-
work traffic shaping.

1VBR-encoded fragments vary the amount of output data per time segment. VBR allows
a higher bitrate to be allocated to the more complex segments of media fragments at the
expense of segments with lower coding complexity. Adjusting the target bitrate based on the
varying complexity of the source data typically improves the overall quality of the encoded
bitstream.

138 Combined Real-Time and Non-Real-Time NTS

8.2.1 Buffering and Rate Control

Recall from section 4.3.2 that a continuous leaf node provides constructs
which enable it to set the bandwidth consumption of the network flow which
it represents in the stream hierarchy to a continuous range of values. This
implies however that functionality is required to enforce the calculated bit
budget in practice. The implementation of the continuous leaf node was
therefore complemented with buffering and rate control features as follows:

• the data which the NIProxy intercepts on the associated (non-real-time)
network flow is buffered locally

• buffered data is allowed to trickle through at a rate that equals the
amount of bandwidth that has been granted to the continuous leaf
node by the NIProxy’s bandwidth distribution algorithm

• processed data (i.e., data that has been forwarded to its destination) is
purged from the continuous leaf node’s local buffer

In effect, the implementation of the continuous leaf node class has been
extended so that its operation, behavior and real-world impact resemble those
of a leaky bucket [Tanenbaum 02].

8.2.2 Determination of Maximal Bandwidth Consumption

Another problem that needed to be addressed was the estimation of the maxi-
mal bandwidth consumption of non-real-time network traffic. Remember from
chapter 4 that this value plays an important role in the NIProxy’s bandwidth
distribution scheme. For real-time network flows, the issue of maximal band-
width consumption determination is resolved by registering the rate at which
the flow arrives at the NIProxy. A similar straightforward approach could
however not be adopted for non-real-time network traffic, since the discussion
in section 8.2.1 has established that non-real-time content is possibly buffered
by the NIProxy and relayed to its destination at a pace that differs from the
rate at which it was intercepted. It was therefore decided to set the maximal
bandwidth consumption of a non-real-time network flow to the current amount
of data (in bytes) which the NIProxy has already received on this flow, but
which has not yet been processed. In other words, the maximal bandwidth
usage of continuous leaf nodes equals the current amount of data that is
stored in their associated buffer. There is one exception to this approach: in
case the quantity of buffered data exceeds the throughput of the destination’s
network connection, the maximal bandwidth consumption will be bounded by
the latter value.

8.2 Implementation 139

8.2.3 Granularity Level

A final implementational dilemma concerned the granularity at which the
shaping of non-real-time data was going to be supported. It was decided to
opt for a relatively coarse approach in which non-real-time network traffic is
managed at flow-level. This implies that all data that is transferred over the
same non-real-time network flow will be treated identically by the NIProxy’s
NTS framework.

An alternative solution would have consisted of incorporating each individ-
ual non-real-time content item in the stream hierarchy (i.e., even in case some
of these items are conceptually transported on the same non-real-time network
stream). Such low-level support is however deemed to be useful and mean-
ingful only to a handful of distributed applications, while it on the contrary
will likely be considered as burdensome by the vast majority. In particular, a
notable drawback of the fine-grained alternative is that it will rapidly result in
the management of the stream hierarchy becoming a complicated or at least
tedious task. This is due to the properties of non-real-time network traffic,
which is inherently composed of a number of relatively small content objects
that are being requested and transmitted in a bursty fashion. Since the respon-
sibility for the management of the stream hierarchy in large measure lies with
the client (see section 4.7), controlling the shaping of non-real-time network
traffic at a fine granularity would force the client to update its stream hierarchy
rather frequently and would impose the need for substantial stream hierarchy
bookkeeping at client-side. Besides these disincentives from the client’s per-
spective, an additional undesirable consequence at NIProxy-side is that the
network traffic shaping calculations would become more expensive in terms
of computational complexity and time consumption due to the increased size
of the stream hierarchy. This drawback is further aggravated by the iterative
nature of the bandwidth brokering process: as section 4.1 has discussed, it is
repeated quite frequently to enable the NIProxy to react to dynamic events in
a timely fashion.

It is worth remarking that the subtle level of control that is provided by
the fine-grained solution can also be achieved by the implemented flow-level
scheme, albeit at the cost of some additional overhead. In particular, in case
a distributed application requires control over the bandwidth consumption
of individual non-real-time content items, it could transfer each item over a
separate non-real-time network flow. As stated previously however, only a
limited number of distributed applications is expected to benefit from such
low-level command.

140 Combined Real-Time and Non-Real-Time NTS

8.3 Evaluation

This section harbors representative experimental results that will comprehen-
sively demonstrate that the NIProxy succeeds in shaping non-real-time net-
work traffic. In particular, the bandwidth brokering outcome of two distinct
experiments will be described. The objective for the NIProxy was identical in
both experiments, namely to mediate the delivery of multimedia content over
the final part of an end-user’s network connection. The first experiment only
involved non-real-time data, whereas in the second experiment the NIProxy
needed to manage client downstream bandwidth in the presence of real-time
as well as non-real-time network traffic. In both cases, the results that were
achieved by the NIProxy’s bandwidth brokering mechanism will be equated
to the default scenario in which the functionality of the NIProxy was not ex-
ploited and it will be investigated whether the introduction of the NIProxy
led to an improvement of user QoE.

8.3.1 Test Setup

The evaluation of the NIProxy’s NTS framework and, in particular, of its
support for the management of non-real-time network traffic, was performed
in the context of a simple test application that allowed users to set up both
real-time and non-real-time network streams with remote hosts. Video was
selected as representative of real-time network traffic because it is the type of
real-time multimedia content that is the most demanding in terms of network
resources. The test application was implemented so that after a real-time
network connection had been set up with some remote host, the latter would
immediately start streaming video to the local client (using RTP). In contrast,
establishing a non-real-time network connection with a remote host did by
itself not result in the local client receiving data on this new connection. The
user instead needed to explicitly request some content items (i.e., files) on
the non-real-time network stream before the remote host would actually start
transmitting data over it. In other words, a simple form of P2P file sharing
was imitated to generate the non-real-time network traffic in the experiments.
Non-real-time content was exchanged using TCP, since this protocol offers a
number of traits which make it very suitable for this kind of communication
(e.g., reliable and in-order delivery of transmitted data). Finally, requests
for file transmission were serviced sequentially and on a one-by-one basis,
in the order in which they were received. Stated differently, the distributed
application’s policy for responding to file requests was based on the First-In-
First-Out (FIFO) principle.

8.3 Evaluation 141

8.3.2 Experiment 1: Managing Non-Real-Time Network Traf-
fic

Experiment Description

The first experiment was conducted to verify the NIProxy’s potential to man-
age client downstream bandwidth in settings that exclusively involve the dis-
semination of non-real-time multimedia data. To simulate such a scenario,
the test application from section 8.3.1 was employed to create two separate
P2P TCP connections between a client and a single remote host, which will
be referred to as P2P stream 1 and P2P stream 2 in the remainder of this
discussion. After the TCP connections had been set up, the following files
were requested:

• large.png: An image of size 209286 bytes, requested on P2P stream 1

• small.png: An image of size 102879 bytes, requested on P2P stream 1

• slide.ppt: Slideshow of size 416768 bytes, requested on P2P stream 2

The files were requested in the order in which they are enumerated, with 2 sec-
ond delay intervals applying between each two consecutive requests. Finally,
the client’s available downstream bandwidth was constrained to 20 KiloBytes
per second (KBps) during the experiment. This may appear an unrealistically
low value given today’s broadband Internet connections. Enforcing such a
limited bandwidth amount however allows for the demonstration to be kept
simple and the generated results compact. In addition, in the event of con-
tention from real-time network traffic, it might very well be possible that only
such a small fraction of the client’s total downstream capacity will be reserved
for the reception of non-real-time content.

The experiment was repeated three times, each time under different cir-
cumstances. First of all, the experiment was executed without involving the
NIProxy. Next, the experiment was conducted twice more, with the client’s
data reception in both cases being subjected to the NIProxy’s network traffic
shaping operations. The difference between the latter two iterations lay in the
type of internal node that was relied on to differentiate between the two in-
volved P2P streams in the client’s stream hierarchy. In particular, respectively
a Priority and WeightStream node were employed for this purpose.

Experimental Findings

During each of the executions of the experiment, the client-side reception of
network traffic was recorded. The results are plotted as stacked graphs in

142 Combined Real-Time and Non-Real-Time NTS

(a) Without NIProxy

(b) With NIProxy (Priority node)

(c) With NIProxy (WeightStream node)

Figure 8.1: Stacked graph plots of the media content received by the client
during the three different executions of the first experiment.

8.3 Evaluation 143

(a) Second iteration (b) Third iteration

Figure 8.2: Stream hierarchy instances maintained by the NIProxy during the
second and third iteration of the first experiment.

Figure 8.1. The exact layouts of the client’s stream hierarchy during the
second and third execution of the experiment are depicted in Figures 8.2(a)
and 8.2(b), respectively. In both stream hierarchy instances, all leaf nodes
were of the continuous type.

A thorough analysis of the generated results is in order. First of all, re-
mark from Figure 8.1(a) that, even in case the NIProxy was not included in
the experiment, the client’s available downstream bandwidth volume was more
or less respected. This can be attributed to TCP’s built-in congestion con-
trol mechanism: as was mentioned in section 8.1, TCP dynamically tunes its
transmission rate to the network’s current bandwidth capacity. Secondly, the
network traces depicted in Figures 8.1(b) and 8.1(c) prove that the rate con-
trol functionality of the continuous leaf node type works very effectively. In
particular, the bandwidth consumption curves of the network flows that were
represented by the leaf nodes are perfectly smooth. Notice the heavy con-
trast with the bitrate irregularities that are exhibited in Figure 8.1(a). Third,
Figures 8.1(b) and 8.1(c) illustrate the overflow protection buffer of the NI-
Proxy’s NTS scheme (see section 4.6). In particular, the network traces reveal
that a small amount of the client’s available bandwidth was left untouched to
prevent swift surges in network flow bandwidth consumption over which the
NIProxy has no control from inducing bandwidth capacity violations. How-
ever, this feature appears to be solely useful in the presence of real-time net-
work traffic; non-real-time network traffic is rate controlled by the NIProxy
and is hence propagated to its destination at a perfectly steady rate (i.e., after
NIProxy processing, unanticipated increases in stream bandwidth consump-
tion will never be experienced). The overflow prevention margin immediately
also explains why it took slightly longer to receive the requested files in the
two executions of the experiment in which the NIProxy was involved. Recall
from section 4.6 however that per client parametrization of the size of the

144 Combined Real-Time and Non-Real-Time NTS

safety buffer is supported. As a result, it is possible to completely disable the
NIProxy’s overflow protection mechanism (i.e., set the buffer’s size to zero)
in environments in which only non-real-time network traffic is present, this
way effectively eliminating the disadvantage of increased reception times for
non-real-time content2.

The bandwidth allocation evolution in Figure 8.1(c) is worthy of special
attention. At first sight, this evolution might seem somewhat surprising. In
particular, it can be seen that, after the instantiation of P2P stream 2, the
amount of bandwidth that was granted to P2P stream 1 gradually increased
over time, even though the former had a higher weight value associated with
it in the stream hierarchy throughout the entire experiment. This effect is
accounted for by the fact that, as was described in section 4.2.4, the maximal
bandwidth usage of its children plays an important role in the bandwidth dis-
tribution policy of the WeightStream node type. Since file slide.ppt initially
(i.e., immediately after it was requested) was allocated significantly more band-
width compared to the files that were requested on P2P stream 1, the maximal
bandwidth consumption of P2P stream 2 initially also diminished at a much
higher pace. As the experiment progressed, the growing difference between
the maximal bandwidth consumption of both P2P streams increasingly out-
weighed their associated weight values, which explains why a gradually larger
portion of the available bandwidth was allocated to P2P stream 1. This kind
of behavior was not anticipated and is likely to confuse the user. It might even
cause users to unjustly accuse the NIProxy of malfunctioning. While previous
empirical evidence confirms the adequacy of the WeightStream node in a real-
time data exchange environment, this experiment has hence diagnosed it as
being not particularly fit to shape non-real-time network traffic. This insight
in turn led to the development of the related WeightData internal node type,
which disregards the maximal bandwidth consumption of child nodes during
its bandwidth brokering calculations but otherwise operates identically to the
WeightStream node (see section 4.2.5). As will be confirmed in chapter 9,
using the WeightData node type to shape non-real-time network traffic does
yield intuitive results.

2Based on this discussion, one would have expected the overflow prevention margin of the
NIProxy’s network traffic shaping scheme to be disabled in this experiment. The justification
for the use of a non-zero value is given by the fact that the safety buffer will recur in the
discussion of the second test, where real-time and non-real-time network traffic competed for
the available downstream bandwidth and where the danger of bandwidth capacity overflow
was hence a tangible reality. Due to the higher complexity of the latter experiment however,
the repercussions of the safety buffer on the network traffic shaping outcome were less pro-
nounced, which in turn complicates their explanation. It was therefore decided to already
discuss the overflow prevention margin in the simpler context of the first experiment.

8.3 Evaluation 145

Interpretation

Based on the discussion thus far, the inclusion of the NIProxy in the exper-
iment appears to have had negative rather than positive implications on the
user QoE (i.e., an increase was noticed in the time that was required to receive
the requested files). However, an important feature of the NIProxy which has
not yet been mentioned until now is its ability to introduce differentiation in
the treatment of the network flows that are relevant to the client. As an exam-
ple, suppose that the non-real-time network connections which were requested
in this experiment corresponded to respectively a low- and high-priority P2P
communication channel. Consequently, the client would expect files requested
on P2P stream 2 to be delivered with a higher priority (i.e., faster) compared
to files solicited on P2P stream 1. This kind of behavior can readily be en-
forced by the NIProxy’s bandwidth brokering framework. It suffices to create
a stream hierarchy in which the two P2P streams are adequately discrimi-
nated from each other using some type of internal node. Moreover, since the
NIProxy supports multiple types of bandwidth distribution techniques (i.e.,
internal stream hierarchy node classes), the differentiation can even be tuned
to the specific requirements of the user or the application.

The bandwidth distribution strategies that were implemented by the NI-
Proxy during the second and third iteration of the experiment were based
on the example requirement from the previous paragraph. Respectively a
Priority and a WeightStream node were relied on to differentiate between the
involved non-real-time network streams. By now, the added value of incorpo-
rating the NIProxy in the experiment emerges: comparing Figures 8.1(b) and
8.1(c) with Figure 8.1(a) indicates that file slide.ppt, which was requested
on the high-priority P2P connection, was received sooner in case the band-
width management functionality of the NIProxy was exploited. The achieved
gain respectively equaled 11 and 2 seconds. Consequently, leveraging the NI-
Proxy’s NTS support led to the application conforming more closely to the
user’s expectations, which is likely to be a key prerequisite if the goal is to
deliver a high QoE.

Before concluding the discussion of the first experiment, it is worth noting
that the produced results could presumably also be achieved by modifying the
client software of the employed test application. In particular, in its current
implementation, the only mechanism that is available to express the relevance
of content items is to request them in an appropriate order. By refining this
implementation, it could become possible to attain results that are comparable
to the ones delivered by the NIProxy. However, leveraging the NIProxy’s
functionality allows for the implementation of the client software to be kept

146 Combined Real-Time and Non-Real-Time NTS

simple and hence for the application development time to be significantly
reduced. Moreover, embedding NTS features directly in the client software
is not a reusable solution since it isolates the functionality in one particular
application. In contrast, the NIProxy’s bandwidth management facilities can
be exploited by a broad range of distributed applications, even concurrently,
which renders it a much more favorable solution from an economic point of
view (see also section 2.6).

8.3.3 Experiment 2: Simultaneously Managing Real-Time and
Non-Real-Time Network Traffic

Experiment Description

While the first experiment focused solely on non-real-time network traffic, the
objective of the second experiment was to validate whether the NIProxy man-
ages to orchestrate a client’s downstream bandwidth consumption in case the
traffic mix includes both real-time and non-real-time flows. To simulate a sce-
nario in which both types of network traffic were involved, the test application
was employed to set up

• a real-time video connection between the monitored client and two re-
mote hosts H1 and H2, and

• a non-real-time communication channel between the monitored client
and remote host H1 as well as another remote host that represented a
dedicated File Server (FS).

On the non-real-time connections, the following files were requested:

• geom.3ds: A 3D model of size 484652 bytes, requested from FS

• img.png: An image of size 23419 bytes, requested from remote host H1

The file requests were issued by the client in immediate succession, in order of
enumeration. Furthermore, to allow for a comprehensive demonstration of the
potential of the NIProxy’s network traffic shaping mechanism, some additional
constraints and requirements were defined. More precisely, it was specified
that the video stream that was emitted by remote host H1 had a higher signif-
icance for the managed user than H2’s video stream, and that priority should
be given to files requested on the non-real-time network connection with the
file server (compared to files requested from remote host H1). The reasoning
behind this latter constraint might be, for instance, that the dedicated file

8.3 Evaluation 147

server maintained files that were vital for the execution of the application and
which hence needed to be delivered as quickly as possible, while the other
non-real-time connection simply enabled the managed client and host H1 to
exchange files in a P2P fashion (and therefore was far less important). Finally,
the requirement was imposed that non-real-time communication should receive
a “fair” amount of the managed client’s total downstream bandwidth volume
(which was this time set to 50 KBps). In particular, it was determined that at
least 30 percent of the client’s downstream bandwidth had to be designated
to the reception of non-real-time data.

Analogous to the approach in section 8.3.2, the experiment was repeated
thrice. In the initial execution, the NIProxy was excluded from the experi-
mental setup. In contrast, during the second and third experiment iteration,
the NIProxy’s network traffic shaping functionality was exploited to govern
the data delivery towards the monitored client. These latter two repetitions
differed from each other in terms of NIProxy configuration. In particular, in
these experiment executions, the NIProxy’s static video transcoding service
from section 5.3 was respectively disabled and enabled. To recapitulate, this
service enables the NIProxy to reduce the bitrate of video flows by on-the-fly
reducing their quality parameters.

Experimental Findings

Network traces that illustrate the network traffic that was received by the
client during the different executions of the experiment are shown in Figure
8.3, while Figure 8.4 depicts the stream hierarchy instances that coordinated
the NIProxy’s NTS behavior during the second and third iteration. As can be
seen, both stream hierarchy instances were structured identically and merely
varied in their representation of the remote video sources. This divergence
is of course attributed to the inclusion of the static video transcoding service
in the final repetition of the experiment, which caused each video source to
be represented by two separate discrete leaf nodes instead of just one. The
leftmost node of each pair corresponded with the Original Version (OV) of
the video stream (i.e., the video stream as it was transmitted by the source),
while the rightmost node represented the Transcoded, lower-quality Version
(TV) of this stream (i.e., the variant that was on-demand generated by the
video transcoding service). A more important observation regarding Figure
8.4 is that the general layout of the stream hierarchy instances was inspired by
the constraints which were identified at the beginning of this section. In other
words, it was attempted to construct the stream hierarchy instances in such
a manner that the specified constraints and requirements would be satisfied

148 Combined Real-Time and Non-Real-Time NTS

(a) Without NIProxy

(b) With NIProxy (video transcoding disabled)

(c) With NIProxy (video transcoding enabled)

Figure 8.3: Stacked graph plots of the media content received by the client
during the three different executions of the second experiment.

8.3 Evaluation 149

(a) Second iteration (b) Third iteration

Figure 8.4: Stream hierarchy instances maintained by the NIProxy during the
second and third iteration of the second experiment.

during the experiment.

Analysis of Figure 8.3(a) reveals that, in the initial execution of the ex-
periment, the simultaneous reception of real-time and non-real-time data re-
sulted in a number of important issues. First of all, the contention for the
client’s available downstream bandwidth yielded a wrongful penalization of
the non-real-time network traffic. In particular, whereas the video sources
continued to transmit at a constant rate, irrespective of the existence of con-
current traffic, the non-real-time TCP connections automatically downscaled
their transmission rate to avoid over-encumbrance of the client’s downstream
access connection. Consequently, the non-real-time network traffic needed to
content itself with the amount of downstream bandwidth that was not arro-
gated by the real-time flows, which is in disaccord with the stated requirement
that the non-real-time communication should receive a fair share of the client’s
downstream bandwidth capacity. Secondly, although the real-time video flows
claimed the majority of the available bandwidth, they still suffered from the
contention from the non-real-time traffic. In particular, the contention intro-
duced small amounts of packet loss and caused the delivery of the real-time
video traffic to become more irregular, which in turn resulted in a deteriorated
client-side video playback.

Looking at Figure 8.3(b), it is clear that similar issues did not arise when
the bandwidth management functionality of the NIProxy was exploited. More
specifically, by relying on a Percentage node to differentiate between real-
time and non-real-time network traffic, the latter was guaranteed a certain
fraction of the client’s downstream bandwidth volume throughout the entire

150 Combined Real-Time and Non-Real-Time NTS

experiment (i.e., at least 30 percent). To confirm this statement, the per-
centual bandwidth segmentation is visualized in the network plot in Figure
8.3(b) (and also in Figure 8.3(c)) as a horizontal line3. The outcome was a
much faster delivery of the requested files, however at the expense of the least
important video stream being discarded as long as there was non-real-time
data available to forward to the client. Secondly, thanks to the NIProxy suc-
cessfully rate controlling non-real-time network traffic when transmitting it to
its destination, the reception of real-time video traffic at client-side remained
unaffected and, as a result, no deterioration in video playback was noticed.
Finally, as can be deducted from Figure 8.3(c), enabling the NIProxy’s static
video transcoding service entailed the additional advantage of allowing the
real-time video traffic to consume its entitled percentage of the client’s down-
stream capacity to a greater extent. In particular, thanks to the availability
of the video transcoding service, the NIProxy’s NTS algorithm was able to
forward the transcoded version of H2’s video stream at the moment the non-
real-time network traffic was initiated. This is explained by the lower bitrate
of the transcoded video version (compared to its original counterpart); conse-
quently, its transmission did not cause the non-real-time traffic to be denied
its due share of the downstream bandwidth volume.

Interpretation

The advantage of incorporating the NIProxy in the second experiment was
twofold. First of all, it resulted in the client’s downstream channel capacity
being apportioned correctly among the involved real-time and non-real-time
network flows. Secondly, it allowed for the requirements which were specified
at the beginning of this section to be met with minimal effort (i.e., without
requiring substantial modifications to the client software). Based on these ob-
servations, it is argued that the introduction of the NIProxy in this experiment
is expected to have had a favorable influence on user QoE.

An important final remark is that the generated experimental results once
again exemplify the tremendous potential and added value of the cooperative
interface that is defined between the NIProxy’s network traffic shaping and
multimedia service provision facilities. In this experiment specifically, the

3Notice that both involved traffic types were allowed to exceed their fair share in case
their “competitor” failed to fully consume its entitled bandwidth percentage. This is due to
the two-phase operation of the Percentage node: recall from section 4.2.3 that the residue
of the bandwidth that was initially assigned to a particular child will be distributed over
its siblings in a subsequent stage. In this particular situation, the surplus bandwidth of the
P2P root node was transferred integrally to the video root node (as it was its sole sibling),
and vice versa.

8.4 Conclusions 151

bundled effort of both traffic engineering techniques enabled the real-time
video traffic to more completely consume its allocated bandwidth share and as
such prevented the temporary interruption of the delivery of the less significant
video stream during periods of active file transfer.

8.4 Conclusions

This chapter has treated the NIProxy’s support for the mediation of non-real-
time network traffic. This type of traffic, which will for instance arise when
exchanging file data between distributed hosts, exhibits properties that are
widely divergent from those of real-time network streams. In particular, con-
trary to real-time traffic, a typical non-real-time connection has relatively re-
laxed latency restrictions and does not impose hard throughput requirements;
conversely, it is likely to suffer considerably from unreliable or error-prone de-
livery. Given these discrepancies, a quite different methodology for shaping
real-time and non-real-time network traffic is advocated. This is acknowledged
by the NIProxy’s NTS implementation, which provides two distinct classes of
leaf nodes to represent network flows in the stream hierarchy. The aptitude
of discrete leaf nodes for managing real-time network traffic was already
established in chapter 7. This chapter on the other hand has confirmed that
non-real-time transmissions can be effectively shaped by associating them with
a leaf node of the continuous type in the stream hierarchy. In contrast to its
discrete variant, a continuous leaf node provides a theoretical framework
to modify the bandwidth consumption of network flows in a continuous man-
ner (see section 4.3.2 for more information). To be able to actually enforce
the calculated bit budgets (and hence to make continuous leaf nodes usable
for managing non-real-time network traffic in practice), the behavior of the
leaky bucket model was imitated, which involved the adoption of progressive
buffering as well as rate control techniques. In particular, non-real-time con-
tent is buffered locally by the NIProxy and subsequently propagated to its
destination at a rate that conforms to the exact amount of bandwidth which
has been reserved for its encompassing network flow in the current NTS time
interval.

The validity of the NIProxy’s non-real-time network traffic shaping ap-
proach has been ascertained experimentally. More specifically, it was shown
that the NIProxy succeeded in practically managing client downstream band-
width in the presence of competing real-time and non-real-time network flows.
In addition, the impact of the NIProxy’s NTS operations on user QoE has
been investigated by relating the produced bandwidth brokering results to the
default situation (i.e., the setup in which the NIProxy is not included). This

152 Combined Real-Time and Non-Real-Time NTS

comparative study has revealed that the traffic engineering tasks performed by
the NIProxy led to a considerable improvement in the QoE that was perceived
by the end-user. This chapter has hence presented an important contribution,
since being able to adequately cater to non-real-time network traffic consider-
ably extends the QoE optimization effectiveness and the overall applicability
of the NIProxy.

As a concluding remark, the discussion in this chapter might have sparked
the impression that the continuous leaf node category is exclusively suitable
for the management of non-real-time network traffic. This assumption will
however be refuted in chapter 13, where it will be proven that continuous
leaf nodes can just as much be exploited to regulate the dissemination of real-
time data, on the condition that they are accompanied by appropriate (i.e.,
specialized) functionality to practically enforce the calculated bit budgets for
the considered type of real-time network traffic.

Chapter 9
Efficient Transmission of Rendering-Related Data

The experimental results regarding network traffic shaping that have been pre-
sented thus far in this part of the dissertation were generated using “demon-
strator” applications whose bandwidth management requirements could be
satisfied via relatively straightforward strategies. In this chapter on the other
hand, the NIProxy’s suitableness to broker client downstream bandwidth in
the context of a concrete, real-world distributed application will be investi-
gated [Wijnants 08a]. The considered application supports real-time audiovi-
sual communication between participants and in addition employs an advanced
rendering scheme that implicates a number of specific requirements concerning
the distribution of rendering-related data. The application’s default commu-
nication model however fails to consistently guarantee that these requirements
are met, with potentially adverse effects on the usage experience as a result.
In contrast, through the presentation of representative experimental results,
it will be corroborated that the NIProxy’s network traffic shaping facilities
are capable of effectively addressing the imposed network-related stipulations.
As such, it will be shown that the introduction of the NIProxy to shape the
network traffic that is induced by the considered distributed application likely
led to an improvement of the QoE of its users.

154 Efficient Transmission of Rendering-Related Data

9.1 Introduction

Support for custom or user-generated content in distributed multi-user appli-
cations is rapidly gaining popularity. One exemplification of this trend is the
currently ongoing progression of the World Wide Web from a mostly static
information source to a more dynamic environment where users are allowed
to generate and distribute content themselves, for instance through blogs and
wikis (the so-called Web 2.0). Another example is the emergence of social
virtual worlds such as Second Life [Second Life 10], which enable their users
to create virtual items and even to trade these self-made objects with others.

As a logical consequence of this evolution, there is an increasing need to
transmit possibly large amounts of custom data to clients of distributed ap-
plications. Luckily, the emergence of broadband Internet subscriptions for
residential users (such as xDSL or broadband cable) has made this feasible.
Nonetheless, client downstream bandwidth is still limited and does not neces-
sarily suffice to effectively receive all data that is produced by the distributed
application(s) that the user is currently running. Like any scarce resource,
client downstream bandwidth should consequently be managed intelligently
and deliberately, with as ultimate goal providing the user with a maximal
usage experience, given his current bandwidth constraints.

This chapter will again treat the NIProxy’s network traffic shaping func-
tionality which enables automatic and dynamic management of client down-
stream bandwidth. A significant difference with previous chapters however
is the distributed application that will be used for evaluation purposes. In
particular, the bandwidth brokering results that have been presented thus
far were generated in “artificial” test environments and case studies which
involved applications that had been designed and implemented specifically
for investigating the NIProxy’s network traffic shaping potential and perfor-
mance. In contrast, this chapter will report on the findings of employing the
NIProxy to manage client downstream bandwidth in an existing real-world
distributed application supporting user-generated content, which in this par-
ticular case necessitates the dynamic distribution of rendering-related data to
clients. Compared to the previous test setups, the distributed application re-
quires a much more sophisticated bandwidth management strategy. The main
contribution of this chapter is hence an illustration of the NIProxy’s ability
to effectively manage the bandwidth of clients of realistic distributed appli-
cations with potentially complex requirements. As a secondary contribution,
the produced experimental results will as such also demonstrate the NIProxy’s
flexibility and broad applicability.

9.2 Considered Distributed Application 155

9.2 Considered Distributed Application

To assess the NIProxy’s appropriateness to manage client downstream band-
width in a non-artificial setting, it was integrated in a concrete (in-house
developed) 3D Networked Virtual Environment (NVE) application. The con-
sidered NVE assigns great importance to inter-participant communication and
hence supports both audio and video chat between users. Another important
feature of the NVE is its rendering scheme. In particular, as will be described
in section 9.2.1, the application incorporates hybrid 3D rendering techniques
as well as sophisticated Level of Detail (LoD) methods. Finally, the NVE
application enables users to populate the shared virtual world with custom,
possibly self-made 3D content. Distribution of this user-provided data occurs
through a dedicated file server, which disseminates the data to clients in a
unicast manner and on an as-needed basis. As an example, when a user enters
a certain part of the virtual environment which he has not visited before, the
data that is required for the rendering of this region will need to be downloaded
from the file server.

9.2.1 Rendering Scheme

The NVE’s rendering scheme involves both geometric models and Image-Based
Representation (IBR) data [Jehaes 04b][Jehaes 08]. In short, Relief Texture
Mapped Objects (RTMOs) are used, which were first presented by Oliveira et
al. in [Oliveira 00], as an efficient representation method for distant objects.
These representations are made up of a collection of images with depth in-
formation, which are warped during run-time in order to get an appropriate
view based on the current camera position. On the other hand, objects close
to the viewer are rendered using Hoppe’s Progressive Meshes (PM) approach
[Hoppe 96], hereby assuring that geometric rendering does not cause the fram-
erate to drop below a predefined threshold. The main advantage of the mixed
rendering strategy is that it greatly reduces the time that is needed for visu-
alizing complex virtual scenes without incurring too large a sacrifice in image
quality. In other words, the scheme aims to maintain an interactive framerate
while at the same time preventing the introduction of significant perceptual
distortions during virtual world rendering.

Figure 9.1 depicts a particular virtual object that is rendered both geo-
metrically and RTMO-wise. As can be seen, the geometric rendering contains
much more detail compared to the IBR version. However, as the RTMO
representation is mainly exploited for the rendering of distant objects, the
considered NVE’s hybrid model representation solution introduces only a lim-

156 Efficient Transmission of Rendering-Related Data

Figure 9.1: Comparative illustration of model quality yielded by respectively
geometric rendering and RTMO representation [Jehaes 08].

Figure 9.2: A relatively crowded virtual environment, visualized using the
NVE’s hybrid geometric/IBR rendering scheme [Jehaes 08].

ited amount of degradation in terms of image quality. This is confirmed in
Figure 9.2, which shows the scheme in action for a relatively densely populated
virtual scene.

In the context of the just described hybrid representation and rendering
scheme, Jehaes et al. have also discussed a number of optimization techniques
for the network dissemination of representational data in NVE applications
[Jehaes 04a]. In particular, they state that by first streaming the low-detail

9.2 Considered Distributed Application 157

Table 9.1: Storage sizes (in KiloBytes) of two Progressive Mesh (PM) models
in the NVE database.

Texture
Base
Mesh PM L1 PM L2 PM L3

Base Compression
(base mesh & texture)

304 12 11 21 / 283

161 22 21 41 83 168

image-based representations of objects in the virtual environment, it becomes
possible to quickly present the user a complete, albeit low-quality view of
the world. The next step of their proposed solution involves the progressive
downloading of more detailed representations (i.e., geometric information) on
the basis of the current rendering need so that the visual quality of the view
is gradually upgraded over time. Through analysis of the network traffic that
is introduced by the distribution of the involved rendering-related data, it was
determined that the reduced-detail representations strike an effective balance
between perceptual fidelity and transmission time. As a result, the proposed
transmission scheme for representational information significantly reduces the
time that is needed for rendering, at an acceptable quality, an initial version of
the virtual environment, with the visual accuracy subsequently being gradually
improved over time.

9.2.2 Model Data

The NVE’s model database stores representations in the form of both 3D
progressive meshes and relief texture mapped objects. Focusing first on the
progressive mesh data, Table 9.1 presents PM storage size information for two
example models in the database. The first column indicates the amount of
texture data for each model, stored in the JPEG format. Comparing this
value to the data size of the base mesh in the second column reveals that
the texture data significantly outweighs the latter in terms of storage (and
hence transmission) requirements. This gap could be decreased by resorting
to a multi-resolution texturing solution but, overall, texture data will generally
take up a considerable fraction of the total model data. The columns labeled
L1 to L3 specify the data size of each consecutive PM level. At each PM
step, the triangle count is doubled, which in turn results in a more detailed
and sharp model visualization. This is illustrated in Figure 9.3, where the
base and full-quality mesh of an example 3D model are placed side by side.
For comparison, the RTMO representation of the model is also depicted; it is

158 Efficient Transmission of Rendering-Related Data

(a) Base mesh (b) Full mesh

(c) RTMO

Figure 9.3: Model quality comparision [Jehaes 08].

clear that the geometric rendering of the base mesh still considerably surpasses
the IBR approach in terms of perceptual accuracy. In order to transmit the
PM models in an efficient way, they are stored in a compressed format at
server-side. This implies that the models need to be unpacked at client-side
before they can be used in the rendering stage. The final column in Table
9.1 indicates the size after compression of the texture data together with the
base mesh. Since the texture data is already stored in the JPEG format, the
additional compression does not significantly reduce the total file size.

A completely different situation is evoked by Table 9.2, which displays the
storage sizes for the RTMO representations. The storage size for a RTMO
mainly depends on the resolution of the relief textures (RTs) instead of on the
model that is being represented. Each depth pixel is stored as a RGBA value,
with the alpha component representing the quantized depth value. For render-
ing a RTMO, at most three relief textures are needed for a specific viewpoint.
Comparing the compressed values for three relief textures to the data size of

9.2 Considered Distributed Application 159

Table 9.2: Storage sizes (in KiloBytes) for RTMO image-based representations.

Resolution # RTs Size Compressed Size

32× 32 1 4 2

3 12 6

6 24 13

64× 64 1 16 7

3 48 21

6 96 45

compressed PM base representations (including textures) establishes that the
RTMO transmission size is much smaller. In the NVE database, only relief
texture resolutions of 32× 32 and 64× 64 are used, since these provide suffi-
cient image quality for distant objects and for the initial rendering of nearby
objects. Table 9.2 even points out that complete RTMOs (i.e., a bundle of 6
RTs of a certain model) still seriously outperform the PM base representations
with regard to transmission time.

9.2.3 Network Communication Issues

The considered NVE application expects network bandwidth to be abun-
dantly available (which is unfortunately still an unrealistic assumption given
the throughput constraints of contemporary residential Internet connections)
and therefore lacks an intelligent bandwidth management solution. In partic-
ular, the models of the objects that populate the virtual world are requested
from the file server one at a time on the basis of their current scene priority.
However, as priorities might alter rapidly during scene traversal, and espe-
cially during viewpoint rotation, a better solution was advocated that would
enable more effective and interactive control over the downloading of model
data that is required for rendering the world at client-side. Moreover, the
NVE application’s communication scheme does not adequately address the
issues that are introduced when combining the transmission of non-real-time
rendering-related data with real-time audiovisual network traffic.

Based on these shortcomings, the NVE application was considered an ex-
cellent candidate for testing the NIProxy’s network traffic shaping function-
ality. Section 9.3 will therefore discuss how the NIProxy was employed to
intelligently regulate the downloading of 3D model data to the client and to

160 Efficient Transmission of Rendering-Related Data

harmonize these transmissions with the real-time network traffic that is intro-
duced by the NVE’s audiovisual communication facilities.

9.3 Implementation

The discussion in the previous section has revealed that the NVE applica-
tion requires the distribution of real-time as well as non-real-time data to
clients. Especially the application’s advanced rendering scheme and its sup-
port for user-generated content causes client bandwidth management to be a
far from trivial objective and imposes a number of specific requirements and
constraints. This section will report on the way the NIProxy was exploited to
intelligently fulfill this task and will in addition present the main implemen-
tational issues which the NIProxy incorporation encompassed.

9.3.1 Stream Hierarchy Design

To be able to effectively orchestrate the bandwidth consumption of the NVE
application, the requirements that are imposed by its distinct features needed
to be translated into an appropriate layout for the client stream hierarchy.
The structure that was decided upon is illustrated in Figure 9.4. As can be
seen, an internal node of the Percentage type was selected as root of the
hierarchy and was used to discriminate between respectively the real-time and
non-real-time network traffic that is induced by the NVE application. In more
detail, it was determined that the real-time network traffic received 30 percent
of the client’s available downstream bandwidth, while 70 percent was reserved
for the reception of non-real-time network streams.

A WeightStream node served as root of the real-time subtree in the stream
hierarchy. All real-time (i.e., audio and video) network flows were represented
as discrete leaves and were made direct children of this root. The discrete
leaf nodes supported two discrete bandwidth levels and were hence confined
to turning their associated stream off and on (see section 4.3.1). To deter-
mine the weight values of the real-time network flows, the scheme that was
introduced in section 7.1 was reused. To recapitulate, this scheme dynam-
ically assigns weight values depending on virtual distance as well as virtual
orientation information.

The root of the non-real-time branch of the stream hierarchy on the other
hand consisted of a Priority node and had two children, which were both of
type WeightData. The leftmost WeightData node was intended to group to-
gether all High-Priority (HP) rendering-related files that need to be delivered
to the client, whereas the rightmost functioned as root for rendering-related

9.3 Implementation 161

Figure 9.4: General layout of the stream hierarchy used to manage the down-
stream bandwidth of clients of the considered NVE application.

data having Normal-Priority (NP). In particular, the HP part of the non-real-
time subtree was used exclusively to receive IBR data and, more specifically,
only the IBR data of those models that lay in the current viewing frustum and
were therefore crucial for rendering a first view of the virtual environment. All
other rendering-related files were clustered under the NP part of the non-real-
time subtree. Each individual HP as well as NP rendering-related object was
incorporated in the stream hierarchy as a continuous leaf node whose maxi-
mal bandwidth consumption equaled the amount of bytes that still needed to
be delivered to the client. The allocation of weight values to these continuous
leaf nodes was controlled by the scene priority of the rendering-related object
with which they were associated. In turn, scene priority was determined by
the NVE’s LoD selection mechanism, which takes into consideration distance
to the viewer as well as model display size. Furthermore, the NVE applica-
tion performs pre-loading of IBR model data outside the frustum, but inside
a circular Area of Interest (AoI) around the viewpoint. These data streams
were given a low weight value to guarantee that their delivery did not hinder
the reception of streams of higher priority. A schematic clarification of how
rendering-related data was exactly categorized and hence incorporated in the
stream hierarchy is provided in Figure 9.5.

The grouping HP root node had a higher priority value associated with
it, compared to the NP root node. Consequently, the entire percentage of the

162 Efficient Transmission of Rendering-Related Data

Figure 9.5: Categorization of rendering-related data.

client’s available downstream bandwidth that is designated to the reception of
non-real-time network traffic will first be exploited to receive the HP rendering-
related files. Only if any bandwidth remains in excess, it will subsequently be
granted to the NP branch of the non-real-time subtree.

Notice that previous findings regarding the bandwidth brokering skills and
characteristics of the WeightStream node class were kept in mind when design-
ing the layout of the stream hierarchy. In particular, section 7.3 has established
the proficiency of this type of internal node in apportioning bandwidth among
real-time network traffic. Section 8.3.2 on the other hand has demonstrated
that leveraging a WeightStream node to shape non-real-time network traffic
might yield counterintuitive results. Therefore, in the devised stream hier-
archy, the real-time data was linked by means of a WeightStream instance,
whereas WeightData nodes were relied on to cluster the non-real-time trans-
missions. Section 9.4 will confirm that employing the WeightData node type
to coordinate the distribution of bandwidth over non-real-time network traffic
does yield intuitive results.

9.3.2 Support for Stream Hierarchy Leaf Node Relocations

Since users can freely roam about the virtual world that is offered by the NVE
application, the importance of individual real-time and non-real-time network
flows is likely to alter dynamically over time. For the real-time network traf-
fic, shifts in stream importance are captured by appropriately updating the
weight value of the corresponding discrete leaf node. For non-real-time net-
work traffic however, the situation is somewhat more complicated and possibly
requires relocation of continuous leaf nodes in the client’s stream hierarchy.

9.4 Evaluation 163

In particular, as a user moves to a new location or changes his viewing di-
rection in the virtual world, non-real-time data that previously belonged to
the high-priority category might now be classified as being normal-priority
and vice versa. When this occurs, in addition to enforcing any necessary up-
dates to their individual weight values, the involved continuous leaf nodes
are automatically transferred between the HP and NP branches of the non-
real-time subtree. Finally, besides parent switching, complete removal of leaf
nodes from the client’s stream hierarchy is also supported. A plausible cause
are radical user relocations in the virtual environment, which could reduce
the importance of certain network flows to such an extent that they should
no longer be allocated any client downstream bandwidth. By (temporarily)
pruning the corresponding leaf nodes from the stream hierarchy, this can easily
be guaranteed.

9.4 Evaluation

The proposed bandwidth distribution strategy for the NVE application has
been assessed via two distinct experiments in which the NIProxy was respon-
sible for managing last mile data delivery to clients. The initial experiment
involved only a limited number of models and did not include real-time net-
work traffic. In contrast, the second test simulated a more realistic scenario
which encompassed a densely populated scene, a less artificial client down-
stream bandwidth limit and contention from real-time traffic.

9.4.1 Minimalist Experiment

The initial experiment modeled a minimalist setup. By excluding real-time
network traffic and by considering only a moderate number of virtual mod-
els, the client-side reception of non-real-time rendering-related data could
be traced comprehensively and unambiguously. The results are shown as a
stacked graph in Figure 9.6. Besides constraining the model count, it was
also decided to limit the downstream throughput of the client’s access connec-
tion to an unrealistically low 20 KiloBytes per second (KBps) to allow for an
intelligible analysis of the produced results.

Looking at Figure 9.7(a), it can be seen that at the beginning of the exper-
iment, only objects 0 and 1 were positioned in the user’s field of view. Object
0 was located relatively far from the user in the virtual world. In contrast, the
virtual distance between the user and object 1 was relatively small. The NVE’s
rendering scheme consequently determined that solely IBR data was required
for object 0, whereas IBR data as well as all PM levels needed to be delivered

164 Efficient Transmission of Rendering-Related Data

Figure 9.6: Simple scenario network traffic chart (stacked graph) demonstrat-
ing deliberate management of non-real-time (i.e., rendering-related) traffic (in
KBps).

to the client for object 1. The network chart in Figure 9.6 discloses that for
both objects, the high-priority IBR data was forwarded first, after which the
delivery of object 1’s PM levels was started. The network trace also illustrates
that, as soon as the RTMO representations of the objects in the view frustum
were received successfully, the pre-loading of IBR data of non-visible objects
began taking up a very small fraction of the available bandwidth.

After approximately 30 seconds, the user performed a 90 degree rotation
in the virtual world (see Figure 9.7(b)). As this rotation put both objects 0
and 1 outside the user’s visible area, the weight values that were associated
with both model streams were significantly reduced. On the other hand, the
view frustum now contained objects 2 and 3, so their data needed to be prop-
agated to the client at a higher weight and priority than before. Again, object
3 was close to the viewer and was given more weight, while only IBR data was
required for object 2. Note from the network chart that, after the rotation,
only the geometric data for object 3 was transmitted since the IBR files for
both objects had already been received in the first interval of the experiment,
during the NVE’s IBR pre-loading phase for objects outside the view frus-
tum. At the beginning of the second experiment interval, the renderer could
therefore immediately present an initial view of the currently visible objects.

Finally, at around 60 seconds, a forward translation was performed to
arrive at the scene layout which is depicted in Figure 9.7(c). The user’s forward

9.4 Evaluation 165

(a) Interval 1 (b) Interval 2 (c) Interval 3

Figure 9.7: Scene layout for the minimalist experiment.

movement caused object 3 to fall outside the view frustum. At the same time,
objects 2 and 10 were now marked for PM rendering, while objects 8 and 9 were
added to the view at lowest resolution. The transmission of rendering-related
data continued as before, with the exception that now objects 2 and 10 needed
to split the available client downstream bandwidth based on the weight values
that were assigned to them by the run-time LoD selection scheme. The RTMO
data for object 2 was already received during the first experiment interval, so it
first had to wait for the transmission of the IBR models of objects 8, 9 and 10
to complete before it could continue with upgrading its own representational
fidelity (through the reception of PM data).

9.4.2 Representative Experiment

The second experiment involved the transmission of a complex virtual scene
and hence demonstrates how the proposed bandwidth management scheme
behaves in lifelike situations. Furthermore, besides rendering-related data, the
experiment required the simultaneous distribution of real-time video traffic.
The client’s downstream access bandwidth was in this case set to the more
common value of 100 KBps.

Figure 9.8 plots the yielded data reception at client-side. Due to the large
number of virtual models that were involved in this experiment, the bandwidth
usage of individual non-real-time data flows is no longer displayed. Instead,
the graph visualizes the aggregate bandwidth which was consumed by each
category of rendering-related data (i.e., IBR, compressed base mesh with tex-
ture data, PM L1, PM L2 and PM L3).

The network trace illustrates that at the start of the experiment, IBR
data was given full priority so that the NVE application could quickly provide
the user with an initial, low-quality view of the virtual world. Once these

166 Efficient Transmission of Rendering-Related Data

Figure 9.8: Stacked graph illustrating the client bandwidth distribution during
a realistic scenario involving the reception of both 3D model data and real-time
video traffic (in KBps).

RTMO representations were completely received, model data was incremen-
tally upgraded based on the geometric resolution levels that were selected by
the NVE’s LoD manager. After approximately 35 seconds, most PM data
that was needed for the higher-fidelity rendering of objects in the frustum
was delivered to the client and, as a result, the bandwidth amount that was
assigned to the IBR pre-loading of models outside the user’s field of view was
drastically increased.

At around 55 seconds, two video sources entered the user’s area of interest.
Each video stream required a bandwidth of approximately 17 KBps. Recall
from section 9.3.1 that the NIProxy reserved only 30 percent of the total client
downstream bandwidth for the reception of real-time network traffic. This
amount did not suffice to simultaneously propagate both video streams, but
since there was initially excess bandwidth from the non-real-time network traf-
fic category, the real-time network flows were allowed to exceed their allocated
bandwidth share (see section 4.2.3). Roughly 15 seconds later however, the
user rotated 90 degrees in the virtual world, which caused model importance to
alter due to the user’s modified viewing direction. As a result, new geometric
model data needed to be delivered to the client and hence competition for the
available client downstream bandwidth between real-time and non-real-time
network traffic was introduced. Due to this contention, the real-time net-
work traffic now needed to conform to its appointed bandwidth percentage,

9.4 Evaluation 167

which resulted in the NIProxy temporarily blocking one of the video streams
to prevent the non-real-time network traffic from being denied its fair band-
width share. In particular, during the contention period, the network flow
for video 2 was retained to the prejudice of video 1 because of the former’s
higher scene importance and hence larger weight value in the client’s stream
hierarchy. Only after the transmission of the 3D model data had finished, the
simultaneous forwarding of both video streams was resumed.

9.4.3 Discussion

The experimental results comprehensively demonstrate the benefits and ca-
pabilities of the NIProxy’s network traffic shaping functionality. A first im-
portant observation is that over-encumbrance of the client’s access connection
was consistently prevented. As a result, packet delay and loss were minimized
and an optimal data reception at client-side was achieved. Notice that a small
fraction (i.e., 10 percent) of the client’s downstream bandwidth capacity was
even left unused in the experiments. As was discussed in section 4.6, this
unallocated amount served as safety margin to guarantee a certain level of re-
silience to uncontrolled surges in the bandwidth consumption of the network
flows which constituted the traffic mix that was forwarded to the client. In
the second experiment, this overflow protection buffer successfully countered
the slight variance in downstream throughput of the real-time video traffic
and as such prevented these bandwidth consumption fluctuations from nega-
tively impacting data dissemination efficiency and hence user QoE1. Secondly,
the requirements of the considered NVE application and, in particular, of its
rendering scheme were successfully captured by the bandwidth distribution
strategy that was implemented by the NIProxy. For instance, the presented
network traces prove that, by assigning priority to the transmission of IBR
data, the NVE’s aim of quickly providing the user with an initial view of
the virtual world was satisfied. Finally, the second experiment has indicated
the NIProxy’s ability to correctly deal with situations in which real-time and
non-real-time network traffic contend for the downstream bandwidth that is
available to the client. In particular, by employing a Percentage node to
differentiate between real-time and non-real-time network flows in the client’s
stream hierarchy, both traffic categories received their fair bandwidth share
throughout the entire experiment.

1As was already mentioned in section 8.3.2, the NIProxy’s rate control functionality
for non-real-time data results in this type of network traffic behaving in a very controlled
fashion in terms of downstream bandwidth consumption. The safety buffer consequently has
no utility for non-real-time traffic.

168 Efficient Transmission of Rendering-Related Data

Recall from section 9.2.3 that the results that were attained by the NI-
Proxy’s network traffic shaping framework are beyond the reach of the un-
modified version of the NVE application:

• The standard implementation does not include constructs for throttling
the downstream data transmission to clients; it merely appeals to the
elastic behavior of non-real-time network flows to avoid congestion on
clients’ access links. As was already established in chapter 8, this ap-
proach is hardly effective and entails a number of significant pitfalls. As
an example, it will lead to bandwidth capacity violations in case the
combined bandwidth consumption of the inelastic (i.e., real-time) traffic
exceeds the throughput of the access link. As another example, it might
lead to the starvation of the non-real-time network traffic.

• Client downstream bandwidth is assumed to be plentifully available.
Consequently, facilities for coordinating the distribution of network traf-
fic are lacking, let alone for orchestrating the simultaneous dissemination
of real-time and non-real-time content.

• The NVE’s built-in communication scheme does not succeed in effec-
tively fulfilling the application’s requirements and demands concerning
the dissemination of rendering-related non-real-time content (e.g., re-
serving bandwidth for IBR pre-loading, enabling quick visualization of
an initial (low-quality) virtual world representation, etcetera). In more
detail, whether these requirements will be satisfied largely depends on
external factors such as scene complexity (since the probability of data
dissemination issues is directly proportional to model count), the user’s
movement pattern in the virtual environment (quick movement will cause
significant and rapid changes in model reception priority, which is not
coped well with by the default communication scheme) and whether or
not there is contention from real-time traffic.

Based on these observations, it is clear that the introduction of the NIProxy
and its network traffic shaping operations positively influenced the QoE that
is perceived by the users of the considered NVE application.

9.5 Related work

A survey of related work on network traffic shaping was already pre-
sented in section 2.4.1. This section will therefore only briefly review pro-
posed techniques and solutions for the topic on which this chapter has

9.6 Conclusions 169

primarily focused, namely the efficient and adaptive network transmission
of 3D rendering-related data. Interesting related work in this subdomain
of automatic bandwidth brokering includes the research by Ioana Martin
[Schneider 99, Martin 00, Martin 02, Boier-Martin 03], the 3D models Trans-
port Protocol (3TP) [AlRegib 05] and the generic middleware for the stream-
ing of 3D progressive meshes described by Li et al. in [Li 06].

The cited approaches concentrate exclusively on optimizing the delivery
of 3D models over transportation networks and hence provide advanced tech-
niques which are targeted specifically at this type of multimedia content. This
implies however that they do not cover scenarios which require the simul-
taneous transmission of model data and other types of multimedia, such as
real-time video or P2P data. Some of these systems are even so concentrated
that they consider only one particular type of 3D content. As an example,
the 3TP approach is only applicable to progressively compressed 3D models
and hence lacks support for streaming other types of rendering-related data,
like textures or RTMO representations. In contrast, the NIProxy approaches
network traffic shaping from a more generic perspective and supports band-
width management in the presence of different types of real-time as well as
non-real-time network traffic. As a result, the mechanisms for the dissemi-
nation of rendering-related data that are supported by the NIProxy are less
sophisticated compared to those of the referred systems. At the same time
however, the NIProxy’s more general methodology guarantees a much wider
applicability. In particular, by not focusing solely on orchestrating the deliv-
ery of rendering-related data, a large variety of distributed applications may
exploit and benefit from the NIProxy’s QoE optimization features.

9.6 Conclusions

This chapter has again discussed the NIProxy’s ability to improve the net-
work dissemination of multimedia content. In particular, findings and obser-
vations which stem from employing the NIProxy to manage the downstream
bandwidth of clients of a real-world NVE application have been presented.
The considered application demands efficient distribution of rendering-related
data and in addition supports real-time streaming of audiovisual content. Via
representative experimental results, the NIProxy’s ability to capture the pre-
requisites which are imposed by this particular application and to translate
them into an effective bandwidth brokering strategy has been demonstrated.
As such, this chapter has confirmed that the NIProxy’s QoE optimization
potential is not limited to artificial demonstrator software but can just as
well be exploited by realistic, concrete distributed applications with poten-

170 Efficient Transmission of Rendering-Related Data

tially non-straightforward requirements. Stated differently, this chapter has
corroborated that the NIProxy’s NTS provisions are sufficiently sophisticated
and elaborate to enable the bandwidth management stipulations and expecta-
tions of complex applications to be satisfied. As a secondary contribution, the
presented results have indirectly highlighted the amount of flexibility that is
afforded by the NIProxy’s generic approach to client bandwidth management,
which enables it to be integrated in a multitude of distributed applications.

Chapter 10
Outbound Traffic Engineering

All practical evaluations that have already been presented in this part of the
dissertation were solely concerned with optimizing the dissemination of data
that is destined for users of distributed applications. According to the cate-
gorization that was introduced in section 3.3, such data follows the inbound
flow direction. It is evident that the engineering of inbound network traffic
has a substantial and direct effect on the QoE that is perceived by users. The
NIProxy therefore initially focused its traffic engineering operations on this
traffic category.

In the course of this PhD research, it was however determined that the
opposite flow direction might also hold possibilities in terms of user QoE op-
timization. This chapter will consequently report on the incorporation of
support in the NIProxy for managing data that originates from a connected
client (instead of being destined for it) [Wijnants 09a]. In section 3.3, this
traffic direction was labeled outbound. In particular, it will be described how
the NIProxy’s dual user QoE optimization tools, network traffic shaping and
multimedia service provision, which had previously been applied exclusively in
the inbound direction, were translated to outbound equivalents. Finally, via
a multimedia streaming case study, the benefits and implications with regard

172 Outbound Traffic Engineering

to user experience improvement that are enabled by upstream network traffic
shaping and the provisioning of outbound services will be validated.

10.1 Architectural Modifications

In the initial version of the refactored NIProxy implementation, the applica-
tion of its supported traffic engineering techniques was confined to inbound
network traffic. This limitation was caused by the NIProxy’s software archi-
tecture, which initially included only an (inbound) packet processing chain
for processing network packets that are destined for a NIProxy client. Based
on the conviction that incorporating outbound traffic engineering function-
ality might increase the QoE optimization potential of the NIProxy, it was
soon after the refactoring operation decided to introduce a similar construct
for outbound data. As was already discussed in section 6.2.2, the outbound
packet processing chain largely mimics its inbound equivalent in terms of com-
posing components as well as operating procedure. In contrast to the latter
however, it ought to be traversed by network packets that are transmitted
by a NIProxy-connected client and hence implements network traffic shaping
and multimedia service provision for data that follows the upstream/outbound
flow direction.

Besides the introduction of the outbound packet processing chain, only mi-
nor adjustments were required to the implementation of the Bandwidth Man-
ager and Service Manager software components to incorporate outbound traffic
engineering support in the NIProxy. As was discussed in section 6.2.2, these
components respectively encapsulate the NIProxy’s bandwidth brokering and
service delivery frameworks. The Bandwidth Manager previously maintained
only a single stream hierarchy, based on which a connected client’s inbound
network traffic was shaped. To also enable the orchestration of the upstream
bandwidth consumption of distributed applications, a supplementary stream
hierarchy was introduced. This implies that the current Bandwidth Manager
implementation simultaneously administers two separate stream hierarchy in-
stances which form the basis for managing the client’s downstream and up-
stream network traffic, respectively. Analogously, the Service Manager was
redesigned so that it could distinguish between inbound and outbound ser-
vices. By concurrently managing an independent service chain for both flow
directions and by dynamically determining which service list to apply based on
each intercepted network packet’s flow direction, support for outbound service
provisioning was achieved.

Since the outbound packet processing chain was modeled upon the inbound
variant, it has inherited the collaboration interface that is provided between

10.2 Conceptual Implications 173

services and the network traffic shaping framework (see section 6.2.2). In par-
ticular, the Service Manager component exposes an interface through which
outbound services can communicate with the Bandwidth Manager and Stream
Manager instances that are included in the encompassing outbound packet
processing chain. Analogous to the inbound implementation, it is hence en-
abled for outbound services to query and even adjust the upstream stream
hierarchy which steers the shaping of the network traffic that is emitted by
the associated NIProxy client. As has already been demonstrated a number
of times in previous chapters and as will again be confirmed in section 10.4,
supporting interaction between the provided traffic engineering tools enables
the NIProxy to elevate its user QoE optimization capabilities to a performance
level that surpasses the results that are attainable when both mechanisms are
applied independently. As a final remark in this context, cooperation between
traffic engineering techniques which concentrate on different flow directions is
just as well supported. It is consequently possible for an outbound service to
interoperate with the inbound network traffic shaping scheme (and vice versa).
This is due to the Bandwidth Manager component simultaneously maintaining
both the downstream and upstream variants of the associated client’s stream
hierarchy. At the time of writing, it has not yet been validated whether this
option is advantageous or even appropriate. If at some point it would be iden-
tified as undesirable, for instance because it might jeopardize correct NIProxy
operation, this possibility could easily be disabled.

10.2 Conceptual Implications

Recall from section 3.3 that the inbound/downstream and outbound/upstream
classification is defined from the point of view of a NIProxy client. Supposing
that the NIProxy is positioned on the logical borderline between the network
core and the access network (which section 3.5 has identified to be an auspi-
cious location for NIProxy deployment), the flow direction definition implies
that

• inbound traffic engineering will be applied to data that is received by
the NIProxy on its connection with the network core, with the purpose
of streamlining the intercepted data’s downstream delivery over the des-
tined client’s access link

• network traffic that is emitted by the NIProxy client itself will be sub-
jected to outbound traffic engineering, which will regulate its upstream
injection into the network backbone

174 Outbound Traffic Engineering

The difference between inbound and outbound traffic engineering can also be
explained from the perspective of the lifetime of network traffic. Assuming
again a setup in which the NIProxy is deployed along the core/access network
boundary, inbound network flows will be engineered near the end of their pas-
sage through the transportation network (i.e., at a time when the transported
data has nearly reached its final destination); in contrast, the engineering of
outbound data will occur close to its source (i.e., soon after it originated from
the NIProxy client).

10.3 Use Case: Outbound Static Video Transco-
ding

This section will present an example outbound service that will serve as prac-
tical use case to demonstrate and evaluate the NIProxy’s upstream network
traffic shaping and outbound multimedia service provision facilities. The ser-
vice can be regarded as the translation of the static video transcoding service
which was introduced in section 5.3 to the outbound flow direction. In partic-
ular, the service introduces static outbound transcoding functionality in the
NIProxy and hence enables it to reduce the bitrate of outbound H.263-encoded
video traffic. Recall from section 5.3 that the static keyword refers to the fact
that the video transcoding parameters need to be specified on service instanti-
ation and will remain fixed until the instance is destructed. Given the fact that
the outbound video transcoding service is a mostly straightforward adaptation
of the inbound equivalent, implementation-wise both variants are largely re-
semblant. This section will therefore not reiterate the technical details of the
outbound service’s implementation but will instead focus on its general modus
operandi and on its interoperation with the NIProxy’s (outbound) bandwidth
brokering actions.

10.3.1 Mode of Operation

The service expects as input H.263 video streams that are intercepted by the
NIProxy on the outbound flow direction (i.e., frames which are emitted by the
NIProxy client that is associated with this service instantiation). The output
that is produced by the service equals either the Original Version (OV) of the
outbound video stream or its Transcoded Variant (TV). To determine which
video fidelity to output, the service consults the current upstream bandwidth
distribution strategy which the NIProxy has calculated for the video source.
More specifically, the service exploits its interface with the Bandwidth Man-
ager to access the video source’s upstream stream hierarchy and to verify

10.4 Evaluation 175

whether the representation of the transcoded version of the video stream is
currently assigned upstream bandwidth. The decision whether to perform
transcoding is hence dictated entirely by the NIProxy’s network traffic shap-
ing scheme. As a result, unnecessary transcoding operations are eliminated,
which is an important achievement since video transcoding is a computation-
ally complex task which demands considerable amounts of scarce processing
power.

10.3.2 Stream Hierarchy Manipulation and Awareness Exten-
sion

Section 4.7 has clarified that the bulk of the responsibility for composing and
managing the stream hierarchy lies with the application software (i.e., the NI-
Proxy client). This implies that the video source is responsible for ensuring
that the video streams which it transmits are adequately incorporated in its
upstream stream hierarchy Ṫhe transcoded version of these streams however
do not originate from the video source itself but instead are generated on-
the-fly by the outbound video transcoding service. The service consequently
introduces a new type of outbound network traffic, which should also be repre-
sented in the video source’s upstream stream hierarchy. Therefore, analogous
to its inbound counterpart (see section 5.3.1), the service executes the follow-
ing actions on the detection of an outbound video flow:

• A new discrete leaf node is instantiated and linked to the transcoded
variant of the discovered video flow

• The newly created node is included in the upstream stream hierarchy as
direct sibling of the node which corresponds to the original video version

Once the transcoded quality of the outbound video flow has been incorporated
in the stream hierarchy, the NIProxy’s network traffic shaping framework will
start considering it when managing the video source’s upstream bandwidth
capacity. Finally, besides updating the upstream stream hierarchy, the ser-
vice also extends the NIProxy’s network awareness repository by supplying
the Stream Manager component with information regarding the bandwidth
requirements of the transcoded version of outbound video flows.

10.4 Evaluation

In this section, the impact of the NIProxy’s outbound traffic engineering func-
tionality on its user QoE optimization capabilities will be evaluated by analyz-
ing the outcome of two distinct experiments. Before presenting and discussing

176 Outbound Traffic Engineering

Figure 10.1: Emulated network environment in which the NIProxy’s outbound
traffic engineering support was evaluated.

the actual results, a concise description of the setup in which the experiments
were conducted will be provided.

10.4.1 Experimental Setup

To evaluate the conversion of the NIProxy’s network traffic shaping and mul-
timedia service provision functionality to the upstream/outbound flow direc-
tion, a limited multimedia streaming scenario in a Wide Area Network (WAN)
setting was simulated. The experimental setup involved a single server and
multiple clients. Based on incoming requests, the server unicasted multimedia
data to clients using RTP. Besides server and clients, the setup also included
a NIProxy instance. An important contrast with the experimental case stud-
ies that have been presented up to now is that the NIProxy instance was in
this case not associated with the client(s) but was conversely responsible for
shaping the multimedia traffic that was emitted by the server. Lastly, the ex-
istence of an entity was assumed that managed and regulated the allocation of
the bandwidth capacity of the network backbone. This entity will be referred
to as the WAN bandwidth broker. In the experiments, the bandwidth broker
hence determined the amount of backbone bandwidth which the multimedia
streaming server could maximally consume and subsequently communicated
this information with the NIProxy instance. The WAN bandwidth allocation
decision could, for instance, be grounded on a Service Level Agreement (SLA)
that was negotiated between the content provider (i.e., the proprietor of the
multimedia streaming server) and the operator of the WAN.

10.4 Evaluation 177

Table 10.1: Quality settings of the original and transcoded video versions.

Original Transcoded

Resolution (pixels) 352× 288 (CIF) 352× 288 (CIF)

Framerate (FPS) 25 15

Bitrate (bps) 160000 80000

Codec H.263 H.263

(a) Original (b) Transcoded

Figure 10.2: Qualitative comparison of the original and transcoded version of
a particular video fragment.

An overall picture of the experimental setup is provided in Figure 10.1.
By conceptually positioning the multimedia streaming server and the clients
in disjoint access networks, it was guaranteed that all of the server’s outbound
network traffic needed to traverse the WAN and hence consumed backbone
bandwidth. Also notice that the NIProxy instance was deployed at the end
of the server’s access connection, this way enabling it to adapt and shape the
server’s outbound network traffic before it reached the WAN.

In the experiments, the NIProxy instance made use of the outbound static
video transcoding service which was introduced in section 10.3. The quality
settings of the video content that was stored on the multimedia server as well
as the configuration parameters for the transcoding service are specified in
Table 10.1. As can be inferred from this table, video transcoding resulted in
a reduction of the video stream’s temporal resolution; at the same time, the
video compression ratio was increased (as the service employed a halved target

178 Outbound Traffic Engineering

bitrate). In contrast, the spatial resolution of the input video stream was left
intact during transcoding. The video transcoding service hence outputted
video fragments whose spatial resolution was identical to the original, but
which were less fluid and which exhibited a lower visual quality. Figure 10.2
exemplifies the disparity in image quality between both video versions. As can
be seen, the difference is marginal for low-complexity video fragments.

To conclude, remark that the setup could have easily been extended with
additional NIProxy instances to perform downstream bandwidth management
and inbound service delivery for the clients that were involved in the experi-
ments. It was opted not to do so to ensure that the reader’s attention is focused
on the NIProxy’s outbound traffic engineering tools and to enable clear and
direct deduction of their impact from the generated experimental results. It is
apparent however that such an extended environment would enable a number
of additional options in terms of user QoE optimization and would hence most
likely allow for further improvement of the achieved results.

10.4.2 Experiment 1: Simultaneous Audio and Video Stream-
ing to a Single Client

Experiment Description

In the first experiment, the multimedia server simultaneously streamed an
audio track and a video fragment to a single client. The objective for the
NIProxy instance which was included in the experimental setup hence con-
sisted of ensuring that the WAN bandwidth which the broker had reserved
for the server was apportioned deliberately among these two network flows.
The server’s WAN bandwidth capacity was in addition made subject to con-
siderable fluctuations, which conceptually partitioned the experiment into a
number of discrete periods. This was done to introduce dynamism in the
emulated network environment so that it could be ascertained whether the
NIProxy was able to successfully cope with and respond to changing contex-
tual parameters. In practice, such fluctuations could for instance be caused
by the arrival of new network traffic that needs to be accommodated by the
WAN.

The (upstream) stream hierarchy which steered the NIProxy’s bandwidth
brokering behavior during the experiment is illustrated in Figure 10.3. Due to
the experiment’s restricted scope, the stream hierarchy exhibited an elemen-
tary structure and contained only a limited number of nodes. In particular,
the root of the hierarchy consisted of an internal node of type Priority and
directly distinguished the audio and video flow which were emitted by the mul-
timedia server from each other. Since there was no notion of multiple audio

10.4 Evaluation 179

Figure 10.3: The multimedia streaming server’s upstream stream hierarchy in
experiment 1.

versions in the experiment, the Audio Stream (AS) was made a direct child
of the root as a discrete leaf node. The video flow on the other hand was
available in two distinct qualities (i.e., the Original Version (OV) as emitted
by the multimedia server and a Transcoded Variant (TV) that was generated
by the NIProxy’s outbound static video transcoding service). Remember that
both versions transport identical content and differ only in their quality pa-
rameters. In the experiment, it would have consequently been wasteful in
terms of WAN bandwidth consumption in case the client would ever receive
both video flows simultaneously. Following the approach that was proposed in
section 5.3.1, their corresponding discrete leaf nodes were therefore grouped
together using a Mutex internal node before they were added to the hierarchy
root as a child. Also, as was described in section 10.3.2, the TV leaf node
was not instantiated by the multimedia server but instead by the NIProxy’s
outbound static video transcoding service. As a final comment, each of the
leaf nodes in the constructed stream hierarchy defined 2 discrete bandwidth
consumption levels so that they could either completely disable the network
flow which they represented or enable it at maximal bitrate (see section 4.3.1).

During the experiment’s setup phase, the client indicated to the multi-
media server that audio was preferred to video. The server in turn informed
the NIProxy of this application-related information by ensuring that it was
adequately captured in its upstream stream hierarchy. In particular, this was
achieved by attaching a higher priority value to the leaf node which represented
the audio flow. These priority values, and by extension the entire constitu-
tion of the stream hierarchy, remained constant for the entire duration of the
experiment; only the bandwidth amount that was allocated to the root node

180 Outbound Traffic Engineering

Figure 10.4: Plot (stacked graph) of the multimedia streaming server’s WAN
bandwidth consumption during experiment 1.

changed over time (i.e., at the beginning of each new experiment interval,
based on the bandwidth capacity information that was provided by the WAN
bandwidth broker).

Results

Based on the just described stream hierarchy, the NIProxy managed the mul-
timedia server’s upstream bandwidth consumption as is illustrated in Figure
10.4. In this network trace, the dashed vertical lines separate the different
experiment intervals. As can be seen, interval transitions always coincided
with an alteration of the amount of upstream bandwidth that was available to
the multimedia streaming server. Also note from the trace that the original
and transcoded versions of the video flow respectively demanded more and
less bandwidth than the audio stream.

Analysis of the network trace unveils that the WAN transmission of the
audio track was prioritized throughout the experiment. Only during the fourth
interval, the audio stream was not forwarded over the WAN. This was how-
ever caused solely by a lack of sufficient upstream bandwidth, not because
precedence was given to the streaming of the video fragment. Any upstream
bandwidth that was not claimed by the audio flow was subsequently employed
by the NIProxy to implement the video streaming. In case the residual WAN
bandwidth was inadequate to stream the original video version, the switch to

10.4 Evaluation 181

the lower-quality transcoded version was made. As a result, the client always
received the video fragment at the highest quality possible, given the server’s
current upstream bandwidth capacity.

10.4.3 Experiment 2: Simultaneous Video Streaming to Mul-
tiple Clients

Experiment Description

In contrast to the first experiment, the second involved multiple clients which
each requested a particular video fragment from the multimedia streaming
server. No other type of multimedia content (i.e., audio) was included in this
experiment because doing so would have complicated the produced results
without however providing any additional insight in the added value of the
NIProxy’s outbound traffic engineering support. Also contrary to the first
experiment, the multimedia server now disposed of a steady WAN bandwidth
capacity of 50 KiloBytes per second (KBps). The experiment nonetheless
exhibited a dynamic aspect, which was this time caused by the arrival and
departure of clients during experiment execution. This resulted not only in
the initiation and suspension of outbound server flows at run-time, but also in
shifts in individual stream importance in the course of the experiment. The
explanation for this latter effect is given by the assumption that contracts
existed between the multimedia streaming server and its clients, causing clients
to be categorized as either regular or premium users. The relationship between
both client categories was such that, compared to regular users, premium
users should receive an improved service and a preferential treatment from
the server, whenever possible.

The dynamic joining and leaving of clients again divided the experiment
into a number of consecutive intervals. In particular, in the first interval the
server’s client list consisted of two regular users, RU1 and RU2. The second
period was initiated by the arrival of a third regular user (RU3), while the third
interval commenced when a premium user (PU) requested a video fragment
from the multimedia server. Finally, the transition to the fourth interval was
triggered by the departure of regular user RU2.

Due to the variability of its client list, the multimedia server was forced
to update its upstream stream hierarchy several times during the experiment.
This stream hierarchy is depicted in Figure 10.5 and its construction scheme
can be considered as a generalization, to a multi-client environment, of the
approach that was taken in the first experiment. In particular, this time
a root node of type Percentage was used, not to discriminate between the
different network streams that were requested by a certain client but instead

182 Outbound Traffic Engineering

Figure 10.5: The multimedia streaming server’s upstream stream hierarchy in
experiment 2.

between the server’s currently connected clients. Whenever a client joined
the experiment, it was represented in the stream hierarchy analogously to the
method from section 10.4.2. More specifically, on each new client connection,
a subtree with a root node of type Priority was instantiated and added to
the global root node; all ensuing requests for content that were issued by the
client were incorporated in its designated subtree as children of this Priority
node. Finally, Figure 10.5 also illustrates the percentage values that applied
during the different periods of the experiment. These values were calculated
by the multimedia server based on the contracts that were concluded with
its clients. In particular, to favor them over regular users, a twice as high
percentage value was appropriated to premium users.

A remark concerning the role of the intermediate Priority nodes in the
stream hierarchy is in place. Since in this experiment all clients requested
exactly one video fragment from the server, each such node had only a single
child. As a result, their presence was in this case irrelevant to the shaping
of the multimedia server’s upstream network traffic. Stated differently, the
role of the Priority nodes was limited to integrally relaying the bandwidth
amount which they were granted by the global root node to their sole child.
A similar observation applies to the method for priority value determination.
This method was inherited from the first experiment (i.e., associate a priority
value of 1 with video and 2 with audio) and, again due to the lack of peer child
nodes, did not have any influence on the outcome of the bandwidth brokering
process either.

10.4 Evaluation 183

Figure 10.6: Plot (stacked graph) of the multimedia streaming server’s WAN
bandwidth consumption during experiment 2.

Notice that Figure 10.5 displays the multimedia server’s upstream stream
hierarchy in its most elaborate form. In particular, the depicted hierarchy cor-
responds to the instantiation during the third experiment interval, the stage
at which all clients which were involved in the experiment were simultane-
ously active. In the first period, only the RU1 and RU2 subtrees were present.
At the start of the second and third period, the multimedia server extended
its upstream stream hierarchy with the representations for RU3 and PU, re-
spectively. Finally, when the fourth experiment interval commenced, the RU2
subtree was removed.

Results

The server’s WAN bandwidth consumption during the second experiment is
plotted as a stacked graph in Figure 10.6. The boundaries of the experiment’s
discrete intervals are again visualized using dashed vertical lines. In the first
interval, sufficient WAN bandwidth was available to stream to all currently
connected clients (i.e., regular users RU1 and RU2) the video fragment which
they had requested, at original quality. This ideal situation changed at the
beginning of the second interval, when regular user RU3 joined the experi-
ment and also issued a streaming request. The NIProxy therefore invoked
the outbound static video transcoding service for client RU1 and commenced
forwarding the transcoded version of the video stream that was destined for

184 Outbound Traffic Engineering

this client over the WAN. Notice that since all clients which were involved in
this phase of the experiment had an equal importance (i.e., it were all regu-
lar users), the NIProxy had to arbitrarily select a client to “penalize”. In this
case, this turned out to be RU1. The third interval was initiated by the arrival
of premium user PU. This resulted in the downscaling of the video streams
which were intended for the three regular clients to transcoded quality, this
way freeing up sufficient WAN bandwidth to accommodate the original ver-
sion of the video fragment that was requested by PU. Finally, the departure of
regular user RU2 at the transition to the fourth interval allowed the NIProxy
to upgrade the video stream for RU3 back to original quality. The decision to
favor RU3 instead of RU1 was again made randomly (i.e., since both clients
were at that time assigned an identical percentage value, they were equally
entitled to the freed WAN bandwidth). Also note the short period of time at
the start of the final experiment period during which the server’s upstream
bandwidth distribution was non-optimal. In this small transition interval,
which is highlighted in the network trace using a dashed rectangle, the avail-
able WAN bandwidth capacity was not exploited as completely and effectively
as possible. This is explained by the fact that the NIProxy needed some time
to ascertain that RU2 had actually left the experiment.

10.4.4 Discussion

The achieved results firstly confirm that the NIProxy-managed client (i.e., the
multimedia streaming server) at all times respected its allocated WAN band-
width capacity. In case this bandwidth amount would have been determined
on the basis of a SLA, the financial repercussions that are typically associ-
ated with contract infringement would hence have been avoided. In addition,
by accurately complying with the WAN bandwidth allocation strategy as de-
vised by the bandwidth broker, the NIProxy contributed to WAN congestion
prevention. This in turn is likely to have had a positive influence on the expe-
rience that was provided to the users for which the server’s upstream network
traffic was destined, since the absence of congestion increases the stability of
the network and improves the predictability of its performance. Secondly, be-
sides ensuring that the upstream bandwidth capacity was not exceeded, the
NIProxy at the same time attempted to maximize its utility. In particular,
guided by its application awareness, the NIProxy distributed the WAN band-
width that was reserved for the multimedia streaming server in an intelligent
and effective manner over the server’s collection of outbound network flows.
In the first experiment, for instance, the receiving user’s preference for audio
was successfully reflected in the server’s upstream bandwidth consumption be-

10.5 Conclusions and Future Work 185

havior. In the multi-user test case on the other hand, the NIProxy guaranteed
that the server’s premium user received a preferential treatment compared to
its regular peers, whenever possible. It is intuitively apparent that the effort
that was invested in the coordination and optimization of the WAN bandwidth
consumption of the multimedia streaming server likely positively affected the
QoE that was witnessed by the server’s users. Third, the presented experi-
mental results have exemplified the ability for outbound multimedia services
and the NIProxy’s network traffic shaping framework to collaborate and the
interesting capabilities which it unlocks. In particular, the availability of the
outbound static video transcoding service extended the NIProxy’s range of
network traffic shaping options by enabling the streaming of lower-quality
video versions over the network backbone in the event of upstream bandwidth
shortage. The anticipated positive effect hereof on user QoE has already been
mentioned in section 7.3 for the inbound flow direction and was here achieved
for outbound network traffic. A final minor observation from the practical
evaluation is that the NIProxy succeeded in effectively coping with dynamic
events, whether network- or application-related.

Based on the analysis of the experimental results, it becomes clear that
the NIProxy’s outbound traffic engineering functionality offers opportunities
in terms of user QoE optimization on two fronts:

NIProxy-connected hosts In the presented case study, the NIProxy man-
aged the outbound traffic of the multimedia streaming server. As a
result, it was to be expected that this host would benefit from the NI-
Proxy’s functionality. In this case, the NIProxy for example prevented
the server from violating its WAN bandwidth capacity and hence from
incurring possible financial penalties that are imposed by the WAN op-
erator.

Unmanaged hosts A less straightforward observation is that hosts which
are not directly managed by the NIProxy might also be positively im-
pacted by its support for outbound traffic engineering. In particular,
the experimental findings have proved the engineering of the data that
was streamed by the content server to be indirectly advantageous to the
users for which the data was intended.

10.5 Conclusions and Future Work

Prior to this chapter, the NIProxy’s network traffic shaping and multime-
dia service provision functionality had been applied exclusively on data that

186 Outbound Traffic Engineering

was destined for managed hosts. This chapter has described the extension
of the coverage of these traffic engineering methods to data that is injected
into the transportation network by NIProxy-connected hosts themselves. Care
was taken to ensure that the collaborative interface that is provided between
both mechanisms in the inbound direction was retained during the general-
ization process. Besides presenting the required architectural modifications,
the conversion of the static video transcoding service from section 5.3 to the
outbound flow direction was described. Stated more elaborately, this service
enables the NIProxy to manipulate the quality and hence bitrate of video
data that originates from NIProxy-managed hosts. Using the outbound video
transcoding service as practical use case, the NIProxy’s support for upstream
network traffic shaping and outbound multimedia service provision was exper-
imentally evaluated. Representative test results have clearly verified that the
outbound traffic engineering functionality helps the NIProxy in delivering on
its objective of improving the multimedia capabilities of IP-based networks.

Although support for upstream network traffic shaping and outbound mul-
timedia service provision was obtained in the NIProxy by fairly straightfor-
wardly mimicking their inbound precursors, a notable difference in their user
QoE optimization reach has emerged from the presented experimental results.
In particular, prior empiric findings have shown inbound traffic engineering to
be mainly beneficial for the targeted user (i.e., the user for which the network
traffic is destined). In contrast, the experimental results in this chapter have
demonstrated that hosts which are not explicitly managed by the NIProxy
might also (indirectly) profit from its outbound traffic engineering actions. As
an example, in the presented media streaming case study, none of the end-
users were connected to a NIProxy instance, yet all of them took advantage
of the engineering of the outbound network traffic of the server from which
they requested their content. Since the server itself also reaped rewards of the
manipulation of its emitted network traffic, the NIProxy’s outbound traffic
engineering facilities offer user QoE enhancement opportunities on two fronts.
Support for outbound traffic engineering has hence been proven to be a promis-
ing and very versatile tool in the quest for QoE optimization and therefore
represents a useful extension of the NIProxy’s feature list.

This chapter has merely scratched the surface of the QoE optimization op-
tions that are unlocked by outbound traffic engineering. Especially due to the
fact that it allows for improving the experience of not only directly managed
but also unmanaged hosts, outbound traffic engineering possesses a very ex-
tensive range of possible applications. An obvious topic of future work in the
short term is a more thorough investigation of the prospects of outbound ser-
vice provisioning through the implementation of additional outbound NIProxy

10.5 Conclusions and Future Work 187

services. An interesting candidate would be, for example, a service which adds
encryption to outbound network flows, this way protecting the confidentiality
of sensitive information in case it needs to be transmitted over a potentially
untrustworthy interconnection network (e.g., the Internet). In the more dis-
tant future, it might be very valuable to experiment with a network setup
which encompasses multiple NIProxy instances to simultaneously control on
the one hand the upstream bandwidth consumption of multimedia sources and
on the other hand the last mile downstream delivery of multimedia content
to sinks. As was already mentioned in section 10.4.1, it is expected that such
an extended setup will be able to push the results in terms of user experience
optimization that were presented in this chapter to a higher level.

Chapter 11
FEC-Integrated Network Traffic Shaping

Data corruption incurred during network transmission is likely to result in user
frustration and hence plays a significant role in the optimization of the satisfac-
tion of users of distributed applications. As a countermeasure, Forward Error
Correction (FEC) schemes complement source data with redundant informa-
tion to enable data recovery at destination-side. This chapter will discuss the
context-aware inclusion of adaptive parity-based FEC support in the NIProxy
[Wijnants 09b]. Since FEC coding increases the load on the transportation
network, it will be shown that an integrated approach with the NIProxy’s net-
work traffic shaping mechanism was adhered to to enable deliberate control
over the FEC process and to guarantee that the bandwidth overhead which it
introduces is justified. Representative experimental results will be presented
which will confirm the validity of the selected approach. The results will in
addition prove that, if applied in a well-considered manner, FEC coding is
able to beneficially affect user experience and consequently forms a valuable
addition to the NIProxy’s toolset.

190 FEC-Integrated Network Traffic Shaping

11.1 Introduction

Exchanging data over packet-switched computer networks can lead to corrup-
tion, which renders the data (partly) unusable for the receiver. The type and
amount of errors that are incurred during transmission depend on multiple
factors, including the kind of networking technology used, the current traffic
load and the characteristics of the transported data. Broadly speaking how-
ever, data corruption can be caused by either the loss of entire packets or by
the introduction of bit errors. Insufficiently capacitated network infrastructure
(e.g., routers) is a frequent source of packet loss. Transmission errors on the
other hand typically result from signal interference or noise on the communi-
cation channel, which are common issues in wireless networks. Irrespective of
its cause, data corruption is likely to have a detrimental effect on user expe-
rience and hence effort should be made to minimize it. Lost or contaminated
data can for instance lead to hitches in voice streams or visual artifacts during
video playback.

Solutions for dealing with data corruption can be categorized into two
groups. The first category consists of retransmission-based techniques, where
the receiver monitors incoming network flows and requests the source to re-
transmit missing or corrupted data [Tanenbaum 02]. This process can in the-
ory be repeated indefinitely until all data has been correctly received. In
practice however, timing constraints might limit the number of acceptable
retransmission attempts for a certain data item or might even render retrans-
missions completely unfeasible. Retransmission-based techniques are hence
mainly suitable for recovering errors which are introduced in delay-tolerant
network traffic like for instance FTP file transfers. In the Forward Error Cor-
rection (FEC) approach on the other hand, the sender accompanies the source
data with redundant information which allows the receiver to repair, to a cer-
tain extent, errors that are introduced during transmission [Moon 05]. FEC
schemes in other words enable the destination to recover lost or damaged data
without incurring the round-trip time delay overhead of retransmission-based
solutions. This is an important advantage in case the network traffic has real-
time characteristics like for instance a live video feed. Finally, it is worth
noting that for several media types techniques have been devised which do
not attempt to repair compromised data, but instead try to hide the errors
which the corruption introduces. While such error concealment techniques are
certainly capable of alleviating the effects of data corruption, they will never
be able to fully compensate them. These algorithms are therefore typically de-
ployed on top of the data recovery scheme as an additional layer of protection
and a measure of last resort.

11.2 XOR-Based Parity Coding 191

Despite their radically different methodology, retransmission- and FEC-
based schemes share a common disadvantage. They both intrinsically intro-
duce overhead in terms of the amount of data that needs to be transmitted
over the communication network. Stated differently, they raise the bandwidth
requirements of network traffic and hence the load on the network. Because of
this drawback, the surprising scenario might occur where the addition of error
protection yields an increased instead of a decreased error rate. As a result,
to prevent the positive effect of being able to recover from transmission errors
from being nullified, deliberate reasoning regarding the amount of protection
to add to network traffic is advocated.

Given its negative impact on user experience, techniques to counter lost
or damaged data seemed like a promising and meaningful extension of the NI-
Proxy’s feature list. The contributions of this chapter are hence a description
of how FEC-based error protection functionality was introduced in the NI-
Proxy and an investigation of its influence on user satisfaction. The decision
to opt for a FEC solution instead of a retransmission-based scheme is moti-
vated by the NIProxy’s focus on real-time network traffic. In the course of
this chapter, it will be shown that FEC support was adaptively incorporated
in the NIProxy to enable dynamic control of the error protection process on a
per flow basis. More importantly, it will become apparent that an integrated
approach with the NIProxy’s network traffic shaping mechanism was adhered
to, this way guaranteeing that error protection coding reckons with contextual
information (e.g., the currently prevailing channel conditions) and in addition
will actually result in an optimization of the user’s experience.

11.2 XOR-Based Parity Coding

A large variety of schemes to enable receiver-side correction of transmission
errors exists [Moon 05]. Each has particular characteristics in terms of error
correction capabilities, computational complexity, information rate (i.e., the
ratio between media data and redundancy), etcetera. Out of these alternatives,
a parity-based technique which relies on bitwise XOR (eXclusive OR) encoding
was selected for inclusion in the NIProxy. As input, this scheme accepts
a group of n media packets and produces as output a single parity packet
[Li 07]. This parity packet is constructed by applying the XOR operator on
the collection of bits that are stored at identical locations in the n media
packets and by subsequently saving the outcome at the corresponding location
in the parity packet. Each bit in the parity packet in other words represents
the parity of the equivalent bits in the input packets. When needed, padding
is introduced to ensure that media packets which belong to the same input

192 FEC-Integrated Network Traffic Shaping

group have equal length. At decoding side, the parity packet can be used
to recover a singly lost or corrupted media packet which contributed to its
construction. This is achieved by XOR-ing the (n − 1) correctly delivered
media packets with the (also perfectly received) parity packet. In case the
packet is corrupted instead of completely lost, the number of introduced bit
errors is irrelevant to the recovery process; as long as all errors are confined
to a single packet per input group, recovery will be perfect.

The choice for a XOR-based parity approach is motivated by the fact that
it exhibits a number of assets and properties that make it very suitable for
incorporation in a middleware system which aims at improving the end-user
experience:

Versatility The scheme exhibits maximal usability as it is a generic technique
that is not bound to a particular media type. In other words, XOR-based
parity coding can be applied to any network flow to protect it against
transmission errors.

Adaptability The information rate and the error recovery capabilities of
this technique are respectively directly and inversely proportional to the
number of media packets which contribute to a single parity packet. As a
result, protection can at run-time be traded for bandwidth consumption
by varying the size of the input packet group. Raising this value leads
to less parity packets being generated and hence a higher information
rate, but at the same time also a declined error recovery performance.
Decreasing the input grouping size has exactly the opposite effect. XOR-
based parity coding is hence an adaptive scheme which supports easy and
on-the-fly configuration of its behavior and operation, for instance based
on currently prevailing channel conditions.

Scalability A certain level of scalability is guaranteed due to the scheme
being lightweight in terms of computational requirements. The necessary
computation is confined to the application of the (lightweight) XOR
operator on a collection of bits.

Standardized Transport RFC 5109 standardizes a Real-Time Protocol (RTP)
payload format for the transportation of XOR-based parity redundancy
[Li 07]. Standardized solutions are preferred over proprietary ones as
they promote interoperability.

Backward Compatibility In case the FEC data is encapsulated and trans-
ported according to RFC 5109, compatibility with FEC-agnostic re-
ceivers is retained. In particular, RFC 5109 defines that the FEC re-

11.3 FEC Integration in the NIProxy 193

dundancy needs to be transmitted as a separate RTP flow; as a result,
the flow which carries the to-be-protected media content itself remains
unmodified. This implies that FEC-incapable hosts can simply discard
the received FEC data and work with the media packets in the state
in which they are delivered (i.e., possibly contaminated by transmission
errors).

The main disadvantage of the parity approach is that it is a relatively band-
width consuming technique. The scheme generates additional packets that
need to be transmitted over the transportation network, which introduces sig-
nificant overhead since each packet requires its own protocol headers. This ef-
fect is further aggravated in case the sizes of the to-be-protected media packets
exhibit high variability, as this imposes the need for extensive padding as well
as increases parity packet volume [Moon 05]. In other words, parity coding is
not the most efficient FEC scheme in terms of information rate.

11.3 FEC Integration in the NIProxy

11.3.1 Stream Hierarchy Incorporation

Like any other FEC technique, parity coding introduces overhead in terms of
redundant data that needs to be transmitted over the communication network.
Since this FEC-generated network traffic might consume significant amounts
of bandwidth, it should be reckoned with by the NIProxy’s network traffic
shaping mechanism. This in turn necessitates its integration in the stream hi-
erarchy. Redundant parity information is therefore represented as a discrete
stream hierarchy leaf node which provides a discrete bandwidth consumption
level for each supported input packet grouping size. The discrete leaf node
in addition defines an extra level which corresponds to a zero bandwidth usage
and hence indicates that parity coding should be disabled. Notice that this
implies that the bandwidth consumption of the discrete level that is associated
with the smallest grouping size determines the redundant FEC data’s maximal
bandwidth requirement.

Merely representing the FEC data does not suffice however, it also needs
to be adequately related to the media stream which it protects since any
bandwidth that is allocated to the FEC information can no longer be consumed
by the media content itself. The objective is hence to split the bandwidth that
has been reserved for FEC-protected traffic among the media data and its FEC
overhead in such a manner that the reception at the destination is optimized.
This process is often referred to as Joint Source-Channel Coding (JSCC) and

194 FEC-Integrated Network Traffic Shaping

its impact on user QoE is apparent. The experimental results that will be
presented in section 11.4 were generated by relying on the Percentage node
type to link a media flow with its FEC protection in the stream hierarchy. This
approach allows straightforward control over the JSCC process via adjustment
of the assigned percentage values. It should be noted however that this solution
might prove to be too coarse and rudimentary to be practically usable in
realistic environments. Investigating the integration of more fine-grained and
advanced JSCC support in the NIProxy is an important topic of future work.

Finally, as the FEC redundancy is rendered useless in case the media data
which it applies to is not received by the destination, a sibling dependency of
type SD BW ALLOC CONSTRAINED is defined between the stream hierarchy nodes
which represent the media and its FEC protection in the stream hierarchy. As
was described in section 4.5, doing so installs the condition that FEC traffic
can consume bandwidth if and only if its associated media flow is currently
enabled.

11.3.2 Implementation

FEC support was not incorporated in the NIProxy as an integral part of its
general software architecture but instead as a NIProxy service. As section
5.1 has explained, the advantage of this design decision is that FEC-related
functionality will only be loaded in case it is effectively needed and that any
issues which it might introduce will be bounded by the service and will hence
not contaminate the NIProxy’s basic operation.

The service accepts as input original media data and supplements it with
redundant parity information. Its exact mode of operation is as follows. First
of all, the service registers interest for the class of network streams which
carry data that is eligible for FEC protection1. Next, on the discovery of each
such network stream, the service performs two initialization tasks. The first
task consists of instantiating a FEC encoder for the newly detected flow, in
this case a XOR-based parity coder. Secondly, as was discussed in section
11.3.1, the service notifies the bandwidth brokering process of the possibility
to FEC protect the media stream as well as the thereby associated bandwidth
requirements. On completion of this initialization phase, the network flow is
finally added to the service’s main processing loop. Each iteration of this loop
starts with the service exploiting its interface with the network traffic shaping

1Recall from the discussion in section 6.2.2 that a NIProxy service is able to control
which data it is handed over by registering interest for certain network stream types or even
individual network flows; only data transported on these streams will be provided to the
service as input.

11.3 FEC Integration in the NIProxy 195

mechanism to determine the discrete level to which the FEC data for the media
flow that is being processed is currently set. The corresponding FEC encoder
is subsequently switched to the input grouping size that is associated with this
level, after which it is fed with the input media packet. In case this packet
completed a protection group, the media packet is output together with the
resulting parity packet. If not, only the media packet is returned as output of
the service. As an exception, in case the currently enabled discrete level of the
FEC stream’s representation in the stream hierarchy corresponds with a zero
bandwidth consumption, FEC processing is bypassed by simply not handing
over the input packet to the parity encoder.

11.3.3 Supporting Additional FEC Techniques

It is important to note that the NIProxy’s FEC support does not need to be
limited to parity-based coding. Other FEC schemes such as the popular Reed-
Solomon (RS) code [Moon 05] could just as well be incorporated. Analogous
to the way parity coding was integrated, this would at least involve

• the introduction of a new FEC encoder in the NIProxy

• adequately representing the network traffic that is generated by the FEC
encoder in the stream hierarchy

• relating the FEC data to the corresponding media content in the stream
hierarchy

Being able to fall back on a catalog of FEC schemes would likely improve
the NIProxy’s performance. The effectiveness of individual FEC approaches
namely tends to vary considerably depending on the features of the media
that needs to be protected as well as environmental factors like the current
characteristics of the data corruption process. In case multiple FEC codes
would be supported, the NIProxy could exploit its contextual awareness to
estimate the beneficial impact of each code on user QoE under the prevailing
conditions. Based on these estimations, the optimal FEC technique could
subsequently be selected. It would even be possible to enable collaboration
between different FEC techniques through concatenation (i.e., applying FEC
coding on an already protected media flow [Moon 05]) in case doing so would
benefit the end-user experience.

196 FEC-Integrated Network Traffic Shaping

Figure 11.1: Network setup for the video streaming case study.

11.4 Evaluation

This section harbors experimental results which will comprehensively demon-
strate the added value of the presence of FEC-based error protection func-
tionality in the NIProxy. In particular, its advantageous influence on the
NIProxy’s QoE optimization capabilities will be evaluated by analyzing the
outcome of a practical experiment that was conducted multiple times, under
varying circumstances. The experiment, which will be described in detail in
section 11.4.1, was deliberately kept simple to channelize the reader’s atten-
tion toward the specific contributions of this chapter and to enable intelligible
distillation of their impact from the produced results. Furthermore, despite
the experiment being minimalist, the presented results are representative since
they can be extrapolated to realistic contexts in a straightforward manner.

11.4.1 Experiment Description and Setup

The experiment simulated a video streaming scenario between a multimedia
server and a receiving client. As is depicted in Figure 11.1, the server was
conceptually deployed inside a high-capacity and relatively error-free network
backbone. The client on the other hand was located at the periphery of the
network and was connected to the backbone through a resource-constrained
access link. In between these two end-hosts, a NIProxy component was in-
terposed which was responsible for engineering the network traffic that was
destined for the client. The objective was hence to determine whether this
client benefited from the inclusion of the NIProxy in the experiment. The
NIProxy instance was conceptually deployed on the boundary between the
backbone and the access network. This location was chosen because it repre-
sents a crucial junction point in the simulated network topology where data
originating from the multimedia server needed to transfer from the resource-
abundant network core to the much less capacitated and possibly error-prone
access network. Recall from section 3.5 that such transitional network loca-

11.4 Evaluation 197

tions are considered to be ideal positions for NIProxy inclusion. Finally, to
be able to emulate packet loss on the client’s access link, the experimental
setup also included an instance of the open-source netem network emulator
[netem 10][Hemminger 05]. The netem framework is included in recent distri-
butions of the GNU/Linux operating system (i.e., distributions with version
number 2.6 and higher) and enables the reproduction of Wide Area Network
(WAN) dynamics by delaying, dropping, duplicating, re-ordering or corrupting
network packets.

Within this experimental setup, the multimedia server maintained two si-
multaneous RTP video sessions with the receiving client, which will be denoted
by VS1 and VS2 in the following discussion. The streaming server emitted
video data in unprotected form (i.e., without FEC information) since the net-
work core was assumed to be nearly error-free. The NIProxy instance however
had its FEC service loaded and was hence able to add XOR-based parity pro-
tection to transiting network traffic. Parity coding could be performed per 3
or per 6 input packets. Recall that resorting to a smaller input grouping size
increases the error recovery possibilities at the expense of elevating the amount
of bandwidth that is required for transporting the parity information. To al-
low for the unambiguous demonstration of the effects of the FEC processing as
well as the bandwidth requirements which it imposed, in the experiment only
video session VS2 was marked as being eligible for receiving FEC protection.
For the comparison with unprotected flow VS1 to be meaningful, an identical
video fragment was streamed in both sessions. Besides the FEC service, the
NIProxy made use of the (inbound) static video transcoding service which
was presented in section 5.3. The NIProxy was consequently able to address
downstream bandwidth shortage on the last mile by reducing the bitrate of
incoming video streams. The quality parameters of the employed video frag-
ment as well as the output settings for the video transcoding service are listed
in Table 11.1.

Figure 11.2 depicts the stream hierarchy which steered the transmission of
the two video flows over the receiving client’s access connection. This stream
hierarchy in other words specified how the downstream bandwidth capacity
that was available on the last mile needed to be distributed over the gener-
ated video traffic. The root node was of type Percentage and had as children
two subtrees which each represented one of the video sessions that existed
between the streaming server and the client. Both subtrees were assigned a
percentage value of 0.5 to specify that the bandwidth capacity of the access
link should at all times be split perfectly fairly over both video connections.
This was again enforced to enable meaningful comparison of the way both
video streams were treated by the NIProxy as well as of their reception at

198 FEC-Integrated Network Traffic Shaping

Table 11.1: Video encoding parameters.

Original Transcoded

Resolution (pixels) 320× 240 176× 144 (QCIF)

Framerate (FPS) 20 15

Bitrate (bps) 100000 60000

Codec H.263+ H.263+

Figure 11.2: Stream hierarchy which directed the shaping of the network traffic
that was destined for the client in the experiment.

client-side. The leftmost subtree corresponded with video session VS1 which
was not qualified for receiving FEC protection from the NIProxy. This subtree
comprised two discrete leaf nodes which respectively represented the Origi-
nal and Transcoded Version (OV and TV) of the transported video fragment
and which were differentiated from each other using an internal node of type
Mutex (see section 5.3.1). Both leaf nodes supported two discrete bandwidth
consumption levels which represented the extremes of respectively obstructing
their associated network stream and forwarding it at its maximal throughput.
An analogous construction can be found in the rightmost subtree, which how-
ever also included a number of additional nodes since it corresponded with

11.4 Evaluation 199

video session VS2 which was potentially subjected to FEC processing by the
NIProxy. The XOR-based parity FEC data was incorporated as a discrete
leaf node which provided three discrete bandwidth levels, one for each sup-
ported input grouping size plus an additional level that was associated with
a zero bandwidth consumption. As was discussed in section 11.3.1, JSCC
was implemented by making the FEC representation a sibling of the quality
grouping Mutex node using a node of type Percentage as parent. In this
experiment, a static JSCC approach was employed where 90 percent of the
available bandwidth was always assigned to the media stream itself, while the
remaining 10 percent was reserved for its parity data. Also observe the sibling
dependency of type SD BW ALLOC CONSTRAINED that was defined between the
quality grouping Mutex and the FEC leaf node.

The just described stream hierarchy was constructed entirely by the client
that was managed by the NIProxy, expect for

• the TV nodes; as section 5.3.1 has explained, these nodes were added to
the stream hierarchy automatically by the NIProxy’s static video trans-
coding service

• the FEC Intermediate and XOR nodes; these were introduced in the
stream hierarchy by the FEC service (see section 11.3.1)

• the SD BW ALLOC CONSTRAINED sibling dependency; analogous to the in-
tegration of the FEC Intermediate and XOR nodes, the FEC service was
responsible for the definition of this dependency between the stream hi-
erarchy representiions of the multimedia content and its FEC protection

The described experiment was executed twice, once without and once with
the netem component introducing packet loss in the access network. During
each experiment execution, all conditions remained constant, with the excep-
tion of the downstream bandwidth capacity of the access link. Artificially
modifying the last mile throughput at predefined points in time enabled the
investigation of the effects of these bandwidth fluctuations on the way the
NIProxy shaped the network traffic that was destined for the managed client.
Five such bandwidth modifications were performed in the course of the ex-
periment, which caused the experiment to be conceptually segmented into six
distinct intervals.

200 FEC-Integrated Network Traffic Shaping

Figure 11.3: Stacked graph illustrating the network traffic received by the
NIProxy-managed client during the error-free execution of the experiment.

11.4.2 Experimental Results

No Packet Loss

The experiment was first executed in an error-free environment to enable com-
plete and perfect tracing of the way the video traffic transited the access net-
work and arrived at the destined client. The outcome is plotted in Figure 11.3.
In this network chart, the solid red line specifies the downstream bandwidth
capacity of the access connection, whereas the dashed vertical lines separate
the consecutive experiment intervals. As can been seen, the interval transitions
occurred at interspaces of approximately 30 seconds and always coincided with
an (artificial) reduction in last mile throughput. Finally, the dashed horizon-
tal lines indicate the bandwidth percentages that were reserved for both video
connections during the different experiment intervals. As each connection was
assigned an equal percentage value in the stream hierarchy, the downstream
bandwidth capacity of the access link was conceptually cut in halve and split
perfectly equitably over both. Notice however that in the case of video session
VS2, the allocated bit budget needed to be distributed over the video data
itself and its FEC protection.

11.4 Evaluation 201

In every experiment interval apart from the first, the NIProxy was forced
to apply network traffic engineering due to access bandwidth being insuffi-
ciently available to inject all involved network streams at their maximal rate
into the last mile. In the third period, for example, the client received VS1
at full quality and the parity coding for VS2 also ran at maximal bandwidth
consumption, but VS2 itself however was transcoded to a lower fidelity by
the NIProxy before it was relayed to the access network. As the experiment
progressed, downstream access bandwidth became gradually more constricted;
consequently, increasing bandwidth reductions needed to be enforced for the
involved network streams, up to the point where FEC coding was even com-
pletely disabled in the last experiment interval.

Also observe from the network trace that diminishing the bandwidth con-
sumption of the media data yielded an equivalent reduction in the bandwidth
requirements of its FEC protection. This is explained by the fact that as data
packets decrease in size, so do the packets carrying parity information.

Finally, the network graph reveals that, perhaps somewhat unexpected,
the available access bandwidth was not always fully exploited. This is most
pronounced in experiment interval 4, where approximately a quarter of the
downstream bandwidth capacity remained unallocated. This behavior was
nonetheless justified since in these situations the NIProxy could not switch
any of the involved network flows to a higher bandwidth consumption level,
either because doing so would violate the current bandwidth constraints or
because they were already operating at their maximal rate.

10 Percent Random Packet Loss

In the second iteration of the experiment, the netem component which was
included in the experimental setup emulated 10 percent packet loss on the
access connection. The netem entity was configured to discard packets ran-
domly (i.e., the packet dropping process did not employ a correlation factor
and hence no particular attempts were made to simulate burst errors). As can
be derived from Table 11.2, the outcome was the loss of video data as well as
FEC protection packets. On the other hand, it also resulted in the FEC data
being put to meaningful use (i.e., to reconstruct lost packets at receiver-side).
Table 11.2 therefore also includes packet recovery statistics for video stream
VS2. It is shown that the redundant parity information enabled the receiving
client to recreate 56.19 percent of the packets that were lost on video session
VS2, this way yielding a residual loss of 92 packets instead of the original 210.

Besides collecting packet loss and recovery statistics, data reception at
client-side was again also recorded. Unsurprisingly, the results perfectly re-

202 FEC-Integrated Network Traffic Shaping

Table 11.2: Packet loss and recovery statistics (10 percent packet loss randomly
introduced on access link).

Experiment Interval Total

1 2 3 4 5 6

Lost

VS1 47 45 52 32 21 27 224

VS2 56 31 38 34 27 24 210

FEC 15 6 11 11 3 0 46

% Lost

VS1 11.03 10.23 11.79 9.07 7.09 9.64 10.02

VS2 12.33 7.11 10.83 11.53 9.12 8.39 9.92

FEC 10.27 6.38 12.09 11.22 4.69 0 9.33

Recovered 40 18 20 22 18 0 118

% Recovered 71.43 58.06 52.63 64.71 66.67 0 56.19

sembled those from Figure 11.3, except for the bandwidth consumption of the
monitored streams this time displaying occasional irregularities (i.e., drops)
which were caused by the loss of packets. As the network trace does not con-
vey extra information compared to 11.3 nor provides any additional insight,
it is omitted from this discussion.

Executing the experiment in an error-free environment yielded perfect
video playback at the destination. This was unfortunately no longer the case
in this iteration of the experiment. Since the access connection now suffered
from packet loss, the destination did not always have all video packets at its
disposal. As a result, decoding issues arose which, as is illustrated in Figure
11.42, in turn caused (sometimes severe) perceptual artifacts to be introduced
in the decoded video. The availability of FEC information for VS2 however

2The video fragment shows two moving balls which are respectively blue- and red-colored.
Due to the simplicity of the scene, visual inconsistencies are immediately and clearly notice-
able.

11.4 Evaluation 203

(a) (b)

Figure 11.4: Two examples of imperfect video playback at client-side caused
by the loss of video packets.

enabled the receiver to repair a substantial fraction of the packets that went
missing on this session. Compared to video stream VS1, the playback of VS2
was hence significantly less distorted since decoding artifacts were much less
pronounced.

11.4.3 Discussion

A number of significant findings can be deduced from the network chart that
is presented in Figure 11.3. First of all, it proves that the NIProxy shaped
the network traffic which was destined for the client in such a manner that
the downstream capacity of the client’s access connection was at all times re-
spected. This is an important achievement since it substantially contributed
to congestion avoidance in the last mile. Stated differently, the NIProxy de-
livered a direct contribution to the access network operating in a stable and
predictable manner (which was for instance exemplified by a low variation in
packet transmission latency). A second observation is that the bandwidth dis-
tribution solution which was delineated for this experiment was successfully
put into effect by the NIProxy, since the available access bandwidth was shared
equitably among the involved video sessions. Either network connection was
only allowed to raise its bandwidth consumption beyond its “fair share” in
case spare bandwidth that was originally reserved for the other connection
was available. This is a direct consequence of the two-phase bandwidth dis-
tribution approach that is implemented by the Percentage node type (see
section 4.2.3) and it resulted in a more complete exploitation of the access
bandwidth capacity. Notice that this observation is not limited to the way

204 FEC-Integrated Network Traffic Shaping

bandwidth was shared among the video connections themselves, but that it
also applied to the JSCC process for the FEC-protected video stream. This
is exemplified in experiment intervals 3 and 4, where the FEC data stream
was initially entitled to a bandwidth percentage that barely sufficed to per-
form parity coding per 6 input packets. As the video data which it protected
however did not fully consume its reserved bit budget, the FEC stream was
able to claim this excess bandwidth and exploited it to switch to a grouping
size of 3 packets. Third, the presented experimental results are an interest-
ing illustration of the potential of supporting interoperation between NIProxy
services and its bandwidth brokering operations. In particular, the network
trace demonstrates that the JSCC process (i.e., the amount of client band-
width that was spent on FEC data) was directed entirely by the NIProxy’s
network traffic shaping mechanism. As a result, the processing that was im-
plemented by the FEC service was at all times in tune with the contrived
bandwidth brokering strategy. Finally, notice that JSCC may result in the
need to reduce the quality of the multimedia data to allow for its FEC protec-
tion flow to be accommodated. In the described experiment, this for instance
occurred in the third interval, where sufficient bandwidth was available to for-
ward video stream VS2 at its maximal rate. However, as its associated FEC
data was entitled to a fraction of this bandwidth volume, VS2 itself needed to
be transcoded to a lower bitrate. In contrast, since video stream VS1 lacked
FEC protection, it was possible for the client to receive VS1 in original qual-
ity during this experiment interval. Remark that all discussed findings also
apply to the second iteration of the experiment, since the NIProxy enforced
an identical traffic engineering policy in both experiment executions.

The discussion thus far has uncovered that FEC-protecting a multimedia
flow does not come for free as it imposes a non-negligible bandwidth over-
head. The bandwidth that is consumed by the redundant information how-
ever enables missing or corrupted data to be repaired at the destination. The
beneficial impact hereof cannot be inferred from the presented network trace
but instead is comprehensively highlighted by the loss and recovery statistics
that are provided in Table 11.2. In the third experiment interval, for instance,
recall that it was necessary to transcode video stream VS2 to a lower bi-
trate so that its FEC protection could be accommodated. Table 11.2 however
demonstrates that the availability of the FEC data in this interval enabled
the receiving client to reconstruct 52.63 percent of VS2’s packets which were
corrupted during their passage through the noisy access network. In contrast,
in the same experiment interval the client received video stream VS1 at orig-
inal quality, but since this stream lacked FEC protection, none of its 52 lost
packets could be recovered. When comparing the playback of VS1 and VS2 on

11.5 Related Work 205

the end-user device, the latter was much smoother and less perceptually de-
graded. It is expected that a lower-quality yet only mildly distorted version of
a video fragment will generally yield a more enjoyable (or, conversely, less frus-
trating) viewing experience than a high-quality video fragment which exhibits
grave visual deformations and/or temporal interruptions that are caused by
unaccounted for transmission errors. This is however a highly subjective mat-
ter about which individual users may hold differing opinions. It is therefore
important to note that, for users which actually prefer distorted high-quality
video to a less distorted lower-quality variant, it is possible to prevent their
destined video traffic from receiving FEC protection from the NIProxy. In
fact, FEC support was incorporated in the NIProxy in a sufficiently flexible
manner so that such decisions can be enforced at an even finer granularity,
namely on a per flow basis. Stated differently, the NIProxy allows for its FEC
behavior to be controlled and configured per individual network flow.

A concluding remark concerns the versatility of the NIProxy’s FEC sup-
port. In particular, by opting for a media-independent parity coding approach,
it is possible for the NIProxy to apply its FEC functionality to arbitrary types
of network traffic. Although the experimental evaluation has focused exclu-
sively on video content, the NIProxy’s FEC support can consequently just as
well be exerted to protect network flows which transport other types of content
against transmission errors.

11.5 Related Work

This chapter has specifically addressed the incorporation of FEC support in
the NIProxy. The books by Moon [Moon 05] and Lin and Costello [Lin 04b]
are both excellent reference works on error correction coding.

An important consequence of FEC-based solutions is the need to perform
Joint Source-Channel Coding (JSCC). Examples of proposed JSCC strate-
gies abound in the literature. For instance, Bolot et al. have presented a
joint rate/error control algorithm for Voice over IP (VoIP) applications which
aims to strike an optimal balance between original and redundant data such
that the subjective audio quality as perceived at the destination is maximized
[Bolot 99]. To FEC protect the voice data, the authors rely on the media-
dependent Redundant Audio Coding (RAC) technique [Moon 05]. Their so-
lution is hence not applicable to media data other than audio. As another
example, Filho et al. have described an adaptive and media-independent FEC
scheme which is based on interleaved XOR-based parity coding [Filho 06]. In
an interleaved approach, multiple to-be-protected media flows and their FEC
redundancy are interwoven to obtain additional error resilience. Their scheme

206 FEC-Integrated Network Traffic Shaping

is steered by a hierarchical model which attempts to predict the packet loss
evolution. In particular, based on estimated future packet loss characteristics,
the interleaving parameters of the FEC scheme are configured to ensure that
the residual packet loss (i.e., the loss after reconstruction at receiver-side) is
minimized. A final example is the algorithm that is proposed by Frossard et al.
for computing the rate distribution between MPEG-2 video data and its FEC
protection [Frossard 01]. The scheme is based on media-independent XOR
parity coding and attempts to minimize the end-to-end perceptual video dis-
tortion by adapting its mode of operation to 3 factors: bandwidth availability,
the complexity of the video scene (which affects source coding) and network
state and performance (e.g., the currently prevailing error conditions).

The just described JSCC approaches apparently outperform the NIProxy’s
FEC support in terms of efficiency as well as sophistication. In this regard, it
is important to note that the work that was presented in this chapter should
be considered as merely an initial attempt at FEC integration in the NIProxy.
This initial attempt is however built on top of a solid foundation, which implies
that the NIProxy’s FEC features and performance can readily be extended and
improved in the future. As an example, any JSCC solution could theoretically
be incorporated in the NIProxy by encapsulating its behavior and mode of
operation in a new type of internal stream hierarchy node. In addition, a
distinctive feature of the NIProxy and hence also its FEC functionality is
the ability to exploit application-related knowledge, a type of context that is
mostly overlooked in FEC-based systems. Finally, keep in mind that, contrary
to the majority of the FEC solutions which are described in the literature, the
NIProxy is a general-purpose user QoE optimization framework of which FEC
coding merely forms one small facet. It is consequently not surprising that
the NIProxy fails to match the performance and functionality of systems that
are specialized in FEC processing.

11.6 Conclusion and Future Work

Multimedia data which is destined for clients of distributed applications might
arrive in corrupted form or could even be partially lost during its propaga-
tion through error-prone transportation networks. The typical outcome is a
deteriorated media presentation at receiver-side, which should be avoided as
much as possible since it is a very likely source of user frustration. Forward
Error Correction (FEC) schemes attempt to remedy this issue by adding re-
dundancy to the transported data to enable receivers to repair compromised
or lost information. Given its potential to negate or at least alleviate the
detrimental effects of data corruption, it has been decided to introduce FEC

11.6 Conclusion and Future Work 207

coding functionality in the NIProxy. This chapter has shown that FEC sup-
port was incorporated in the form of an adaptive XOR-based parity coder
whose operation is directed by the NIProxy’s network traffic shaping mech-
anism. The objective of this integrated approach is to guarantee that the
bandwidth overhead that is introduced by the FEC processing is justifiable
and is adequately weighed against not only the multimedia stream which it
protects, but also any other network traffic that is being exchanged as part of
the distributed application. The FEC inclusion has been practically evaluated
using a video streaming use case. The experimental results have comprehen-
sively corroborated that adaptive FEC support was successfully incorporated
in the NIProxy. Additionally, they have demonstrated that the FEC function-
ality represents a valuable addition to the NIProxy’s feature list to improve
the experience of users of distributed applications.

The incorporation of FEC coding in the NIProxy is still in its infancy. As
a result, although the presented experimental results are already promising
and encouraging, they are only tentative as it is apparent that there is still
room for considerable improvement. Possible future research directions include
extending the NIProxy’s FEC support with techniques other than XOR-based
parity protection (e.g., RS coding) and the introduction of more powerful
and effective JSCC algorithms. Regarding this JSCC topic, a first important
improvement would be to adapt the division of bandwidth among the media
data and its FEC protection to the currently prevailing error characteristics.
Secondly, it might turn out beneficial to design a new type of internal stream
hierarchy node to direct the JSCC instead of relying on an existing type,
as none of these might be capable of efficiently modeling the JSCC process.
Finally, besides performing implementational adjustments, it might also be
interesting to organize user studies to obtain qualitative feedback regarding
the effects of the FEC processing that is performed by the NIProxy on the
user experience.

Chapter 12
End-to-End QoE Optimization Through Overlay Routing

Interoperation

As was already noted in section 3.6, the range of conceivable QoE optimiza-
tion operations is so extensive that it is unrealistic to assume that any single
framework will be able to address them all. Most QoE optimization compo-
nents therefore specialize in a limited number of techniques for user experience
manipulation. Some proposed systems are even entirely devoted to one par-
ticular facet of QoE improvement. The NIProxy is no exception to this rule
since it primarily focuses on network traffic shaping and multimedia service
provision. Although the latter mechanism ensures a certain degree of extensi-
bility in terms of supported functionality, as a stand-alone entity the NIProxy
will never be able to solve all possible QoE issues (or at least not as optimal
or efficient as specialized systems).

A potential solution to this problem is collaboration between individ-
ual frameworks. By combining multiple QoE management components, it
becomes possible to tackle a larger set of QoE issues. Moreover, an inte-
grated solution might unlock additional QoE enhancement options that are
not achievable when applying the constituting components separately (i.e.,
the whole is often greater than the sum of its parts). This chapter will dis-

210 E2E QoE Through Overlay Routing Interoperation

cuss such an integrated platform in which the NIProxy is combined with a
resilient overlay routing service to enable (near) end-to-end QoE optimization
[De Vleeschauwer 08b][Wijnants 10]. The two-layer architecture exploits its
routing functionality to enhance data dissemination in the network backbone
by improving the backbone’s resilience to issues like failing or congested links.
The incorporated NIProxy instances on the other hand are deployed close to
end-users, where their provided traffic engineering tools are exploited to con-
trol and direct the delivery of data over the last mile of the network connection.
Through the presentation of experimental results, it will be demonstrated that
the proposed architecture covers nearly the entire end-to-end data exchange
path and succeeds in maintaining a high QoE despite routing issues in the
network core and/or resource restrictions in the access network.

The overlay routing functionality that is included in the proposed plat-
form has been developed at the INTEC Broadband Communication Networks
(IBCN) research group of Ghent University. The work that will be described
in this chapter hence represents a joint research effort on the topic of QoE
optimization that combines expertise from Hasselt University and Ghent Uni-
versity.

12.1 Introduction

In recent years, a popularization of the networked access of multimedia ap-
plications has occurred. Compared to traditional services like file transfer
and e-mail, these distributed applications impose much stricter requirements
on the telecommunications network in terms of packet loss, delay variation,
throughput guarantees, and so on. For instance, interactive applications such
as Voice over IP (VoIP) and online gaming demand a low delay to guaran-
tee a fluid operation. As another example, data corruption and packet loss
negatively impact video conferencing and IPTV services since it will rapidly
degrade playback at receiver-side due to the introduction of perceptual distor-
tions. Complicating matters even further is the fact that, due to the recent
trend towards mobile computing, service providers are increasingly targeting
not only fixed but also mobile customers. Since the capabilities of fixed termi-
nals and wired networks diverge significantly from those of their mobile and
wireless counterparts, a highly heterogeneous usage environment is yielded.
This diversity in turn results in growing dependability as well as adaptation
requirements for distributed applications.

Empirical evidence has proven that current generation networks, and the
Internet in particular, are not always capable of guaranteeing that the require-
ments which are imposed by multimedia services are satisfied. Failure to meet

12.1 Introduction 211

these requirements is likely to give rise to disruptions in application quality
and can have several causes; some examples are enumerated below:

Suboptimal Routing The Internet provides only best-effort routing, which
implies that no guarantees are given regarding the level of service that
will be experienced by network packets. In particular, the standard rout-
ing protocols of the Internet focus on producing paths with a minimal
number of intermediate hops, hereby disregarding the delay, throughput
and packet loss characteristics of the individual links which constitute
the constructed route. As a result, routing in the Internet might fail to
find the optimal path between two end-points (i.e., the path with the
highest performance and quality parameters).

AS Graph Issues The Internet corresponds to a composition of several Au-
tonomous Systems (ASs). Each AS represents a stand-alone adminis-
trative domain in which every router adheres to a single, clearly defined
routing policy. To achieve inter-AS routing, the Internet maintains an
AS graph. Empirical evidence indicates that whenever a problem oc-
curs in this graph, the routers may take considerable time to find a
workaround, resulting in periods of connectivity loss that can even be in
the order of minutes [Feamster 03].

Constrained Last Mile Bandwidth The access part of a client’s network
connection is another possible source of complications, as it likely forms
the bandwidth bottleneck in an end-to-end path between communicating
hosts. In particular, compared to the typically over-provisioned network
core, the last mile connection is much less capacitated. As a result,
insufficient (downstream) access bandwidth may be available to support
all the client’s active services (or even to receive all content that is being
exchanged as part of a single multimedia service). An overwhelmed
access connection will generally give rise to congestion and hence also
an increase in packet loss and delay in case adequate techniques for the
adaptation and engineering of network traffic are lacking.

These observations argue that current networks frequently fail to provide
customers of distributed multimedia applications with an acceptable usage
experience and that complications might be introduced anywhere along the
network path between the communicating end-points. This chapter will there-
fore describe a two-tier platform which integrates the NIProxy with a resilient
overlay routing service to achieve near end-to-end user QoE optimization. As
such, this chapter will implicitly prove the NIProxy’s ability to interface and
collaborate with other QoE optimization systems.

212 E2E QoE Through Overlay Routing Interoperation

12.2 Proposed Two-Tier Platform

This section will present the proposed two-tier QoE optimization architecture.
First, an overall view of the platform will be provided and its constituting ele-
ment types will be briefly enumerated. The next two subsections are devoted
to a profound discussion of the responsibilities and modus operandi of both
tiers. Finally, remarks regarding the degree of coverage of the end-to-end IP
path between communicating hosts will be presented.

It is again repeated that the network architecture has been implemented
in collaboration with Ghent University. In particular, the tier-1 functionality
and component types stem from research on overlay routing that has been
conducted at Ghent University.

12.2.1 Overview

The QoE enhancement platform attends to the separation of concerns paradigm
and as such comprises three distinct types of components. The encompassed
component types each have well-delineated responsibilities and are deployed
at strategic locations in the Internet topology to enable (near) end-to-end QoE
optimization:

Overlay Servers (OSs) Implement an overlay network on top of the net-
work backbone. They act as overlay-layer routers in the proposed QoE
architecture and as such provide a resilient and reliable packet rout-
ing infrastructure. In particular, the Overlay Servers enable the QoE
platform to evade issues in the network core by routing packets around
problematic backbone links.

Overlay Access Components (OACs) Regulate the (transparent) access
to the overlay routing infrastructure that is provided by the Overlay
Servers. In particular, they are responsible for determining, giving cur-
rent environmental conditions, whether network packets would benefit
from overlay routing. Contrary to the Overlay Servers, Overlay Ac-
cess Components are deployed in close proximity to the application end-
points, possibly even on the end-user device.

NIProxy instances These are introduced at the periphery of the network,
where their traffic engineering functionality is exploited to execute QoE
improving operations before the network traffic reaches the last mile of
the network connection.

12.2 Proposed Two-Tier Platform 213

Figure 12.1: Architectural overview of the integrated QoE optimization plat-
form.

Combined, the first two component types implement a robust overlay rout-
ing service in the network core and consequently constitute the first tier of the
proposed QoE optimization architecture. The essential function of this layer
is to offer a alternative route in case the direct IP connection is experienc-
ing inferior performance. The second tier of the distributed architecture is
formed by the NIProxy instances, which are responsible for addressing possi-
ble QoE optimization requirements that are imposed by the access part of the
downstream content delivery path.

A schematic summary of the proposed end-to-end platform is depicted in
Figure 12.1. For reasons of compactness, Overlay Access Components are de-
noted by AC instead of OAC. This approach will be adopted in all subsequent
illustrations in this chapter.

214 E2E QoE Through Overlay Routing Interoperation

Figure 12.2: Overlay header format [De Vleeschauwer 08b].

12.2.2 Tier-1 Functionality and Constituting Component Types

Overlay Server

The Overlay Server (OS) components are incorporated in several Au-
tonomous Systems in the IP backbone and organize into an overlay network
[De Vleeschauwer 10, De Vleeschauwer 08a]. They maintain overlay routing
tables which map target OS IP addresses to the next hop OS IP address. As
is illustrated in Figure 12.2, an overlay packet encompasses a dedicated overlay
header, which is introduced between the UDP header and the packet payload.
When such a packet is received by an Overlay Server, it extracts the target
OS address from the header and consults its routing table to determine the
next overlay hop IP address, after which the packet is relayed to this next hop.
In addition to information on the target Overlay Server, the overlay header
contains a field which specifies the IP address of the Overlay Access Compo-
nent that the packet needs to be delivered to as well as a field for the type of
QoS which the packet expects. The latter allows for the specification of the
treatment that a specific packet should receive. For instance, some services
may be very delay-sensitive (e.g., VoIP), while others are highly intolerant to
packet loss (e.g., streaming video). When the final Overlay Server receives the
packet, it will forward it to the targeted Overlay Access Component, which in
turn will make sure that the packet will be delivered to the destined client (as
will be clarified later on).

The Overlay Servers maintain an overlay topology which contains infor-
mation regarding the connectivity between pairs of Overlay Servers. OS inter-
connection quality is analyzed and estimated through active network probing.
In particular, the OSs periodically exchange ICMP echo messages with their
neighbors in the overlay topology. Based on the outcome of this probing, the
quality of the overlay edges is determined and values for delay and packet
loss are deduced. This information is disseminated among Overlay Servers to
make sure that they all share an identical view on the connectivity in the en-
tire overlay network. The accumulated topological knowledge is subsequently
leveraged by the OSs to calculate their overlay routing tables. When a prob-
lem is detected in the topology, the overlay routing tables will be updated
correspondingly, which in turn will cause the OSs to introduce one or more in-

12.2 Proposed Two-Tier Platform 215

Figure 12.3: Overlay Server software architecture [De Vleeschauwer 08a].

termediate overlay hops so that packets will be relayed around the problematic
parts of the network.

As can be deduced from Figure 12.3, the software architecture of
the overlay routing server encompasses two separate yet interacting levels
[De Vleeschauwer 08a]. The control plane maintains the overlay topology and
overlay routing tables. In addition, it coordinates the monitoring of the overlay
edges and performs overlay management tasks (e.g., undertaking the necessary
actions when new Overlay Servers are added to the network). The data plane
on the other hand is responsible for actual packet handling and for forwarding
packets to the next hop. By decoupling the control plane from the data plane,
it becomes possible to adjust the operation of one plane without impacting the
other. The implementation of the data plane is based on Java UDP sockets
and draws from the Click modular router software [Kohler 00].

Overlay Access Component

The Overlay Access Component (OAC) entities monitor the direct end-to-
end IP path between pairs of communicating hosts and enable applications
to access the overlay routing service that is provided by the Overlay Servers
[De Vleeschauwer 10][De Vleeschauwer 08a]. Each end-point of a connection
is associated with a single OAC. The OAC needs to be deployed on or close to
the actual end-device. For instance, an OAC could be installed on a residen-
tial gateway or could take advantage of the recent evolution of the access node
towards an intelligent platform with the ability to host a variety of services
[Gilon - de Lumley 07]. The OAC detects when a new connection becomes

216 E2E QoE Through Overlay Routing Interoperation

active and is responsible for deciding whether packets belonging to this con-
nection should follow the direct IP route or instead should be pushed to an
OS for overlay dissemination. The overlay route will only be exploited in case
the direct path exhibits inadequate QoS parameters. This policy is enforced
to prevent needless encumbrance of overlay resources.

QoS issues on the direct IP path are again detected through active net-
work probing. However, the connection quality could also be inferred through
passive monitoring and by exploiting knowledge about the transport protocol.
For instance, by sniffing packets of TCP- or RTP/RTCP-based services on an
intermediate network node, it might be possible to deduce connection quality
parameters [De Vleeschauwer 07b][Simoens 07]. As soon as a QoS problem
such as packet loss, high delay or even disconnection is observed on the IP
route, the OAC will start inserting an overlay header in the packets which be-
long to the affected connection and will push the modified packets to a nearby
Overlay Server. This Overlay Server will subsequently deliver the packets to
the OAC which is located close to the destination of the connection via an
overlay route with higher QoS properties (i.e., by exploiting a number of in-
termediate overlay hops). As a final step, the target OAC will remove the
overlay header from the received packets and will subsequently transmit them
to their actual destination. In this way, the connectivity between source and
sink is preserved, while access to the overlay network is abstracted and re-
mains transparent to the benefiting application. The availability of the OACs
in other words eliminates the necessity to modify the application software and
hence makes it possible for legacy applications to also profit from the overlay
routing service.

The different tasks that are involved in the operation of the OAC element
can be enumerated as follows:

• Each OAC maintains a connection to one or possibly multiple Over-
lay Server instances, preferably ones which are situated nearby in the
network topology. The OAC will forward all network packets which it
intercepts from a source and which should receive overlay routing treat-
ment to one of these OSs.

• As soon as the OAC detects that a monitored source starts communi-
cating with another IP host, it will establish whether the remote party
is also subscribed to the overlay routing service. If this is the case, the
OAC will instantiate a probing thread that will periodically examine the
QoS performance of the direct IP route to the OAC at destination-side.
Based on the probing outcomes, the OAC is able to analyze the con-
nectivity between source and destination and to maintain values for the

12.2 Proposed Two-Tier Platform 217

delay and the packet loss that is occurring on the end-to-end IP path.

• In case the QoS parameters of a connection drop below a configurable
threshold, the OAC will conclude that the connection could benefit from
overlay treatment. As a result, any subsequent packets which belong
to this connection will be encapsulated in an overlay packet and will be
pushed to the overlay network, which will deliver it to the OAC that is
associated with the destined host. The overlay header will be filled in
so that its last OS field specifies the IP address of the Overlay Server to
which the destination OAC is connected, while the field for the access
component will be completed with the IP address of this remote OAC
itself.

• On the reception of an overlay packet, an OAC will first perform decap-
sulation by removing the overlay header and will then forward the packet
further to its final destination, as if no overlay handling had occurred.

• When the connection between a particular pair of hosts becomes inac-
tive, this will be discovered via a time-out. The OAC will respond to
such an event by suspending the QoS probing thread for the terminated
connection and by purging the route from its connection table.

The software architecture of the Overlay Access Component is depicted in
Figure 12.4. The (prototype) OAC implementation runs on the GNU/Linux
operating system and makes use of the netfilter framework [Netfilter 10] to in-
tercept packets and to reinsert them in the network. It also comprises modules
to take care of the active monitoring of individual connections as well as the
detection of new connections that are potential candidates for overlay dissemi-
nation. Finally, a management component is also present which is responsible
for selecting the Overlay Server to which the OAC will forward intercepted
packets in case they require overlay routing. Performance testing has shown
that on commodity desktop hardware (i.e., a 2 MHz AMD Opteron 2212 pro-
cessor) a total of more than 40000 packets per second could be handled for
packets of size 256 bytes, which corresponds to a processing bandwidth that
exceeds 80 Megabits per second (Mbps) [De Vleeschauwer 10]. For a packet
size of 1460 bytes, a bandwidth of more than 500 Mbps was achieved.

Because it is possible to locate the OAC on the client device or on ex-
isting hardware such as residential gateways and access nodes, the econom-
ical cost of deploying this component type can be quite low. For instance,
due to the recent trend towards providing more intelligence in the network
[Gilon - de Lumley 07], no essential hardware modifications are required to

218 E2E QoE Through Overlay Routing Interoperation

Figure 12.4: Overlay Access Component software architecture
[De Vleeschauwer 08a].

the hosting equipment; instead, it suffices to develop new services for the
access node’s service platform which provide the OAC functionality.

Overlay Routing Exemplification

To clarify the tier-1 operation, consider the example scenario which is depicted
in Figure 12.5. The simulated network topology consists of several ASs and
includes 4 Overlay Servers, 2 Overlay Access Components and 2 hosts which
are engaged in a real-time communication session. Both the routing tables
of the Overlay Servers and the routing information that is maintained by the
OACs are shown. The former relate target OS to next hop OS, while the latter
maps destination IP address to OS and OAC at the remote site. At some
point, an IP edge that is part of the direct route between Overlay Servers
OS1 and OS4 starts exhibiting a degraded performance (e.g., it is suffering
from congestion). This anomaly is responded to by the Overlay Servers by
adjusting their routing tables accordingly. In particular, the routing table of
OS1 now indicates that packets which are destined for OS4 should no longer
follow the direct overlay link but instead need to be propagated to OS3 (see
Figure 12.5). A similar entry can be found in OS4’s routing table.

As the erratic edge lies on the direct IP path between the end-hosts, their
communication session is impacted by the malfunction. The OACs which are

12.2 Proposed Two-Tier Platform 219

Figure 12.5: Illustrative overlay routing scenario.

associated with both clients will therefore start pushing host-emitted network
traffic to the overlay network. The Overlay Servers will in turn disseminate
the provided data via the optimal overlay path (i.e., in accordance with their
routing table). In particular, the Overlay Servers will make sure that the
failing IP link is circumvented by relaying network traffic between OS1 and
OS4 through OS3 as an intermediate hop.

220 E2E QoE Through Overlay Routing Interoperation

12.2.3 Tier-2 Functionality

The second layer of the platform is composed solely of NIProxy instances
and hence requires little elaboration. The NIProxy components are deployed
at the edge of the network (where they could for instance coincide with an
OAC) and deliberately manage the delivery of content and data over the last
mile connection of the destined host. In other words, tier-2 of the proposed
architecture exploits the contextual knowledge and the dual network traffic
engineering functionality of its constituting NIProxy instances to optimize the
downstream transmission of content in the access network.

12.2.4 End-to-End Path Coverage

By integrating multiple types of QoE optimization entities, the proposed lay-
ered platform effectively combines their specific features and functionality. As
a result, a synergy is achieved. In this particular case, the main advantage
of the integrated approach is an extended coverage of the end-to-end IP path
between pairs of communicating hosts. The tier-1 components focus on the
network core and improve its routing performance in the event of disconnec-
tions or inconsistently performing IP links. At the same time, the second layer
of the architecture concentrates on the last mile of the downstream content
delivery path and addresses potential QoE optimization requirements that
are introduced by the resource-constrained nature of this part of the network
connection.

In case the content provider is deployed inside the network backbone, the
proposed two-tier QoE optimization platform will cover the complete end-to-
end route from source to sink. This scenario will for instance arise when a
residential user accesses a multimedia streaming server. In case both end-
points of a network connection are however located inside an access network,
the initial upstream part of the communication route will not be covered. More
specifically, the transmission of data over the source’s access connection will
lack optimization. Only once the data reaches the boundary of the network
core, the remainder of the data dissemination path will be managed by the
proposed platform with the aim to improve the QoE that is witnessed by
the destined user. In such environments, the proposed platform hence only
achieves near end-to-end QoE optimization.

12.3 Evaluation 221

Figure 12.6: The testbed used for experimental evaluation.

12.3 Evaluation

12.3.1 Evaluation Testbed

To practically assess whether the integrated platform enables fruitful collab-
oration between its composing component types, a physical testbed was set
up. The network topology that was emulated by this testbed is displayed in
Figure 12.6. The testbed consisted of 8 off-the-shelf desktop PCs which all ran
the GNU/Linux operating system. On these machines, three Overlay Servers,
two Overlay Access Components, a NIProxy instance (PRO), a multimedia
streaming server (S) and a client (CL) were installed. The NIProxy instance
was logically positioned on the transition point where the client’s access link
connected to the network core and hence fulfilled the role of access node.
The OAC instances were deployed on the hardware which hosted the NIProxy
and the multimedia server. To be able to influence the performance of the
emulated network topology, the testbed in addition included two impairment
nodes which were based on Click technology [Kohler 00]. The first Click node
artificially introduced random packet loss to simulate failing or malfunction-
ing links in the backbone of the network. In particular, one of the IP edges
between OS2 and OS3 was subjected to an average packet loss rate of 10 per-
cent. The second Click node on the other hand allowed the throughput of the
last mile of the client’s network connection to be manipulated.

222 E2E QoE Through Overlay Routing Interoperation

Figure 12.7: Packet loss ratio witnessed on the route between the multimedia
streaming server and the NIProxy instance, with and without overlay routing.

12.3.2 Experimental Results

Using the just described evaluation testbed, an experiment was conducted
which involved the multimedia server simultaneously streaming 4 video frag-
ments to the client machine. Each fragment was transmitted over a separate
connection. The objective of the experiment consisted of ascertaining whether
the composite platform succeeded in addressing the packet loss in the network
core and whether it was at the same time able to adequately react to the
throughput restrictions that were imposed by the last mile.

Mitigating Network Core Impairments

Figure 12.7 plots the packet loss ratio per second that was experienced in
the network core during a 50 second time period, with and without overlay
routing. Since the shortest route from server to client included the impaired
IP link, the standard routing service propagated the video data through the
lossy part of the network backbone. As can be deducted from the graph, the
outcome was the loss of a considerable amount of network packets. At the
destination, this packet loss in the network core yielded video decoding issues,
which in turn led to the introduction of perceptual inconsistencies during the
playback of the received video data. It is intuitively evident that visually

12.3 Evaluation 223

distorted video playback intrinsically entails a detrimental impact on the QoE
of the viewing user.

The graph in Figure 12.7 reveals that, in case overlay routing was exploited,
the packet loss in the network backbone was completely eliminated. The
overlay infrastructure automatically detected the packet loss issue on the direct
path between source and destination and, in response, offered a backup route
which exhibited superior QoS characteristics (i.e., an overlay route which was
not affected by packet loss). This is confirmed by the table in Figure 12.7,
which displays the overlay link usage statistics during the 50 second experiment
interval. In particular, the table clearly indicates that the direct overlay edge
between OS2 and OS3 was evaded; instead, the server-to-client network traffic
was consistently routed through OS1 as an intermediate overlay hop.

Last Mile QoE Optimization

By optimizing the network backbone’s routing performance, the Overlay Servers
and Overlay Access Components succeeded in reliably delivering the video
packets to the NIProxy instance that was incorporated in the testbed. At this
stage, the second tier of the proposed QoE optimization platform came into
action to direct the transmission of the video packets over the last mile of the
client’s network connection. Due to varying last mile conditions and altering
user focus, this part of the experiment conceptually consisted of a succession of
5 discrete intervals. In particular, the transitions from the first to the second
and from the fourth to the final interval were initiated by a modification of
the available downstream access bandwidth. These throughput fluctuations
were applied by the Click node that was incorporated in the access part of the
emulated network topology. The remaining interval transitions were caused
by user-initiated shifts in stream importance1. The last mile bandwidth al-
terations were automatically discovered by the NIProxy thanks to its network
awareness. In contrast, the relative video importance knowledge was propa-
gated to the NIProxy instance by the client software in the form of application
awareness.

Figure 12.8 depicts the stream hierarchy which steered the last mile con-
tent streaming. As can be seen, an internal node of the Priority type was
used to discriminate between the 4 involved video flows. In the illustration, the
priority values that were assigned to the different video sessions are grouped
horizontally per experiment interval(s). These values were calculated so that
they directly reflected the user’s input regarding relative stream significance.

1In the experiment, users could specify video stream preference through the GUI of the
client software.

224 E2E QoE Through Overlay Routing Interoperation

Figure 12.8: Stream hierarchy based on which the NIProxy managed client
downstream bandwidth.

Also note that each video flow was incorporated in the stream hierarchy as
a subtree instead of a single leaf node. This is explained by the fact that
the NIProxy leveraged its (inbound) static video transcoding service during
the experiment. As has been described in section 5.3.1, each individual video
flow was therefore represented by two discrete leaf nodes, of which one cor-
responded to the Original Version (OV) of the video stream (i.e., the video
fragment as it was emitted by the streaming server), whereas the other was
associated with the stream’s Transcoded Version (TV) (i.e., the lower-quality
variant that was generated by the static video transcoding service). Both
video qualities were grouped together using an internal node of type Mutex to
guarantee that at all times at most a single quality variant would be assigned
bandwidth.

The network trace depicted in Figure 12.9 illustrates the downstream ac-
cess bandwidth allocation that was enforced by the NIProxy during the exper-
iment. In this stacked graph, the dashed vertical lines separate the consecutive
experiment intervals, while the red horizontal line indicates the downstream
bandwidth capacity of the client’s access link. The trace first of all indicates
that the downstream last mile throughput was neatly respected throughout
the test. This result can be attributed to the NIProxy’s network awareness
and the outcome was an optimal reception of the forwarded traffic at client-
side. Stated differently, the video data that was actually streamed over the
last mile connection was received by the client under ideal circumstances (i.e.,
with minimal delay and packet loss). A second important observation is the in-
fluence of the NIProxy’s application awareness on the network traffic shaping
outcome. By mapping relative video flow importance to node priority val-

12.3 Evaluation 225

Figure 12.9: Stacked graph illustrating all video traffic received by the client.

ues, application-related information was successfully captured in the client’s
stream hierarchy. This in turn resulted in the bitrate of the least important
video streams being reduced (by transcoding them to a lower quality) to pre-
serve downstream access bandwidth for the forwarding of more relevant video
flows. At any time during the experiment, the client consequently received
the video traffic which it considered most significant at that moment at the
highest possible quality. Both achievements are intuitively expected to have
had a beneficial influence on the QoE that was provided to the end-user.

12.3.3 Discussion

The experimental results confirm that the resilient overlay routing service
and the NIProxy’s functionality were successfully combined in a layered QoE
optimization platform. It has also been established that the platform’s consti-
tuting entities focus on different aspects with regard to user QoE optimization
and as such neatly complement each other. In particular, the findings from
the video streaming case study demonstrate that

• its overlay routing infrastructure enables the platform to relay network
packets around links in the network backbone which (temporarily) ex-
hibit low QoS properties (e.g., which are suffering from packet loss)

• the incorporated NIProxy instances enable the optimization of last mile

226 E2E QoE Through Overlay Routing Interoperation

content delivery; in the presented experiment for example, the NIProxy
prevented the destined client’s access network connection from being
overwhelmed with data on the basis of its network awareness, while it
exerted its application-related context to enforce an intelligent allocation
of the downstream bandwidth that was actually available

Due to the complementarity of the proposed architecture’s composing element
types, a synergistic solution is yielded. More specifically, the video streaming
case study illustrates that, in case the content origin is located inside the
network backbone, the two-tier platform achieves complete coverage of the
end-to-end network route from source to sink and is hence able to mitigate
network-related problems that might arise anywhere along this path. The
expected outcome is an improved QoE for the end-user: although no formal
qualitative user inquiries were conducted, the results that were attained in the
discussed experiment are very likely to have had a beneficial impact on user
QoE.

12.4 Related Work

In previous research, the usage of overlay network technology for enhanc-
ing packet routing has already been looked at. The Resilient Overlay Net-
work (RON) project describes a system for routing around network failures
in which all involved parties are required to deploy an overlay routing server
[Andersen 01]. The main difference with the overlay infrastructure of the
two-tier platform that has been presented in this chapter is that the avail-
ability of the Overlay Access Component type relieves end-users from the
necessity to host overlay routing servers themselves. This results in a more
scalable solution than the RON methodology, whose applicability is limited
to relatively small-scale overlay domains (i.e., environments which consist of
about 50 distributed sites at most). De Vleeschauwer et al. have discussed in
[De Vleeschauwer 04] a number of algorithms for determining optimal deploy-
ment locations for overlay routing servers. In [De Vleeschauwer 06], they in
addition have introduced algorithms for the management of the overlay topol-
ogy. Overlay technology can also be exploited to provide an overlay multicast
service in case no native (i.e., network-layer) multicast support is available. In
this context, De Vleeschauwer et al. have proposed an algorithm for solving the
bounded diameter minimal cost Steiner tree problem [De Vleeschauwer 07a].

The composite platform which this chapter has introduced aims to improve
the end-to-end QoS performance of transportation networks. As has already
been established in section 2.1, frameworks for QoS provision abound in the

12.5 Conclusions and Future Work 227

literature. However, while these approaches uniformly support QoS provision
in a single domain, only a minority is able to offer a full end-to-end solution.
Typical impediments include scalability concerns and the severe cost that is
associated with the requirement of implementing the proposed technologies
in all the Autonomous Systems of the Internet. Furthermore, the problem of
defining and enforcing Service Level Agreements (SLAs) between individual
ASs has not yet been adequately solved either. In contrast, the proposed
layered architecture is readily deployable in the Internet (and other IP-based
networking substrates), at minimal cost and effort. The platform in addition
does not restrict itself to QoS provision but instead addresses the larger issue
of end-user QoE optimization.

12.5 Conclusions and Future Work

Accessing multimedia services via fixed and wireless networks has become
common practice. Compared to traditional Internet applications such as web
browsing, these services are much less tolerant to network anomalies like packet
loss, bandwidth restrictions, congestion, delay and jitter. Such network com-
plications can occur at arbitrary locations along the content dissemination
path and are likely to significantly deteriorate the QoE that is perceived by
the user of the multimedia service. This chapter has therefore proposed a
two-tier platform which consists of QoE optimization components in the net-
work core as well as at the edge. Thanks to its integrated design, the network
architecture is able to implement (near) end-to-end user QoE optimization;
only the upstream access segment of an end-to-end network route (if present)
is not covered. Tier-1 of the platform is composed of overlay routing entities
whose functionality achieves an optimization of the default routing service in
the network backbone. In particular, through deliberate packet rerouting, this
component layer enhances robustness to QoS and connectivity issues, which
could for instance be caused by network congestion. Tier-2 of the platform en-
compasses NIProxy instances and is responsible for fine-tuning network traffic
to the resource capacity of the access network connection of the destination.
The NIProxy components in other words exploit their network traffic shaping
and multimedia service provision tools to regulate the last mile data delivery
in such a manner that the receiving user’s QoE is optimized. Using a physical
testbed, a WAN video streaming case study between a multimedia server and
a receiving client has been conducted. The produced experimental results have
corroborated that the proposed platform succeeds in maintaining a high user
QoE when the network core experiences packet loss as well as in the event of
access link bandwidth restrictions.

228 E2E QoE Through Overlay Routing Interoperation

The work that has been presented in this chapter is important as it has
demonstrated the possibility to fruitfully merge the NIProxy’s functionality
with the capabilities of other, independent QoE enhancement frameworks. In
this particular case, the collaboration resulted in a more complete coverage, in
terms of QoE monitoring and optimization, of the end-to-end route between
content source and sink. Although this is already a significant achievement,
the proposed distributed architecture is still susceptible to improvements, ex-
tensions and future research. A first topic of potential future work is scala-
bility investigation. The platform is expected to scale since the inclusion of
additional instances of its constituting component types (i.e., Overlay Server,
Overlay Access Component and NIProxy) will normally result in a capac-
ity increase. Actual scalability testing is however yet to be performed and the
number of users that can be supported by a single instance of each of the com-
posing component types has not yet been determined. Secondly, the platform
could be extended with service hosting and resource discovery mechanisms.
Third, it might be interesting to exploit the possibility to apply the NIProxy’s
network traffic shaping and multimedia service provision functionality not only
in the downstream but also the upstream direction and to examine the impli-
cations hereof on the platform’s QoE optimization options. Finally, organizing
user studies might yield valuable qualitative feedback regarding the user QoE
optimization operations that are executed by the integrated platform.

Chapter 13
Increasing Bandwidth Brokering Flexibility via Dynamic Video

Transcoding Support

In all prior case studies that involved the real-time exchange of video data, the
NIProxy’s static video transcoding service has been exploited. To recapitulate,
this service enables the NIProxy to on-the-fly transcode H.263-encoded video
streams to a lower quality and hence to reduce their bandwidth requirements.
As was discussed in section 5.3, the video transcoding service is labeled static
because the desired transcoding parameters need to be specified on service
instantiation and cannot be modified at run-time. All bitstreams that are
produced by a particular instance of the video transcoding service will hence
exhibit identical quality characteristics.

Previously presented experimental results have clearly exemplified the static
video transcoding service’s added value. In particular, the service provides
the NIProxy with additional latitude when performing network traffic shap-
ing. Thanks to the existence of the service, additional bandwidth brokering
options are unlocked since it for instance allows for the bitrate of specific video
flows to be reduced so that bandwidth is conserved for the dissemination of
more important network traffic. Similarly, the service enables the NIProxy
to produce network traffic shaping results in which the distributable band-

230 Increasing NTS Flexibility via Dynamic Video Transcoding

width is consumed more completely (i.e., a smaller portion of the available
capacity remains unallocated). As a final advantage, the service under certain
circumstances prevents the NIProxy from being forced to completely discard
individual video streams. In particular, during times of bandwidth deficiency,
the video transcoding service unlocks the possibility to forward a lower-quality
video version which, contrary to the original stream, might still fit in the cur-
rent bit budget. In terms of user QoE, receiving a lower-quality variant of a
video stream is often preferred to receiving nothing at all.

To summarize, an important contribution of the static video transcoding
service is that it introduces a certain amount of flexibility in the network traffic
shaping process. This flexibility is however constrained by the service’s static
nature. Requiring the video transcoding configuration to be fixed during ser-
vice execution inherently yields rigidity. This chapter will therefore present
a novel plug-in for the NIProxy that supports dynamic video bitrate adap-
tation [Wijnants 08c][Wijnants 10]. Contrary to its static counterpart, the
dynamic video transcoding service is targeted at H.264/AVC-encoded video
bistreams. This is motivated by the fact that the H.264/AVC specification is
more elaborate than its H.263 predecessor and incorporates additional options
for fine-scale bitrate modification. Another advantage of the H.264/AVC stan-
dard is that it achieves a much higher coding efficiency: for equivalent quality
settings, a H.264/AVC encoder will economize approximately half the bitrate
compared to H.263. It will be shown that, by leveraging these additional
features and benefits, the proposed NIProxy plug-in succeeds in transforming
video flows to an arbitrary bitrate in real-time. To corroborate this claim,
representative experimental results will be provided that were realized in the
context of the two-tier QoE optimization platform which has been described
in chapter 12. The experimental findings will also illustrate that bundling the
NIProxy’s network traffic shaping functionality with the novel H.264/AVC
transcoding module enables highly dynamic and flexible bandwidth brokering
results to be generated. In other words, it will be validated that the avail-
ability of the H.264/AVC service considerably extends the QoE optimization
features and effectiveness of the NIProxy and hence, through extrapolation,
of the two-tier platform.

This chapter describes the continuation of the research collaboration be-
tween Hasselt University and Ghent University that had previously resulted
in the realization of the integrated QoE optimization architecture (see chap-
ter 12). In particular, the H.264/AVC video transcoding technology that will
be leveraged in this chapter has been developed at the Multimedia Lab (MM-
Lab) research group of Ghent University. It will be shown that this technology
could easily be incorporated in the QoE optimization platform in the form of

13.1 Background 231

a plug-in for the NIProxy. Note that this implies that the results that will
be presented in this chapter were achieved without requiring any modifica-
tion to the design or implementation of the integrated platform or any of its
constituting component types.

13.1 Background

As video is presumably the most challenging type of multimedia traffic, espe-
cially in terms of throughput demands, the ability to alter the bitrate of video
data plays an essential role in an architecture that aims to deliver end-to-end
QoE. Many different approaches exist to actively modify the bandwidth re-
quirements of a coded video fragment. A straightforward solution consists
of cascading a full decode and successive re-encode step to ensure that the
output bitstream exhibits the desired properties (i.e., conforms to a certain
target bitrate). As was already mentioned in section 5.3.4 however, the ma-
jor drawback of such a cascaded pixel-domain strategy is that it performs a
number of calculations unnecessarily and that it is hence computationally in-
efficient as well as expensive. This is for instance exemplified by the undesired
computational overhead that results from the needless re-calculation of the
motion field. Given the complexity of the specification, the applicability of
H.264/AVC transcoders that are implemented according to this paradigm is
limited to off-line scenarios (if deployed on present-day commodity hardware).
In contrast, a second class of techniques directly alters the properties of video
streams in the compressed domain (i.e., without first performing video de-
coding). As these methods perform their calculations directly on transformed
video coefficients, only entropy decoding and encoding have to be performed.
Such methods are generally referred to as transcoding algorithms. Compared
to cascaded pixel-domain solutions, they are less straightforward to imple-
ment but are at the same time able to achieve a much higher computational
efficiency.

In general, single-layer video flows can be transformed along three axes:
resolution, framerate and visual quality. This is typically termed spatial, tem-
poral and quality modification, respectively. Transcoding algorithms for qual-
ity adaptation can be classified as being based on either Dynamic Rate Shaping
(DRS) or requantization. The former category achieves video bitrate reduc-
tion by selectively eliminating transform coefficients. Requantization-based
schemes on the other hand do not eliminate but instead modify transform
coefficients by coarsening the quantization process. As a result, methods from
the latter category require recoding-like implementations and hence incur a
considerable computational penalty compared to the DRS approach.

232 Increasing NTS Flexibility via Dynamic Video Transcoding

Conceptually, DRS-based solutions provide an interface (or filter) between
the video source and the communication channel, by means of which the en-
coder’s output can be matched to the currently available network bandwidth
[Jacobs 98]. To lower the bitrate of video flows, this class of transcoding al-
gorithms sets one or more coefficients of a transformed and quantized block
of pixels to zero. This is achieved by either dynamically adjusting a cut-off
frequency or by enforcing a transform coefficient level threshold. These al-
ternative approaches are respectively denoted by Frequency-Dependent DRS
(FD-DRS) and Level-Dependent DRS (LD-DRS).

A detailed study of the FD-DRS and LD-DRS methods, including a com-
parison of their performance, can be found in the published article on which
this chapter is based [Wijnants 10] and will not be repeated here. It suffices to
know that LD-DRS nearly always outperforms FD-DRS in terms of resulting
visual quality. In other words, given a certain target bitrate, the LD-DRS
method will typically yield perceptually less distorted video fragments. It has
been decided to omit the technical details for two reasons. First, the focus of
this chapter is on the usability and added value of dynamic video transcoding
with regard to QoE optimization, not on the video transcoding functionality
itself. Second, the H.264/AVC transcoding technology has been developed by
fellow researchers from Ghent University and hence does not represent own
work.

13.2 Implementation

The dynamic video transcoding service for the NIProxy is targeted specifically
at H.264/AVC quality reduction. Stated differently, the service does not mod-
ify the resolution nor the framerate of input video fragments. As streaming
scenarios represent one of the NIProxy’s most important and prominent ap-
plication domains, a major design goal for the service was real-time operation.
Given the real-time requirement, the aim was to minimize the computational
complexity and to achieve a low delay, while at the same time maintaining an
acceptable visual quality. This in turn motivated the choice for a true trans-
coding algorithm instead of a cascaded pixel-domain solution. Section 13.1
has pointed out that two fundamental categories of transcoding algorithms
for quality transformation exist, namely DRS-based methods and approaches
that rely on requantization. Of these alternatives, the former category was pre-
ferred due to its lower computational footprint. In particular, based on a com-
parative study of the performance of the frequency- and level-dependent DRS
variants (see [Wijnants 10]), it was decided to opt for a LD-DRS implementa-
tion. Besides the LD-DRS functionality itself, the dynamic video transcoding

13.3 Implications on the QoE Optimization Platform 233

service incorporates a rate control algorithm which steers the transcoder to
ensure that the desired video bitrate is achieved. Technical details regarding
the operation of the rate controller can again be found in [Wijnants 10].

13.3 Implications on the QoE Optimization Plat-
form

The availability of the dynamic video transcoding service enables the NIProxy
to dynamically set the desired bitrate for H.264/AVC-encoded bitstreams dur-
ing their propagation through the transportation network. As such, the ser-
vice by itself already forms a valuable addition to the NIProxy’s feature list
as it could, for instance, be exploited to map a video stream to the current
bandwidth capacity of a residential user’s access connection in a Video on
Demand (VoD) setting. More importantly however, the service extends the
network traffic shaping options of the NIProxy since it unlocks the possibility
to represent H.264/AVC video flows in the stream hierarchy via continuous
leaf nodes. Recall from sections 4.3.2 and 8.2.1 that an important require-
ment for the correct functioning of this leaf node category is the ability to
effectively and accurately enforce the bandwidth budget which they compute
for their associated network stream. By linking the continuous leaf node
to the dynamic video transcoding service, this requirement can be satisfied
for H.264/AVC network traffic. Since continuous leaf nodes add a consider-
able amount of flexibility to the NIProxy’s bandwidth brokering process, the
H.264/AVC transcoding service significantly contributes to the calculation of
highly dynamic network traffic shaping results that can react both promptly
and adequately to context changes.

13.4 Evaluation

This section will evaluate the added value, in terms of user QoE optimiza-
tion, of the novel dynamic video transcoding functionality. In particular, this
section will examine whether the service allows additional flexibility to be
introduced in the NIProxy’s network traffic shaping process by enabling the
adoption of continuous leaf nodes for the management of H.264/AVC video
traffic.

234 Increasing NTS Flexibility via Dynamic Video Transcoding

(a) Physical layout of the testbed (b) Emulated network topology

Figure 13.1: Testbed for the dynamic video transcoding evaluation.

13.4.1 Evaluation Testbed and Experimental Setup

Instead of leveraging the NIProxy as a stand-alone system to investigate the
dynamic video transcoding service, it was decided to stage the validation in
the broader scope of the two-tier distributed QoE optimization architecture
which has been introduced in chapter 12. Similar to the assessment method
for the platform’s general characteristics (see section 12.3), a physical testbed
was deployed to enable thorough investigation of the influence of the novel
H.264/AVC transcoding functionality on the QoE optimization capabilities of
the NIProxy and hence, by extension, of the layered platform. Figure 13.1
displays the physical layout of this testbed as well as the network topology
that it conceptually corresponded to. In total, the testbed consisted of 10
PCs running GNU/linux and encompassed three Overlay Servers, two nodes
on which both an Overlay Access Component and a NIProxy instance were
hosted, two multimedia clients and one streaming video server. To enable the
emulation of heterogeneous network conditions, two Click impairment nodes
were also incorporated in the testbed [Kohler 00]. These nodes served a dual
purpose since they were employed to artificially introduce arbitrary packet loss
in the core network as well as to enforce downstream bandwidth restrictions
in the clients’ access network.

To evaluate the QoE optimization platform and, in particular, its novel
dynamic video transcoding support, H.264/AVC streaming sessions were es-
tablished between the video server and both multimedia clients. However,
the end-to-end network connection of only one of the clients was managed by
the platform. In the following discussion, the unmanaged client will repre-
sent the reference scenario against which the results that were achieved by
the distributed platform will be offset. This will allow for the effects of the

13.4 Evaluation 235

Figure 13.2: Packet loss ratio per second, with and without overlay routing.

platform’s operations to be comprehensively visualized and for the impact of
the availability of the H.264/AVC video transcoding service on user QoE to
be underscored.

13.4.2 Experiment 1: Optimizing Network Core Routing

In a first test, an arbitrary H.264/AVC video sequence was streamed from
the multimedia server to each of the two clients. Approximately 43 seconds
after the beginning of the experiment, 10 percent random packet loss was
activated in the core network by the Click impairment node. As a result, the
communication session of both clients started suffering from lost packets. This
in turn yielded video decoding issues at destination-side and hence a degraded
video playback on the clients’ screens. After a few seconds however, the QoS
issue in the network backbone was recognized and reacted against by the
QoE optimization platform. In particular, the platform began to bypass the
compromised network segment by routing network packets that were destined
for the managed client via an alternative overlay path.

The packet loss ratio that was witnessed by both clients during the ex-
periment is plotted in Figure 13.2. The graph clearly illustrates that as soon
as the QoE optimization platform actuated its rerouting functionality, packet
loss was expelled from the managed client connection. The unprotected client
on the other hand continuously suffered from a degraded performance, since
its destined packets were not rerouted and hence continued to pass through
the problematic (i.e., lossy) part of the network core. These results confirm

236 Increasing NTS Flexibility via Dynamic Video Transcoding

Table 13.1: Quality parameters of the video sequences employed in the second
experiment.

Video1 (V1) Video2 (V2)

Resolution (pixels) 352× 288 (CIF) 352× 288 (CIF)

Framerate (FPS) 25 25

GOP size 25 25

Bitrate (KBps) 82 90

the findings from section 12.3.2, namely that the first tier of the platform is
capable of successfully countering QoS impairments such as packet loss in the
network backbone. Since this chapter is specifically dedicated to the investi-
gation of the impact of the dynamic video transcoding service’s incorporation
in the QoE optimization architecture and since this service only influences the
operation of the architecture’s second tier, the tier-1 experimental results have
only been provided for the sake of completeness and will not be elaborated
upon.

13.4.3 Experiment 2: Exploiting Dynamic Video Transcoding
on the Last Mile

To evaluate the NIProxy component and its H.264/AVC transcoding plug-in,
a second experiment was performed. This experiment staged the simultane-
ous streaming of two H.264/AVC-encoded bitstreams (V1 and V2) to both
multimedia clients while their last mile network connection was artificially
impaired in terms of available downstream bandwidth. The principal charac-
teristics of the employed video sequences are listed in Table 13.1. The goal of
this experiment was twofold:

• Investigate the NIProxy’s reaction to the dynamically varying down-
stream throughput of the client’s access connection

• Verify whether the NIProxy succeeded in improving the user QoE by
exploiting its H.264/AVC video transcoding service to dynamically and
intelligently adapt the involved video flows so that their bitrate matched
the last mile bandwidth capacity

13.4 Evaluation 237

Figure 13.3: H.264/AVC data received by the QoE-managed client (stacked
graph, in KBps).

The experiment itself conceptually spanned 5 successive intervals. Each
interval transition was triggered by a single state change. In particular, the
switch from the first to the second period was caused by the introduction
of the second H.264/AVC flow (i.e., V2) in the experiment, whereas the two
subsequent interval transitions were initiated by shifts in H.264/AVC stream
importance (which users could indicate via the GUI of the client software). Fi-
nally, in the fifth interval, the last mile impairment was moderated so that the
clients suddenly disposed of an increased amount of downstream bandwidth.
To be more precise, whereas the Click node thus far had restricted each client’s
downstream access bandwidth to 140 KiloBytes per second (KBps), this im-
pairment was at the beginning of the final experiment interval relaxed to 160
KBps.

Figure 13.3 plots all H.264/AVC network traffic that was received by the
platform-enhanced client during the experiment. The stream hierarchy by
means of which the NIProxy calculated this bandwidth distribution is dis-
played in Figure 13.4. Due to the constrained nature of the experiment, the
stream hierarchy entailed only 3 nodes and had a very straightforward layout.
In particular, the root of the hierarchy consisted of an internal node of type
WeightStream, which was used to differentiate between the two H.264/AVC

238 Increasing NTS Flexibility via Dynamic Video Transcoding

Figure 13.4: Stream hierarchy that directed the downstream bandwidth bro-
kering.

flows that were involved in the test. Both these flows were represented by a
continuous leaf node. Weight value determination for these leaf nodes oc-
curred according to the relative importance of the corresponding H.264/AVC
flows, as specified by the user. The exact weight values as they applied during
the different experiment periods are provided in the stream hierarchy illustra-
tion. Finally, recall from section 13.3 that the NIProxy’s H.264/AVC transco-
ding service was exploited to dynamically transcode the video streams to the
target bitrates that were calculated by their associated continuous leaf node
in each iteration of the NIProxy’s bandwidth brokering process.

Analysis of the presented network trace teaches that, in the initial ex-
periment interval, only one H.264/AVC flow was present (i.e., V1). Since
sufficient last mile downstream bandwidth was available to forward this flow
to the destined client at its maximal (i.e., original) quality, no video transco-
ding operations were performed by the NIProxy. This situation changed with
the introduction of V2 in the second experiment period. Since both flows were
assigned identical weight values in the stream hierarchy and had comparable
maximal bitrates (which can respectively be deduced from Figure 13.4 and
Table 13.1), they were granted a comparable bandwidth budget by the NI-
Proxy’s network traffic shaping mechanism. In particular, each stream was
allocated a bandwidth amount of approximately 62 KBps. At the beginning
of the two subsequent intervals, the user incremented the importance value
of the first H.264/AVC flow (see Figure 13.4). This resulted in V1 being ap-
portioned an increased share of the available downstream bandwidth at the
expense of the second H.264/AVC flow, which now needed to be transcoded to
a lower bitrate. The exact progression of the target video bitrates during the
experiment is provided in Table 13.2 and is visualized in the network graph

13.4 Evaluation 239

Table 13.2: Target bandwidth evolution for the H.264/AVC bitstreams during
the second experiment, in KBps.

Experiment Interval

1 2 3 4 5

Video1 (V1) 82 62 72 82 82

Video2 (V2) / 62 52 42 62

by means of horizontal dotted lines. In the final interval, the additional 20
KBps last mile bandwidth that became available was exclusively exploited to
upgrade the quality of the second H.264/AVC stream. Given its lower impor-
tance value, this behavior might seem surprising. An explanation can however
be found in the two-step operation of the WeightStream node (see section
4.2.4) which controlled the distribution of the available bandwidth over both
video flows. In the initial bandwidth allocation phase, a fraction of the newly
available downstream capacity was indeed reserved for V1. Due to its higher
weight value, this amount even exceeded the additional bandwidth that was
initially granted to the second H.264/AVC bitstream. However, as V1 was
already being forwarded to the client at its maximal bitrate, it could not cap-
italize the extra bandwidth that was assigned to it. In the second phase of
the WeightStream’s bandwidth distribution process, this excess capacity was
transferred integrally to sole sibling V2.

Remark from Figure 13.3 that the transcoded video flows exhibited a rel-
atively high variability in their bandwidth consumption and that they some-
times quite significantly deviated from their target bitrate. This behavior
fell outside the control of the NIProxy. In particular, it was caused by the
rate controller that is incorporated in the dynamic video transcoding service,
which only succeeds in guaranteeing that the average video bitrate conforms
to the target value. The NIProxy’s overflow prevention buffer (see section
4.6), whose size was set to 10 percent of the client’s downstream throughput,
absorbed the vast majority of the bitrate peaks that resulted from the rate
controller’s suboptimal operation; only approximately 70 seconds after the
start of the experiment, it could not prevent the downstream capacity from
briefly being violated.

A number of important findings can be distilled from the presented ex-
perimental results. A first observation is that the NIProxy, by leveraging its
network awareness, ensured that the downstream capacity of the last mile was

240 Increasing NTS Flexibility via Dynamic Video Transcoding

roughly1 respected throughout the entire experiment. This behavior has al-
ready been encountered a number of times during the discussion of preceding
experimental evaluations of the NIProxy. To recapitulate, the outcome was an
avoidance of access link congestion, which in turn resulted in a minimization of
packet loss and delay and consequently an optimal reception of the forwarded
network traffic at client-side. Secondly, it appears that the enforced band-
width distribution correctly captured relative H.264/AVC stream importance
information. More specifically, bandwidth was apportioned among the in-
volved flows directly proportionally to their significance, from the user’s point
of view. This result can be attributed to the NIProxy’s application-related
contextual knowledge. Lastly and most importantly, as is demonstrated in
the network trace in Figure 13.3, the H.264/AVC transcoding service suc-
ceeded in sufficiently accurately approximating the bandwidth amounts that
were reserved for the H.264/AVC-encoded bistreams by their continuous leaf
node representations in the stream hierarchy. The availability of the service
in other words allowed the NIProxy to adapt the involved video streams to a
continuous range of bitrates. As such, it introduced extra flexibility in the net-
work traffic shaping process and enabled an optimal and complete exploitation
of the bandwidth that was available on the last mile.

The findings described in the previous paragraph did not apply to the
video streaming session of the client that was not managed by the QoE opti-
mization platform. Due to the lack of facilities to shape network traffic prior
to its injection into the access network and due to the inability to profit from
H.264/AVC transcoding functionality, a far from optimal usage experience was
yielded. To be more precise, the user did not dispose of any mechanisms to
discriminate between the incoming H.264/AVC bitstreams (in terms of rela-
tive significance), let alone to enforce differential flow treatment. In addition,
since the client’s access connection was flooded with more data than it could
transfer, a substantial amount of last mile packet loss was detected during the
experiment. Parts of the encoded video data were consequently not received
by the client, which in turn caused the appearance of perceptual artifacts in
the decoded video sequences. The platform-managed user did not suffer from
such deteriorated video playback and was hence provided with a far superior
usage experience.

1Only approximately 70 seconds after the start of the experiment, a brief violation of
the downstream access capacity occurred. It has however already been explained that this
deficiency is attributed to the rate control algorithm of the H.264/AVC transcoding service
and hence not to the operation of the NIProxy itself.

13.5 Conclusions 241

13.4.4 Discussion

The results that were achieved during the described experiments comprehen-
sively demonstrate the advantages of the two-tier QoE optimization network.
In particular, largely analogous to the findings from chapter 12, they confirm
that the platform is capable of

• successfully mitigating impairments and QoS anomalies such as conges-
tion and packet loss in the network backbone

• allocating the downstream bandwidth that is available on the last mile
in a deliberate manner (i.e., in harmony with contextual factors)

For reasons of clarity and intelligibility, these features were illustrated via
independent experiments. It is important to remark however that they are
definitely not mutually exclusive and can hence just as well be achieved simul-
taneously (see the experimental results in section 12.3 for confirmation). This
implies that the proposed platform supports user QoE optimization along the
(nearly) complete delivery path from content provider to consumer.

A significant difference from the practical evaluation of the two-tier plat-
form that has been provided in section 12.3 is that the platform this time incor-
porated functionality which enabled the bandwidth consumption of H.264/AVC
bitstreams to be modified in a fine-grained manner. The experimental results
confirm that the operation of the first tier of the platform was not affected
by the availability of this additional functionality. The second tier on the
other hand did substantially benefit from it, since the platform was now able
to transcode H.264/AVC bitstreams to a continuous range of bitrates before
relaying them to the client’s access network. In the performed experiment,
the involved video sessions were transcoded to exactly the amount of band-
width that, according to the calculations of the NIProxy’s bandwidth broker-
ing scheme, was available for their last mile transmission. As a result, the
involved H.264/AVC network traffic was meticulously tailored to the last mile
throughput restrictions, without losing sight of other contextual factors in
the process. The outcome was an optimal and complete exploitation of the
downstream throughput of the client’s access connection, which is likely to be
appreciated by the end-user.

13.5 Conclusions

This chapter has extended the two-tier QoE optimization architecture that has
been introduced in chapter 12 with real-time dynamic transcoding technology

242 Increasing NTS Flexibility via Dynamic Video Transcoding

for H.264/AVC bitstreams. This functionality has been integrated in the form
of a plug-in for the tier-2 NIProxy components. Given the platform’s focus
on streaming and real-time content dissemination settings, a crucial design
goal for the transcoding plug-in was to minimize the computational complex-
ity and delay introduction. Based on thorough investigation and appraisal of
existing H.264/AVC transcoding techniques [Wijnants 10], it has been decided
to implement the plug-in according to the Dynamic Rate Shaping (DRS) ap-
proach. The plug-in in addition incorporates a dynamic rate control algorithm
to steer the DRS operation; as such, it is guaranteed that the transcoded video
conforms to its target bitrate.

The salient characteristic of the H.264/AVC transcoding plug-in is that
it enables the transformation of H.264/AVC bitstreams to an arbitrary band-
width. The service which it provides has therefore been labeled dynamic video
transcoding. It is evident that it excels the static video transcoding service
which has been introduced in section 5.3 in terms of functionality. The dis-
cussion of representative experimental results has however revealed that this
superior performance also applies to the QoE optimization prospects that are
entailed by both services. In particular, it has been validated that the avail-
ability of the dynamic video transcoding service allows the NIProxy to adopt
continuous leaf nodes to represent H.264/AVC-encoded video flows in the
stream hierarchy. The idea is to leverage the service to dynamically transcode
H.264/AVC bitstreams to the target bandwidth budget that was calculated by
their embodying continuous leaf node during network traffic shaping. As a
result, the dynamic video transcoding service enables highly dynamic network
traffic shaping results to be computed which can adapt both promptly and
effectively to context changes. Notice the substantial contrast with the static
precursor, which interfaces with the bandwidth brokering process by means
of a discrete leaf node and hence forces the NIProxy to choose between a
limited number of alternatives with regard to the dissemination of video con-
tent (instead of enabling the content to be transcoded to a continuous range
of bitrates). It is hence justified to state that the dynamic video transcoding
service adds a considerable amount of flexibility to the NIProxy’s bandwidth
brokering process. As such, it extends the NIProxy’s range of QoE optimiza-
tion options as well as improves the QoE optimization results and effectiveness
that can be attained by the NIProxy (and hence, through extrapolation, by
the enclosing two-tier platform).

As a secondary contribution, this chapter has exemplified the advantages
that are associated with two of the NIProxy’s distinctive features. First of all,
the positive implications of the plug-in-based implementation of the NIProxy’s
multimedia service provision functionality have been implicitly illustrated. To

13.5 Conclusions 243

furnish the NIProxy with dynamic H.264/AVC video transcoding support, it
sufficed to develop an additional plug-in. Since implementation-wise plug-ins
are stand-alone modules, this process did not require any modification what-
soever to the NIProxy’s general software architecture. Stated differently, the
dynamic video transcoding service has demonstrated that its multimedia ser-
vice provision methodology enables rapid and clean extension of the NIProxy’s
feature list. Secondly, the developed plug-in is another interesting demonstra-
tion of the interoperation interface that is defined between services and the
NIProxy’s network traffic shaping mechanism. In this concrete case, the dy-
namic video transcoding service has been employed to transcode H.264/AVC
bitstreams to the bandwidth amounts which they had been assigned during
network traffic shaping by their continuous leaf node embodiment in the
stream hierarchy. The presented experimental results have highlighted the
beneficial influence of this collaboration on the user QoE optimization pro-
cess (i.e., it allows for the generation of highly dynamic, flexible and effective
bandwidth brokering outcomes).

Chapter 14
Conclusions and Directions for Future Research

14.1 Conclusions

The ultimate goal of each application should be user satisfaction and optimal
usage experience. While this is already a far from trivial task in stand-alone
settings, it is an even more complicated assignment for distributed applications
due to the extra constraints and potential pitfalls that are associated with
communicating data via a transportation network.

This dissertation has described the Network Intelligence Proxy (NIProxy),
a network intermediary which has been developed to enable Quality of Expe-
rience (QoE) optimization in IPv4-based telecommunications networks. As its
name suggests, the NIProxy’s methodology is centered around the principle of
introducing intelligence in the networking infrastructure. This is achieved by
querying three distinct sources of contextual information, namely the trans-
portation network itself, the distributed application and the end-user. Based
on its accumulated contextual knowledge, the NIProxy engineers the network
traffic that passes through it and as such improves the traffic handling capa-
bilities of the transportation network in which it has been incorporated. The
specific focus hereby is on multimedia content due to the stringent require-

246 Conclusions and Directions for Future Research

ments that are associated with its network dissemination.
The first traffic engineering technique that is supported by the NIProxy is

network traffic shaping (NTS), which implies that the NIProxy enables the in-
network orchestration of the bandwidth consumption behavior of distributed
applications. This entails two general objectives. First of all, the NTS pro-
cess needs to guarantee that the distributed application does not violate the
bandwidth volume that is available for the dissemination of the network traffic
which it induces. Failure to do so may result in network congestion and all
the detrimental effects that it evokes (e.g., unpredictable network performance,
increased latency, data corruption and packet loss, etcetera). The second ob-
jective consists of exploiting the available bandwidth budget as effectively as
possible or, stated differently, in such a manner that the QoE of the user of the
distributed application is maximized. The NIProxy’s NTS scheme operates by
capturing the relationships that exist between network traffic types (or even
individual network flows) and other contextual knowledge in a tree-like hier-
archy. The layout and the composition of the hierarchy will determine how
the available bandwidth will be apportioned.

The validity of the NIProxy’s NTS approach as well as its positive im-
plications in terms of QoE optimization have been established in numerous
experimental evaluations. As an example, it has been experimentally con-
firmed that the NIProxy succeeds in managing network bandwidth in the
presence of competing real-time and non-real-time network traffic. These traf-
fic types exhibit widely dissimilar properties and each consequently imposes
distinct bandwidth brokering requirements. The NIProxy’s NTS scheme has
proven to be sufficiently elaborate and sophisticated to be able to regulate
the bandwidth consumption of both categories of network traffic, even simul-
taneously. This has been demonstrated by means of demonstrator software
that was developed specifically for evaluation purposes, but also by leveraging
the NIProxy to coordinate the bandwidth utilization behavior of a real-world
Networked Virtual Environment application that demands efficient distribu-
tion of rendering-related data and in addition supports real-time streaming of
audiovisual content.

The NIProxy’s second tool to manipulate network data dissemination, and
hence user QoE, is service provision. The NIProxy incorporates a substrate
for the hosting and execution of services on intercepted network traffic (es-
pecially traffic which transports multimedia content). Analogous to the NTS
scheme, the service provision framework is context-aware. As a result, it is
possible for services to achieve context-adaptivity by attuning their operation
to the current context of use, which will in turn ensure that the processing
which they implement will actually lead to an improvement of the end-user

14.1 Conclusions 247

experience. The implementation of this QoE optimization technique is plug-
in-based. Perhaps the most important advantage that is conferred by this
design is that it allows services to be dynamically installed during operation
and that it hence guarantees run-time extensibility of the NIProxy’s supported
functionality. As such, it becomes possible for the NIProxy to cope with het-
erogeneous conditions in dynamic networking environments without requiring
a reboot (i.e., without interrupting the service for currently managed hosts).

The range of services that can be hosted by the NIProxy is theoretically
boundless. Some notable examples have been described in the course of this
thesis and their QoE optimization potential (and hence, by extension, that of
the NIProxy’s service provision framework) has been confirmed by means of
experimental evaluation. As an example, a service has been developed which
introduces real-time transcoding functionality in the NIProxy to enable it to
on-the-fly reduce the bitrate of H.263 video. The service is said to implement
“static” transcoding since all bitstreams that are output by a certain instan-
tiation will exhibit identical video quality parameters and will have widely
comparable bandwidth requirements. In nearly all the presented case studies
that involved the real-time exchange of video data, the static video trans-
coding service has been exploited. The resulting experimental findings have
corroborated that the service holds interesting possibilities in terms of QoE
optimization, since it enables the user to be provided with a lower quality vari-
ant in situations where the NIProxy would otherwise be forced to mercilessly
discard the original video and where the user would hence not receive any
video at all. At a later stage, a dynamic counterpart of this service has been
developed that supports bitrate transcoding of H.264/AVC network traffic to
an arbitrary and at run-time adjustable target value. The practical evaluation
of this service has revealed that it introduces additional flexibility compared
to its static precursor and that it allows for a more complete and efficient uti-
lization of the available network bandwidth. A final example is the Forward
Error Correction (FEC) service, which adds XOR-based parity protection to
network traffic to enable the receiver to remedy data corruption and even par-
tial data loss that is induced during network dissemination. It has again been
experimentally verified that this service represents a promising and versatile
asset in the quest for QoE optimization and that it hence forms a valuable
addition to the NIProxy’s feature list. Important to note is that the func-
tionality that is provided by all described services has been incorporated in
the NIProxy without requiring any modification whatsoever to the NIProxy’s
general software architecture.

A defining characteristic of the NIProxy is that it synthesizes its dual traf-
fic engineering facilities in an interactive and collaboration-enabled manner.

248 Conclusions and Directions for Future Research

Instead of implementing the bandwidth brokering and service provision frame-
works as isolated entities, an integrated design has been adopted that enables
both techniques to cooperate during QoE optimization. The outcome is a
holistic solution in which the individual components supplement each other
and improve their QoE optimization potential through collaboration. This is
for instance illustrated by each of the three example services that were men-
tioned in the previous paragraph. Since these services each introduce a new
sort of network flow, they leverage the interface with the NTS mechanism to
inform the latter of the existence of this network traffic type and of its re-
quirements in terms of network bandwidth. From this point on, the provided
information will be taken into account by the NIProxy’s bandwidth brokering
operations. Conversely, each of the described services interpellate the NTS
framework to determine whether and, in the case of the dynamic video trans-
coding and FEC services, exactly how they should apply their functionality
to transiting data. This implies that the QoE optimization benefits that have
been experimentally established to be associated with the mentioned services
are not solely the merit of the functionality that they implement but, just as
importantly, also of their correct interaction with the NTS process. As such,
they have exemplified that the NIProxy’s integrated approach with regard to
traffic engineering results in QoE optimization performance and prospects that
transcend potential achievements when both mechanisms are applied indepen-
dently.

The range of conceivable QoE improvement operations is so extensive that
it is unrealistic to assume that any single system will be able to address them
all. A potential solution to this problem is to bundle individual frameworks,
preferably frameworks which concentrate on complementary forms of QoE ma-
nipulation. In collaboration with colleagues from Ghent University, a two-tier
platform has been developed in which the NIProxy is combined with overlay
routing technology. The platform leverages the NIProxy’s traffic engineering
features to optimize last mile content dissemination, whereas the routing func-
tionality is exploited to achieve resilience to infrastructural issues in the core of
the network such as malfunctioning or congested network links. Representative
experimental results have confirmed that near end-to-end QoE optimization
is realized since only the upstream access segment of an end-to-end network
route (if present) is left uncovered by the integrated platform.

14.2 Directions for Future Research

A number of possible topics of future research has already been suggested in
the course of this dissertation. These (mostly) correspond to relatively modest

14.2 Directions for Future Research 249

technical adjustments which embellish and extend already available function-
ality instead of radically changing the NIProxy’s methodology and general
mode of operation. The NIProxy’s FEC support could for instance be im-
proved by incorporating techniques other than XOR-based parity protection
(e.g., RS coding) as well as by introducing more powerful and effective JSCC
algorithms. Another example is scalability investigation. Submitting the NI-
Proxy to a profiling study is likely to yield valuable information regarding the
overhead of various system components and might reveal the upper bound of
the number of users that can be simultaneously supported by a single NIProxy
instance. Next, although the NIProxy supports the collection of information
regarding terminal capabilities and user preferences by means of the MPEG-21
UED standard, the added value and potential of this type of context with re-
gard to QoE optimization has thus far been exclusively investigated in isolated
test environments. Considering and exploiting this context category in real-
istic, non-dedicated settings has yet to be done. Finally, the implementation
of additional types of internal nodes for the stream hierarchy is expected to
extend the NIProxy’s bandwidth brokering options, whereas the development
of additional services would improve the NIProxy’s versatility.

The just described adjustments would require only relatively limited mod-
ifications and could hence be achieved in the short term. There is however
also room for more drastic (and therefore longer-term) technological improve-
ments and extensions. For instance, the NIProxy could be exploited to develop
a hierarchical or layered solution for QoE optimization. The idea is to con-
struct an overlay network in which the constituting NIProxy instances are not
just peers of each other, but instead are hierarchically structured according to
parent/child relationships. In the envisioned solution, the NIProxy nodes in
the undermost echelon manage end-users and their network traffic and hence
assume the role and perform the tasks that have been described in this disser-
tation; in contrast, nodes higher up the hierarchy govern a number of NIProxy
elements from the layer directly underneath. Such a layered approach is ex-
pected to open up additional possibilities in terms of QoE research. Higher
layers could, for instance, pre-process popular content to facilitate and accel-
erate QoE operations as the content fans out through the hierarchy. Example
issues that will need to be addressed in a hierarchical setup include the de-
termination of optimal content caching locations and the fine-tuning of the
operations that are performed by higher layers. Assessment of the optimal
distribution of QoE features among the different echelons (i.e., customization
of the functionality on a per level basis) is also highly advocated.

QoE management in wireless communication networks and pervasive en-
vironments is another example of a technically-oriented challenge that would

250 Conclusions and Directions for Future Research

involve relatively drastic changes and extensions. Thus far, the NIProxy has
primarily been applied in wired settings and this thesis has proven that it is
a valuable solution for QoE optimization in such a context. There however
exist significant differences between wired and wireless environments in terms
of characteristics and performance. In addition, wireless scenarios introduce a
number of issues that are not (or at least less pronouncedly) present in their
wired equivalents. Consequently, straightforwardly leveraging the NIProxy in
a wireless context is expected to yield suboptimal results at best. Via the inclu-
sion of additional functionality, this inadequacy might however be remedied.
For instance, a common challenge in wireless environments is user and node
mobility. To enable the NIProxy to efficiently deal with this issue, it might be
necessary to accompany its pure QoE optimization functionality with explicit
session mobility support and handover technology. As another example, the
inherent broadcast nature of wireless channels is likely to necessitate a number
of modifications to the NIProxy’s current NTS scheme. Also, the wireless envi-
ronment might include (large numbers of) sensors that capture environmental
data. It might therefore be interesting to include support in the NIProxy to
transform such sensor input into a fourth type of contextual information (be-
sides network-, application- and user-related context) so that it could also be
considered during QoE mediation. Other examples of characteristics of wire-
less and pervasive environments that are likely to require special attention
include the high level of heterogeneity in wireless access network technology
and input/output capability variation.

A final potential direction for technical future research in the long term is
mobile QoE management. In all the experimental evaluations that have been
presented in this dissertation, the NIProxy was deployed at a certain location
inside the transportation network and remained stationary from that point
on. Introducing mobility into this equation is expected to unlock a plethora of
additional research options. In particular, it is envisioned that QoE mediation
is executed on mobile hardware such as laptops or powerful smartphones. As
the mobile node roams around, it performs QoE arbitration in each of the
environments in which it ends up by allowing devices to pair up with it. The
most basic type of service that could be delivered by a mobile QoE manager
is connectivity provision for devices which are not compliant with the wireless
technology that is employed in their present environment. As an example,
Bluetooth-equipped cellular phones without a 802.11 radio could be provided
WiFi connectivity by a mobile arbitrator that supports both networking stan-
dards. It will be interesting to scrutinize whether other, less straightforward
mobile QoE operations also make sense. The mobile manager could, for in-
stance, perform the important optimization task of adapting and fine-tuning

14.2 Directions for Future Research 251

content according to contextual knowledge prior to its delivery to the request-
ing device. Challenges and issues regarding mobile QoE management that are
worthy of investigation include service discovery, connectivity bridging, poten-
tial incentives and revenue models for mobile managers, energy consumption
optimization for the mobile arbitrator and the transfer of QoE arbitration
state between (mobile) devices. The mobile QoE topic could also be linked to
the idea of hierarchical QoE management. As an example, resource-intensive
adaptations and operations could be implemented in (fixed) nodes that are
deployed inside the (wired) access network, while more trivial and last-minute
adaptations would be left over to mobile arbitrators in the wireless environ-
ment.

Finally, besides technical topics of future research in both the short and
long term, there also lie possibilities in terms of evaluation and validation.
All experimental results that have been presented in part II were captured
objectively, typically by tracing the traffic that traversed the transportation
network, and were subsequently investigated analytically to infer conclusions
regarding expected improvements in user experience. QoE is however a multi-
dimensional and inter-disciplinary concept which, besides technically-oriented
and objective aspects, for a large part involves human dimensions and subjec-
tive remarks. It might therefore be very valuable to subject the QoE optimiza-
tion attempts that are implemented by the NIProxy to formal user studies and
other usability research methods so that qualitative feedback regarding their
impact could be collected. Stated differently, although the results that have
been presented in this dissertation were of such a magnitude that their poten-
tial positive impact on QoE was often intuitively apparent, confirmation by
means of qualitative user input is still advocated. On a related note, it is again
repeated that the NIProxy is a framework for QoE optimization, not an abso-
lute solution for it. The NIProxy merely provides a set of tools via which the
QoE of users of distributed applications may be improved. This implies that
simply integrating the NIProxy in a transportation network is by no means a
guarantee for success; after incorporation, its actual operation needs to be fine-
tuned to the characteristics and requirements of the considered application,
user expectations and potentially a myriad of other contextual parameters and
this will typically require user feedback.

Appendices

Appendix A
Early Results

This appendix bundles experimental results that stem from the inceptive phase
of this PhD research. In particular, all results that will be presented in this
appendix have been generated using the initial instantiation of the NIProxy,
which was rendered obsolete by the refactoring operation that was described
in chapter 6. As a result, the achievements themselves have also become
somewhat outdated since they are no longer representative of the NIProxy’s
current capabilities and mode of operation. They will therefore be mentioned
and discussed only superficially. For the same reason, implementational as
well as other details will largely be omitted from the discussion. For each
of the described results, the interested reader can find detailed information
and necessary technicalities in the articles in which the results were originally
published.

A.1 Experimentation in the ALVIC Framework

The netfilter-based implementation of the NIProxy (see section 6.1) has chiefly
been evaluated in the context of the ALVIC framework. This section will

256 Early Results

commence by introducing this framework and by concisely discussing the NI-
Proxy’s incorporation in it. Next, a chronological overview of the conducted
experimental validations and their outcomes will be presented. It will appear
that the complexity of the evaluations became increasingly advanced over time
due to the evolution of the NIProxy’s QoE optimization potential.

A.1.1 ALVIC

ALVIC (Architecture for Large-scale Virtual Interactive Communities) is an
in-house developed framework for the realization of Networked Virtual Envi-
ronments (NVEs) and in particular Virtual Interactive Communities (VICs)
[Quax 07]. Like standard NVEs, a VIC allows potentially large numbers of
users to simultaneously participate in a shared interactive (3D) virtual environ-
ment. VICs hereby however specifically focus on social and community-related
aspects. The high-level objective of a VIC can hence be expressed as providing
geographically dispersed individuals who share common interests with a vir-
tual platform where they can meet, converse, socialize, etcetera. Probably the
most popular commercial VIC is Linden Lab’s Second Life [Second Life 10].

Given its emphasis on virtual community creation, ALVIC has invested
considerably in user communication facilities. Besides the typically supported
options of textual chat and verbal communication, the framework encompasses
extensive video conferencing support [Quax 03]. Instead of separating the
video conferencing functionality from the virtual world experience, an inte-
grated and more immersive approach is adopted which allows participants to
be represented in the simulated environment in real-time by the video input
that is captured by their webcam device (see Figure A.1).

In addition to extensive video conferencing support, the ALVIC architec-
ture is characterized by its strive for scalability, both in terms of number of
simultaneous users and spatial extent of the offered virtual environment. To
achieve this objective, responsibilities and supporting functionality are de-
volved from the server infrastructure to individual clients as much as possible.
Furthermore, the framework encompasses an advanced multicast-based aware-
ness management module to dam in information dissemination. The awareness
manager operates by spatially dividing the virtual environment into adjoining
square regions. Each region has a well-defined multicast address associated
with it that serves as communication channel for the events that occur in that
region. As an example, to communicate their state updates to others, clients
simply transmit them to the multicast group of the region in which they are
currently residing. The awareness manager at each client constantly deter-
mines which regions the local user should be aware of and only the multicast

A.1 Experimentation in the ALVIC Framework 257

Figure A.1: Screenshots of applications that have been realized on the PC
platform using the ALVIC framework. Notice that ALVIC’s video conferencing
support enables users’ faces, recorded by their webcam, to be textured on their
avatar in the virtual world.

addresses that correspond to these regions are joined. In other words, as users
move around the virtual environment, multicast groups will be dynamically
joined and left, this way restricting the amount of information that clients will
be required to download and process.

The ALVIC architecture recognizes the considerable bandwidth require-
ments that are imposed on the transportation network by video-based com-
munication. To prevent these requirements from undermining its scalability
objective, the framework defines three separate video qualities which consume
widely divergent amounts of bandwidth. The exact quality parameters and
the bitrate characteristics of each video version are enumerated in Table A.11.
As can be deduced from this table, the High Quality (HQ) video setting re-

1It is worth noting that the encoding parameters and bandwidth requirements of the
different video versions are completely configurable in the ALVIC framework. The majority
of the experimental results that will be presented later on in this section were however
generated with the settings presented in Table A.1.

258 Early Results

Table A.1: ALVIC’s multiple video qualities.

High Quality Medium Quality Low Quality

Resolution (pixels) 352× 288 352× 288 352× 288

Framerate (FPS) 25 15 15

Bitrate (bps) 200000 100000 50000

Codec H.263 H.263 H.263

quires double the amount of bandwidth compared to the Medium Quality
(MQ) setting, which in turn consumes twice the bandwidth of Low Quality
(LQ) video.

Complementary to the multicast group for exchanging event information,
the ALVIC architecture attaches three multicast addresses to each spatial
region for the purpose of video data distribution. Each of these multicast
groups corresponds to a particular video quality setting (i.e., HQ, MQ and
LQ). Analogous to the way their state information is disseminated, video-based
clients transmit the different encodings of their webcam feed to respectively the
HQ, MQ and LQ video multicast groups of their current region. To limit the
reception of (bandwidth-intensive) video traffic at client-side, the awareness
manager determines which video quality should be received from every region
which the local user is currently interested in, after which the corresponding
video multicast addresses are subscribed to. A likely strategy would be to
enter the HQ multicast group of the virtual region in which the local user
is presently located, and the MQ or even LQ multicast group of adjacent
regions. Quax et al. have investigated several strategies for video quality
selection in [Quax 04]; especially frustum-dependent solutions appear to scale
well to growing user figures.

Finally, audio/voice communication is implemented through yet another
set of multicast addresses. In contrast to video, the ALVIC framework does not
support multiple audio qualities. This design decision is grounded on the fact
that audio streams containing voice data will typically require considerably
less bandwidth than video. As a result, there is only a single audio-related
multicast group associated with each spatial region and clients either receive
an audio stream that is emitted by another client or they do not receive the
stream at all.

A.1 Experimentation in the ALVIC Framework 259

A.1.2 NIProxy Integration

To allow ALVIC users to benefit from the NIProxy’s QoE optimization po-
tential, the ALVIC client software had to be modified. The required mod-
ification effort however turned out to be fairly modest, as it sufficed to in-
tegrate the NILayer auxiliary library (see section 3.4) in the client software
and to interface it with ALVIC’s client-side awareness management module.
The NILayer was instructed to periodically extract application-dependent con-
text from the awareness manager and to subsequently relay the accumulated
knowledge to the managing NIProxy instance. In this particular case, the
application-related knowledge took the form of information regarding the spa-
tial regions in which the monitored user was at present interested (e.g., the
multicast groups that corresponded to these regions). Additionally, the NI-
Layer dynamically registered the virtual distance between the local user and
each remote peer that virtually resided in any of these regions. The calculated
positional information was employed to inform the NIProxy of the relevance
of the individual multimedia flows that were being exchanged as part of the
NVE application. The rationale was to attach flow importance directly pro-
portionally to user proximity in the virtual environment, since a VIC user is
most likely to interact with remote participants whom he is virtually located
nearest to. Consequently, if the objective is to achieve efficient and convinc-
ing interactions, multimedia streams originating from virtually proximal peers
should be received by the managed user at a maximal fidelity (without hereby
violating the user’s current downstream bandwidth constraints).

Besides the NILayer incorporation in the client software, a service for the
NIProxy was implemented that enabled it to act as a multicast reflector for
managed ALVIC clients. At the time of integration, multicast-based commu-
nication was often disallowed for residential users. Moreover, even to date,
several Internet Service Providers (ISPs) obstruct the dissemination of multi-
cast traffic on their access network. To prevent users from being denied access
to ALVIC-based distributed applications, the service therefore eliminated the
need for multicast facilities at client-side as follows:

• Instead of multicasting a packet themselves, clients could unicast the
packet to their NIProxy instance, which would subsequently exploit its
application awareness to transmit the packet to the appropriate multi-
cast group on the wide area network

• The service dynamically subscribed to multicast addresses on behalf of
the NIProxy’s clients and converted multicast traffic that resided on the
inter-proxy network to unicast packets to enable their last mile deliv-

260 Early Results

ery; the service guaranteed that information contained in a multicast
stream only reached clients that were actually interested in it, this way
preventing downstream access bandwidth of uninterested clients from
being wasted

A.1.3 Video Quality Selection Through Filtering

The very first practical assessment of the NIProxy’s user QoE improvement
potential concentrated exclusively on the filtering of video data. The fo-
cus on video was motivated by the obvious bandwidth predominance of this
type of network traffic in ALVIC-based distributed applications. The findings
and conclusions of this initial experimental evaluation have been published in
[Wijnants 05b]. In summary, the assessment encompassed two separate exper-
iments which were both repeated twice, once without and once with involving
the NIProxy. In the first experiment, the downstream access bandwidth of an
ALVIC client was theoretically varied over time in a static2 scenario involving
4 remote participants. The results, expressed as network traces, are recapitu-
lated in Figure A.2. In particular, the topmost graph plots the complete set
of video traffic that was exchanged over the network during the experiment;
notice the HQ, MQ and LQ variants of each remote participant’s webcam
feed. The next two graphs on the other hand illustrate the video-related data
that was received by the monitored client when it was not and when it was
managed by the NIProxy, respectively. The second experiment semantically
emulated a dynamic conversation between a variable number of participants,
which is a regularly recurring scenario in VIC sessions. In contrast to the
first test, the traced client’s downstream bandwidth capacity remained fixed
at 320 Kilobits per second (Kbps) throughout the entire case study. Again, a
promiscuous capture of the disseminated video traffic was performed and the
video-related data delivery to the monitored client was registered when the
NIProxy was respectively excluded from and included in the experiment. The
results are plotted in Figure A.3.

The findings that were deduced from the conducted experiments are briefly
recited in the following enumeration:

• Comparison of the first two network traces in Figure A.2 as well as in
Figure A.3 reveals that ALVIC’s awareness management module suc-
ceeded in drastically reducing the amount of video traffic that needed

2The term “static” refers to the fact that all involved clients remained stationary in the
virtual world for the entire duration of the test; consequently, the relative importance of
their video feed also remained constant over time.

A.1 Experimentation in the ALVIC Framework 261

Figure A.2: Stacked graphs of the network traffic that was captured during
an ALVIC video filtering experiment in which a client’s downstream access
bandwidth was altered over time.

262 Early Results

Figure A.3: Stacked graphs of the network traffic that was captured during an
ALVIC video filtering experiment which simulated an interactive conversation
between VIC participants.

A.1 Experimentation in the ALVIC Framework 263

to be delivered over the last mile network connection of the monitored
client

• ALVIC’s awareness manager lacks network awareness and consequently
does not take the capacity, let alone the current condition, of the client’s
access link into account when deciding which regions the client should
subscribe to; as a result, the theoretical bound of its downstream access
bandwidth was exceeded numerous times in the iterations of the experi-
ments in which the NIProxy was not involved (see the middle graphs in
Figures A.2 and A.3)

• The client-side awareness manager is completely region-based and there-
fore relatively coarse-grained: run-time adjustment of the delivered qual-
ity of individual video feeds is not supported; instead, the awareness
arbitrator is only flexible enough to modify the quality of the video dis-
semination on a per region basis (i.e., of entire regions and hence of all
video sources that are virtually residing in it)

• The NIProxy leveraged its network awareness to guarantee that the man-
aged client’s downstream access bandwidth capacity was honored (see
the final graphs in Figures A.2 and A.3)

• Its application awareness allowed the NIProxy to control the last mile
video delivery in a fine-grained (i.e., per flow) and intelligent manner.

In summary, the network traces confirm that the NIProxy prevented the mon-
itored client’s access link from becoming congested and dynamically adjusted
the distribution of the downstream bandwidth capacity over the involved video
streams, based on their altering relative significance, such that the user’s QoE
was improved. Recall from section A.1.2 that video traffic importance was
determined exclusively on the basis of virtual proximity.

A.1.4 Static Video Transcoding

A considerable drawback of the multi-quality video philosophy of the ALVIC
architecture is that it compels sources to transmit three distinct versions of
their video data. This is a computationally burdensome requirement for the
end-user device, since the source’s video feed will need to be encoded thrice.
More importantly, this approach also demands a large amount of client up-
stream bandwidth. The majority of the broadband Internet subscriptions for
residential users are based on an asymmetric model in which the upstream
capacity consists of merely a fraction of the provided downstream bandwidth.

264 Early Results

Figure A.4: Operation of the application-aware static video transcoding ser-
vice for ALVIC-based distributed applications.

Typical values at the time of evaluation were an upstream throughput of 128
or 192 Kbps versus at least 1 Mbps in the downstream direction. This im-
pediment refrained the ALVIC framework from being leveraged to develop
distributed applications that are targeted at residential users since the collec-
tive bandwidth requirement of the three video qualities exceeded the available
upload capacity. Even nowadays, despite the fact that the upstream through-
put for residential Internet users has risen notably, many ISPs still enforce
restrictions in terms of the volume of data that their customers are allowed to
upload. This implies that while ALVIC’s multi-quality video approach might
currently be technologically feasible, obligating residential users to emit sep-
arate qualities of their webcam feed might very well still not be an affordable
requirement for commercial applications.

This consideration formed the incentive to include application-specific video
transcoding functionality in the NIProxy [Wijnants 05c]. In particular, a static
video transcoding service was developed that was tailored particularly to the
ALVIC framework and its distinctive video requirements. As is illustrated in
Figure A.4, the service was implemented so that HQ-encoded ALVIC video
traffic was intercepted and transcoded to medium and/or low quality coun-
terparts in case at least one of the NIProxy’s connected clients was interested
in it, after which each managed client was served the appropriate video fi-
delity. The availability of this service hence relieved ALVIC video sources of
the necessity of streaming multiple versions of their webcam input since it now
sufficed for them to transmit only the highest quality variant of their video
feed. Also notice from this discussion that, as was enunciated in section 6.1,
services in the netfilter-based NIProxy implementation corresponded to global
entities which serviced all clients simultaneously.

The impact of the ALVIC video transcoding service was evaluated exper-
imentally. The experiment involved 6 ALVIC clients in total; the following

A.1 Experimentation in the ALVIC Framework 265

Figure A.5: Client dispersion in the virtual world during the ALVIC video
transcoding experiment.

conditions applied:

• Clients C1 to C4 were not managed by a NIProxy instance, whereas
clients PA and PB were

• Only clients C1, C2 and C3 acted as video source

• All clients remained stationary in the virtual environment throughout
the complete experiment

• The clients were virtually positioned as depicted in Figure A.5

• The downstream access bandwidth of clients PA and PB was artificially
modified at intervals of approximately 30 seconds (i.e., from 320 Kbps
initially over 250 and 170 Kbps to the final value of 400 Kbps)

The experimental results are visualized in Figure A.6 in the form of network
traces. Unsurprisingly, the results largely resemble the outcome of the exper-
iment with variable client downstream bandwidth that has been described
in section A.1.3. The findings and conclusions that can be drawn from the
achieved results are consequently also nearly identical and will therefore not
be explicitly repeated here. Important to realize however is the considerable
methodological style breach with the previous video filtering approach. In
particular, video quality selection and dissemination was in section A.1.3 con-
trolled by the NIProxy by simply filtering the optimal quality variant of each
video feed or, stated differently, by obstructing the last mile dissemination of
inappropriate video versions. In contrast, the video transcoding approach en-
compassed the on-demand and on-the-fly generation of required video qualities
by the NIProxy, hereby offloading this responsibility from ALVIC clients.

266 Early Results

Figure A.6: Stacked graphs of the network traffic that was captured during an
ALVIC video transcoding experiment in which the downstream access band-
width was varied over time.

A.1 Experimentation in the ALVIC Framework 267

The principal contribution of the results presented in this section is that
they formed the first practical evidence of the added value of the NIProxy’s
service provision support. In particular, they corroborated the possibility of
leveraging the NIProxy as a platform for the delivery of potentially application-
specific services. As a result, the versatility of the NIProxy and its viability as
QoE optimization framework for heterogeneous types of distributed applica-
tions was for the first time experimentally confirmed. Moreover, the experience
with real-time video transcoding that was acquired in this preliminary study
and the determination of its beneficial implications in terms of QoE optimiza-
tion options led to a continual interest in this topic throughout the course
of this PhD research. In other words, the video transcoding service for the
ALVIC framework motivated the development of the more generally applica-
ble static H.263 video transcoding service from section 5.3 and its dynamic
H.264/AVC counterpart that has been presented in chapter 13.

A.1.5 Mobile Access

While the ALVIC framework was initially designed exclusively for the PC
platform, it was at a later stage ported to handheld devices. The objec-
tive of this effort was to achieve universal (i.e., anyplace, anywhere) access
to ALVIC-based distributed applications while at the same time preserving
the framework’s extensive support for fixed users. Before actually initiating
the porting operation however, the networking issues that would need to be
resolved when simultaneously including wired and wireless devices in NVE
sessions were theoretically investigated [Quax 05b]. In this preparatory study,
it was established that in-network traffic engineering entities such as the NI-
Proxy could play a crucial role in enabling mobile access to NVE applications
over truly large distances. In the specific context of the ALVIC architecture,
a network setup like the one depicted in Figure A.7 was envisaged. As can
be seen, the NIProxy would in the envisioned topology be deployed at the
periphery of the multicast-enabled Local Area Network (through which fixed
users could connect to the VIC), where it would provide a number of specific
services to support mobile users. In particular, two major tasks were identified
for the NIProxy instance in the proposed setup:

Act as multicast-to-unicast gateway for mobile clients As there is very
little multicast support in the Internet at present, traffic originating from
the multicast-enabled LAN would need to be forwarded towards remote
mobile clients through unicast connections. However, simply duplicating
all multicast network traffic that resides on the LAN would not scale well
with a growing number of connected users, neither would this approach

268 Early Results

Figure A.7: Proposed network architecture for long-range mobile access to
ALVIC-based applications.

be suited for low-bandwidth wireless technologies such as GPRS. For
these reasons, it was determined that the NIProxy would need to lever-
age its compound network- and application-related contextual knowl-
edge to intelligently select the multicast traffic that should be unicasted
to each individual remote client. Conversely, the NIProxy would also be
charged with the transmission of data, received from mobile clients in
a unicast fashion, to interested wired clients by disseminating it on the
correct multicast group.

Transcode audio and video traffic emitted by fixed users Wired LAN
clients will most likely be exchanging high-quality audio and video data
whose bandwidth requirements by far exceed the available throughput of
a long-range wireless link. The NIProxy would therefore be responsible
for at run-time transcoding multimedia flows to lower-quality variants
which better fit the bandwidth limitations imposed by wireless connec-
tions. Again, the NIProxy’s network and application awareness were
envisioned to be indispensable assets in the execution of this task. In
particular, its contextual knowledge would enable the NIProxy to decide
which multimedia streams should be transcoded and to what quality
exactly.

Based on the findings of the exploratory study, the ALVIC framework was
subsequently actually adapted for use on handheld terminals with wireless
network interfaces [Quax 05a]. Some results are visualized in Figures A.8 and

A.1 Experimentation in the ALVIC Framework 269

(a) Without video visu-
alization

(b) With video visualiza-
tion

(c) Corresponding 3D view on a desk-
top client

Figure A.8: Screenshots of an example ALVIC-based NVE application with
support for both fixed and mobile users (3D rendering on the mobile terminal).

(a) Without video visu-
alization

(b) With video visualiza-
tion

(c) Corresponding 3D view on a desk-
top client

Figure A.9: Screenshots of an example ALVIC-based NVE application with
support for both fixed and mobile users (2D rendering on the mobile terminal).

A.9. As these screenshots reveal, the mobile instantiation of the ALVIC frame-
work supports both 2D and 3D virtual world rendering. In case their terminal
is sufficiently powerful (e.g., is equipped with 3D hardware acceleration), mo-
bile users are provided with an immersive three-dimensional visualization that
is largely comparable to the ALVIC virtual world representation on the PC
platform. Conversely, on mobile devices which lack the necessary processing
power to display 3D graphics at interactive framerates, only a top-down two-
dimensional overview of the shared virtual environment is displayed. Pictures
of example ALVIC multi-platform setups are provided in Figure A.10.

270 Early Results

Figure A.10: Example ALVIC multi-platform setups including standard desk-
top clients as well as mobile Dell Axim x51v PDA devices.

Figures A.8 and A.9 illustrate that the NIProxy successfully facilitated
video communication between wired and wireless users of the example ALVIC-
based application. Due to the small form factor of handheld devices, simulta-
neously displaying multiple video feeds on such terminals will often be infeasi-
ble. For the developed demonstrator application, this issue was further aggra-
vated by the fact that the available screen space on the mobile device could
not exclusively be employed for video visualization purposes (i.e., it needed
to be divided among the representation of the virtual environment and the
visualization of received video traffic). Based on this observation, which can
be considered as a form of application awareness, the NIProxy enforced the
policy that at all times at most a single video feed should be forwarded to mo-
bile clients of the demonstrator. Moreover, prior to its delivery, video traffic
that was destined for mobile users was on-the-fly converted by the NIProxy
to a lower spatial as well as temporal resolution. At the same time, the video
traffic’s bitrate was adjusted so that it matched the throughput constraints of
the mobile device’s wireless network connection (e.g., to accommodate mobile
users with a low-bandwidth GPRS interface).

In summary, by drawing from its contextual knowledge, the NIProxy suc-
ceeded in providing mobile users of the multi-platform ALVIC demonstrator
with an enjoyable video conferencing experience. This was achieved by harmo-
nizing the video traffic that was destined for these users with the characteristics
of their mobile device as well as their network connection type.

A.1 Experimentation in the ALVIC Framework 271

A.1.6 Audio Filtering

Video traffic typically dominates voice data in terms of network resource re-
quirements. This explains the focus on this type of network traffic during the
initial NIProxy evaluations. At a later stage however, ALVIC’s audio commu-
nication facilities and their associated bandwidth requirements were also reck-
oned with. In particular, the experimental findings presented in [Wijnants 05a]
corroborate that the NIProxy succeeded in simultaneously managing the audio
and video traffic that is induced by the ALVIC framework. While definitely
being a significant achievement at that time, this result has been rendered
obsolete by more recent NIProxy validations. Therefore, the audio filtering
evaluation and its outcome will not be explicitly repeated in this dissertation;
the interested reader is kindly referred to the article in which the results were
originally published.

A.1.7 Audio Mixing

Section A.1.5 has discussed the porting of the ALVIC framework to handheld
devices. Compared to the desktop platform, such devices are much more
constrained in terms of processing power. In addition, the wireless interfaces
through which they connect to the network are characterized by a relatively
limited throughput. Therefore, some sacrifices had to be made during the
porting process. Probably the most drastic design decision was to confine the
delivery of audio data to mobile ALVIC clients to exactly one flow. Stated
differently, while a desktop user will receive the audio traffic from all remote
clients that are currently residing in the regions which he is interested in, a
mobile user will only receive the audio data of the object (e.g., avatar) that he
has selected on his screen. This restriction is motivated by the high bandwidth
and processing requirements that are associated with receiving and decoding
multiple audio streams simultaneously. Furthermore, received audio traffic
needs to be mixed together locally to obtain the final output signal, which
again is a processor-intensive operation.

It is apparent that a substantial difference exists between the audio experi-
ence that is provided to respectively desktop and mobile users of ALVIC-based
distributed applications. To bridge this divide, however without increasing the
bandwidth or processing requirements for mobile terminals, an application-
aware sound mixer service for the NIProxy was developed [Wijnants 06]. A
high-level overview of the operation of this service is illustrated in Figure A.11.
As can be seen, the sound mixer plug-in maintained a separate mixing unit
for every serviced client and subscribed to the correct multicast groups to
ensure that it received all necessary input audio data. Each incoming audio

272 Early Results

Figure A.11: Design and operation of the application-aware sound mixer ser-
vice for ALVIC-based distributed applications.

flow was decoded and subsequently only transferred to the mixing units for
those clients that were actually interested in this stream. This implies that a
unique audio mix was created for every client that was serviced by the plug-in.
Furthermore, the mixing units also took positional information into account,
this way producing an output stream in which the contributing audio sources
were correctly localized in 3D space. Notice that this discussion of the sound
mixer plug-in’s operation again illustrates the global (i.e., multi-user) nature
of services in the netfilter-based NIProxy software architecture (see section
6.1).

The effect of the sound mixer service is exemplified in Figure A.12. Net-
work graphs A, B and C visualize the audio traffic that served as input for
the sound mixer service, while chart D depicts the resulting audio mix. The
first input audio flow was generated by a continuous audio source that ter-
minated its transmission approximately 30 seconds after the experiment had
started. The two other input audio streams originated from two verbally com-
municating ALVIC clients and hence transported alternating bursts of voice
data.

The results from Figure A.12 demonstrate that the developed NIProxy
plug-in enabled lightweight audio communication in the ALVIC framework.
As such, the service entailed promising possibilities to improve the audio ex-
perience that is provided to mobile users of ALVIC-based applications. More
specifically, while previously being confined to receiving the audio traffic of
a single remote client, the sound mixer service enabled mobile users to re-
ceive a single audio stream that encompassed all audio data in which they
were effectively interested. This implies that the sound mixer service suc-
cessfully mitigated the disparity that existed between the audio experience
perceived by respectively desktop and mobile ALVIC users. Furthermore, this

A.2 Incorporation in the iConnect System 273

Figure A.12: Impact of the ALVIC sound mixer service on audio traffic dis-
semination. The horizontal axes of the graphs specify the time (in seconds),
the vertical axes the bit count (in Kilobits). Graphs A, B and C depict (the
bandwidth consumption of) the input audio traffic, whereas graph D shows
the resulting audio mix.

was achieved without introducing additional bandwidth or processing require-
ments at client-side, since it still sufficed for mobile users to receive and process
only a single audio flow. A minor disadvantage of the sound mixer service was
that it yielded a small amount of incidental latency since input audio traffic
needed to be buffered for a short period of time so that it could be mixed
together.

As a concluding remark, notice that although the sound mixer service
has been described and explained exclusively from the point of view of mo-
bile users, it could just as well be exploited by ALVIC desktop clients. For
this latter user category, the impact of the service was however much less
pronounced. In particular, only (modest) decreases in terms of downstream
bandwidth consumption and processing requirements were noticed by desktop
clients; contrary to the situation with mobile users, the audio experience itself
was not improved.

A.2 Incorporation in the iConnect System

To investigate whether the initial implementation of the NIProxy succeeded
in concurrently performing QoE optimization for users of various types of
distributed applications, it was not only leveraged in the context of the ALVIC
framework but also in the iConnect project. This section will first concisely
describe the objectives of this project and will subsequently discuss how the
NIProxy’s multimedia service provision facilities were exploited to enhance the
iConnect application with a video-based avatar service.

274 Early Results

A.2.1 iConnect

Meetings and conferences are nowadays still frequently being held in an inef-
ficient and impractical fashion. For example, the requirement for participants
to be physically present at the meeting might lead to large traveling overhead
and expenditure. Furthermore, the supporting equipment of a typical meet-
ing room is restricted to a projector which participants can alternately use to
project working documents that are stored on their personal laptop computer.
Convenient facilities for integrating devices other than laptops (e.g., PDAs,
smartphones, . . .) are also largely lacking.

Based on this observation, the Interdisciplinary institute for BroadBand
Technology (IBBT) incubated the iConnect project (1/05/2005 - 30/06/2007).
The objective of the project consisted of developing an IT architecture and a
software framework to support the creation of “connected conference rooms”
where both collocated and geographically dispersed participants can efficiently
assemble.

The implemented software framework was centered around the semantical
discrimination between shared and personal workspaces [Cardinaels 06]. The
rationale behind this separation was flexibility: the shared workspace was in-
tended to allow multiple users to interact simultaneously with meeting-related
data, whereas personal workspaces were completely single-user-oriented. The
combined use of both workspace types hence permitted participants to inter-
actively and collaboratively manipulate documents in the multi-user shared
environment, yet retained the option for users to organize, view and/or ma-
nipulate data locally in their personal space without hereby disturbing others.

The iConnect software framework was evaluated in a computer-augmented
meeting room that was equipped with a projector, a touch-sensitive white-
board with a large form factor, a wireless access point, a wired connection to
the outside world and supporting server infrastructure which ran the iConnect
software. The whiteboard fulfilled the role of shared workspace as it provided
a means for physically attending users to simultaneously interact with the
data that was displayed on it. Via the wireless network, meeting participants
could couple personal devices that they had brought into the meeting room to
the iConnect software, after which they could be used as personal workspace.
Through an intuitive drag-and-drop interaction metaphor, participants could
easily transfer files from their personal device to the shared environment and
vice versa. For instance, a participant could copy a document that was cur-
rently under discussion and thus displayed on the shared whiteboard to his
personal device, alter or annotate it locally, and subsequently transfer the
modified document back to the whiteboard to share his changes with the other

A.2 Incorporation in the iConnect System 275

Figure A.13: Overview of the iConnect infrastructure and of the functionality
of the iConnect software framework.

meeting participants. Besides acting as personal environment, the user’s de-
vice could also be used as a remote touchpad to operate a cursor in the shared
workspace.

The infrastructural setup and functionality of the iConnect system are
illustrated in Figure A.13. As can be seen, the shared workspace was projected
on the whiteboard, with which users could interact not only directly (i.e., by
physically touching it) but also indirectly (i.e., via their personal device). Also
note that each meeting participant was represented by a small avatar in the
shared workspace.

The infrastructure and software framework also included support for users
who were restrained from being physically present in the conference room.
Such users could remotely connect to the iConnect system, after which the
shared workspace was visualized on the screen of their device (i.e., a laptop
or desktop computer). Remote participants had analogous collaboration pos-
sibilities at their disposal as the users in the conference room. In addition,

276 Early Results

audio as well as video conferencing support was provided to allow remote and
physically attending participants to communicate in an efficient manner.

A.2.2 Video-Based Avatar Creation

A NIProxy service was developed to incorporate support for video-based avatars
in the iConnect system [Wijnants 06]. Recall from section A.2.1 that confer-
ence participants were personified by an avatar in the shared workspace. In the
iConnect software framework, these avatars took the form of a user-selectable
static image. The NIProxy service introduced the possibility to represent re-
mote meeting participants by means of a low-resolution and low-framerate
live video feed of their face. In particular, the service intercepted the video
conferencing flow emitted by remote participants, decoded it and applied face
detection on it. The result was periodically encoded as a small image (i.e.,
once every second) and subsequently transmitted to the shared whiteboard in
the iConnect meeting room.

The operation of the video-based avatar service is exemplified in Figure
A.14. In this example iConnect meeting, the rightmost avatar represented a
remote participant and was video-based. The difference between the remote
participant’s video conferencing stream and his video avatar, in terms of image
quality and resolution as well as image content, is easily deductible from Figure
A.14(b). Notice that the (video) avatars were always visualized on the shared
whiteboard, while the rendering of a remote participant’s video conferencing
stream could be turned on and off dynamically by the meeting moderator (i.e.,
the person standing next to the whiteboard).

The added value of the video-based avatar service was that it in many cases
eliminated the need for displaying the video conferencing stream of remote
participants on the shared whiteboard. This was mainly true for scenarios
in which only limited input was required from this user category. In such
situations, visualizing their full-blown video stream added very little benefit,
since the feedback provided by the video avatars normally sufficed to guarantee
meeting effectiveness. As an example, consider the use case in which the
iConnect meeting system is leveraged to stage a presentation or a lecture.
The speaker, who is standing next to the shared whiteboard, has direct face-
to-face contact with the copresent participants. The video avatars on the other
hand also provide the speaker with facial feedback from remote attendees.
Consequently, rendering their webcam feed has become superfluous since the
information conveyed by their video-based avatar already suffices to allow the
speaker to determine whether or not his talk is being understood.

By curtailing the necessity of visualizing the video streams of remote meet-

A.2 Incorporation in the iConnect System 277

(a) Snapshot of the shared whiteboard during an example iConnect meeting

(b) Comparison of the video conferencing stream of a remote participant and
the automatically generated video-based avatar

Figure A.14: The video-based avatar service for the iConnect system.

ing participants, the video avatar service saved screen space on the shared
whiteboard. This was an important advantage, since screen space is a scarce
commodity. After all, although the whiteboard is blessed with a large form fac-
tor, content needed to be displayed on it sufficiently largely so that it could be
perceived clearly by all participants in the meeting room. For instance, Figure
A.15 illustrates the substantial amount of screen space that was required to
visualize the webcam feed of three remote participants. The NIProxy’s video-
based avatar service was capable of freeing up some of this screen space, which
could subsequently be exploited to display other, more relevant information.

278 Early Results

Figure A.15: Visualizing the webcam feeds of remote participants might con-
sume considerable whiteboard screen space.

It is important to note that the video avatar functionality could also have
been implemented in the iConnect client software for remote participants or at
server-side. However, one of the design goals for the iConnect project was to
keep the client software as lightweight as possible to leave open the possibility
of porting it to handheld (i.e., resource-constrained) terminals. This would
enable the iConnect framework to address additional user groups like, for
instance, people on the move carrying only a smartphone. The iConnect server
software on the other hand already bore a large number of responsibilities and
it was therefore determined that it should be exempted from the execution of
non-critical tasks as much as possible.

Besides being valuable in its own right, the NIProxy’s video avatar service
was an important achievement because it corroborated the versatility of the
NIProxy’s multimedia service provision platform. In particular, the NIProxy
had thus far been exclusively validated in the context of the ALVIC framework
(see section A.1). The iConnect environment in nothing resembles ALVIC-
based applications, yet the NIProxy succeeded in providing a valuable service
for it. Experiments have even been conducted in which a single NIProxy in-
stance concurrently managed both ALVIC and iConnect clients [Wijnants 06].
The results confirmed that the NIProxy is capable of simultaneously perform-
ing QoE optimization for users of multiple distributed applications. This is

A.2 Incorporation in the iConnect System 279

a significant advantage from an economic perspective, since it implies that
the cost of NIProxy deployment can be divided among multiple application
providers. Notice that although this feature was demonstrated using the ini-
tial (i.e., obsolete) NIProxy implementation, care was taken to ensure that it
was retained during the redesign and software refactoring phase.

Appendix B
Example MPEG-21 UED Document

1 <?xml version=” 1 .0 ”?>
2 <DIA xmlns=”urn:mpeg:mpeg21:2003:01−DIA−NS” xmlns:mpeg7=”

urn:mpeg:mpeg7:schema:2001”>
3 <Desc r ip t i on x s i : t y p e=”UsageEnvironmentType”>
4
5 < !−− Terminal c a p a b i l i t i e s −−>
6
7 <UsageEnvironment x s i : t y p e=” Termina lCapabi l i t i e sType ”>
8 < !−− MP3 audio decoding support −−>
9 <Termina lCapab i l i t i e s x s i : t y p e=”CodecCapabi l i t i esType ”>

10 <Decoding x s i : t y p e=”AudioCapabi l i t i esType ”>
11 <Format h r e f=”urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4 . 4 ”>
12 <mpeg7:Name xml:lang=”en”>MP3</mpeg7:Name>
13 </Format>
14 </Decoding>
15 </ Termina lCapab i l i t i e s>
16
17 <Termina lCapab i l i t i e s x s i : t y p e=” InputOutputCapabi l i t iesType ”>
18 < !−− Screen r e s o l u t i o n and other d i s p l a y informat ion −−>
19 <Display b i t sPe rP i x e l=”24” co lorCapable=” true ”>
20 <Reso lut ion ho r i z on t a l=”176” v e r t i c a l=”144” />
21 </Display>
22
23 < !−− Audio p layback c a p a b i l i t i e s −−>
24 <AudioOut bitsPerSample=”16” numChannels=”2” />
25

282 Example MPEG-21 UED Document

26 < !−− Input c a p a b i l i t i e s −−>
27 <User Inte ract ionInputSupport>
28 <Microphone>t rue</Microphone>
29 <Point ingDevice>
30 <Mouse buttons=”3” s c r o l lwh e e l=” true ” />
31 </ Point ingDevice>
32 </ User Inte ract ionInputSupport>
33 </ Termina lCapab i l i t i e s>
34
35 < !−− Remaining ba t t e r y l i f e t im e −−>
36 <Termina lCapab i l i t i e s x s i : t y p e=”DevicePropertyType”>
37 <Power batteryTimeRemaining=”3600” />
38 </ Termina lCapab i l i t i e s>
39 </UsageEnvironment>
40
41 < !−− Network c h a r a c t e r i s t i c s −−>
42
43 <UsageEnvironment x s i : t y p e=”NetworkCharacter i s t icsType ”>
44 < !−− S t a t i c network p r op e r t i e s (e . g . , minimal throughput) −−>
45 <NetworkCharac te r i s t i c s x s i : t y p e=”NetworkCapabilityType”

minGuaranteed=”32000” maxCapacity=”384000” inSequenceDe l ivery=
” f a l s e ” />

46
47 < !−− Dynamic network−r e l a t e d informat ion (e . g . , current de lay) −−>
48 <NetworkCharac te r i s t i c s x s i : t y p e=”NetworkConditionType”>
49 <Delay packetOneWay=”100” de layVar ia t i on=”40” />
50 <Error packetLossRate=” 0.0003 ” />
51 </ NetworkCharac te r i s t i c s>
52 </UsageEnvironment>
53
54 < !−− User c h a r a c t e r i s t i c s −−>
55
56 <UsageEnvironment x s i : t y p e=” UserCharac te r i s t i c sType ”>
57 < !−− User name −−>
58 <Use rCha r a c t e r i s t i c s x s i : t y p e=”UserInfoType”>
59 <User In fo x s i : t y p e=”mpeg7:PersonType”>
60 <mpeg7:Name>
61 <mpeg7:GivenName>John</mpeg7:GivenName>
62 <mpeg7:FamilyName>Doe</mpeg7:FamilyName>
63 </mpeg7:Name>
64 </ User In fo>
65 </ Us e rCha r a c t e r i s t i c s>
66
67 < !−− The user p r e f e r s spor t s−r e l a t e d content −−>
68 <Use rCha r a c t e r i s t i c s x s i : t y p e=”ContentPreferencesType ”>
69 <UserPre f e r ence s>
70 <mpeg7 :F i l t e r ingAndSearchPre fe rences>
71 <mpeg7 :C l a s s i f i c a t i o nP r e f e r e n c e s>
72 <mpeg7:Genre>
73 <mpeg7:Name>Sports</mpeg7:Name>
74 </mpeg7:Genre>
75 </ mpeg7 :C l a s s i f i c a t i o nP r e f e r e n c e s>
76 </ mpeg7 :F i l t e r ingAndSearchPre fe rences>
77 </ UserPre f e r ence s>
78 </ Us e rCha r a c t e r i s t i c s>
79

283

80 < !−− Modali ty convers ion p r e f e r en c e s : in case a v ideo fragment
needs to be converted , the user p r e f e r s convers ion to (lower−
q u a l i t y) video , f o l l owed by audio and f i n a l l y t e x t −−>

81 <Use rCha r a c t e r i s t i c s x s i : t y p e=” Presentat ionPre f e rencesType ”>
82 <ModalityConvers ion>
83 <GeneralResourceConvers ions>
84 <Conversion order=”1” weight=” 1 .0 ”>
85 <From hre f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:1”>
86 <mpeg7:Name>Video</mpeg7:Name>
87 </From>
88
89 <To hr e f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:1”>
90 <mpeg7:Name>Video</mpeg7:Name>
91 </To>
92 </Conversion>
93
94 <Conversion order=”2” weight=” 1 .0 ”>
95 <From hre f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:1”>
96 <mpeg7:Name>Video</mpeg7:Name>
97 </From>
98
99 <To hr e f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:3”>

100 <mpeg7:Name>Audio</mpeg7:Name>
101 </To>
102 </Conversion>
103
104 <Conversion order=”3” weight=” 0 .1 ”>
105 <From hre f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:1”>
106 <mpeg7:Name>Video</mpeg7:Name>
107 </From>
108
109 <To hr e f=”urn:mpeg:mpeg21:2003:01−DIA−ModalityCS−NS:4”>
110 <mpeg7:Name>Text</mpeg7:Name>
111 </To>
112 </Conversion>
113 </Genera lResourceConvers ions>
114 </Modal ityConvers ion>
115 </ Us e rCha r a c t e r i s t i c s>
116
117 < !−− Visua l impairment informat ion −−>
118 <Use rCha r a c t e r i s t i c s x s i : t y p e=” Ac c e s s i b i l i t yCha r a c t e r i s t i c sTyp e ”>
119 <Visua l>
120 <Bl indness eyeS ide=” r i gh t ” />
121 </ Visua l>
122 </ Us e rCha r a c t e r i s t i c s>
123 </UsageEnvironment>
124
125 < !−− Natural environment c h a r a c t e r i s t i c s −−>
126
127 <UsageEnvironment x s i : t y p e=”Natura lEnvironmentCharacter i s t icsType ”>
128 < !−− I l l umina t i on c h a r a c t e r i s t i c s −−>
129 <Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”

I l l um ina t i onCha ra c t e r i s t i c sType ”>
130 <TypeOfI l luminat ion>
131 <ColorTemperature>159</ColorTemperature>
132 </TypeOfI l luminat ion>
133 <I l luminance>500</ I l luminance>

284 Example MPEG-21 UED Document

134 </ Natura lEnvi ronmentCharacter i s t i c>
135
136 < !−− Background noise l e v e l and f r e quenc i e s −−>
137 <Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”AudioEnvironmentType”>
138 <NoiseLeve l>20</ NoiseLeve l>
139 <NoiseFrequencySpectrum>
140 40 30 20 10 10 10 10 10 10 10
141 10 40 40 40 30 30 30 20 20 20
142 10 10 10 10 10 10 10 10 10 10
143 10 10 10
144 </NoiseFrequencySpectrum>
145 </ Natura lEnvi ronmentCharacter i s t i c>
146 </UsageEnvironment>
147
148 </ Desc r ip t i on>
149 </DIA>

Listing B.1: Example MPEG-21 UED profile.

Appendix C
Dutch Summary

Door de alomtegenwoordigheid van het Internet in onze huidige samenleving
zou het idee kunnen ontstaan dat het uitwisselen van data tussen computers
die verbonden zijn door middel van een netwerk een triviale opdracht is. Dit is
echter een misvatting. Het op een efficiënte en effectieve manier uitwisselen van
informatie via een computer netwerk en het implementeren van gedistribueerde
applicaties zijn opdrachten die verre van triviaal zijn. De reden hiervoor is
dat het merendeel van de hedendaagse gedistribueerde applicaties multime-
diaal van aard is en aldus de uitwisseling van multimediale inhoud tussen
geografisch verspreide gebruikers vereist. Hiermee zijn op zijn beurt vaak een
aantal performantie voorwaarden verbonden waaraan het computer netwerk
moet voldoen opdat de efficiënte of zelfs correcte werking van de applicatie
gegarandeerd is. Een interactieve applicatie zoals bijvoorbeeld een Internet
telefonie toepassing (Voice over IP) vereist bijvoorbeeld dat de uitgewisselde
pakketten (welke in dit geval spraak bevatten) tijdig arriveren bij de bestem-
ming; indien de vertraging die het netwerk introduceert te hoog oploopt, zal
de bestemmeling haperingen opmerken in de spraak van zijn gesprekspartner.
Merk het verschil op met toepassingen waarvoor het Internet initieel voor-
namelijk werd gebruikt zoals e-mail, bestandsoverdracht en het opzoeken van

286 Dutch Summary

(tekstuele) informatie; dergelijke applicaties zijn in veel mindere mate onder-
hevig aan de performantie van het netwerk.

Moderne gedistribueerde applicaties vragen dus typisch een zeker niveau
van dienstverlening van een computer netwerk en dringen het een aantal
vereisten betreffende performantie op. De courante onderzoeksterm voor dit
fenomeen is Quality of Service (QoS). Indien het netwerk er niet in slaagt
de QoS vereisten te vervullen, zal de werking van de applicatie normaliter
aanzienlijk verslechteren. Dit zal op zijn beurt een negatieve invloed hebben
op de tevredenheid van de eindgebruiker. Gebruikers die ontevreden zijn over
het gedrag en de performantie van een gedistribueerde toepassing zullen sneller
geneigd zijn om de toepassing links te laten liggen en op zoek te gaan naar een
beter alternatief. In het geval we hierbij te maken hebben met commerciële
software, zal dit gepaard gaan met mogelijk inkomstenverlies voor de aanbieder
van de toepassing, iets wat deze laatste te allen tijde zal willen vermijden.

De huidige generatie telecommunicatie netwerken, inclusief het Internet,
beschikken standaard niet over gesofistikeerde mechanismen voor QoS voor-
ziening. De reden hiervoor is redelijk eenvoudig: ten tijde van hun ontwerp
had men relatief eenvoudige gedistribueerde applicaties voor ogen, zoals bij-
voorbeeld het reeds eerder aangehaalde e-mail, die geen (of hoogstens zeer
summier) gebruik maken van multimediale inhoud. Zodra multimediale appli-
caties hun opwachting begonnen te maken, werd het echter snel duidelijk dat
er wel degelijk nood is aan QoS ondersteuning en werd QoS voorziening plots-
klaps een zeer actief onderzoeksdomein. In de loop der jaren zijn er bijgevolg
een omvangrijk aantal technieken en raamwerken voorgesteld geworden welke
QoS voorziening door het computer netwerk mogelijk maken en hun positieve
implicaties op de performantie van gedistribueerde (multimediale) applicaties
is reeds meermaals vastgesteld geworden.

Aangezien QoS ondersteuning bijdraagt tot het correct en efficiënt func-
tioneren van gedistribueerde applicaties, draagt het ontegensprekelijk bij tot
het verbeteren van de tevredenheid van de eindgebruiker. Vrij recentelijk werd
het echter duidelijk dat het verzekeren van een zeker niveau van dienstverle-
ning niet noodzakelijk garant staat voor een optimale gebruikerservaring. De
ervaring van een gebruiker van een gedistribueerde toepassing is namelijk een
multi-dimensionaal concept dat naast technologische aspecten ook verschei-
dene factoren uit niet-technische domeinen zoals bijvoorbeeld sociologie en
psychologie omvat. Deze vaststelling heeft geleid tot het ontstaan van een
volledig nieuw onderzoeksgebied dat zich exclusief richt op het verbeteren van
de ervaring die aangeboden wordt aan gebruikers van gedistribueerde appli-
caties. In deze context wordt typisch de term Quality of Experience (QoE)
gebruikt om de gebruikerservaring formeel aan te duiden.

287

QoE optimalisatie is een uitermate omvangrijk probleem dat QoS voorzie-
ning overvleugelt. In QoE onderzoek wordt bijvoorbeeld regelmatig een beroep
gedaan op QoS technieken om de gebruikerservaring te verbeteren. Net zoals
huidige telecommunicatie netwerken weinig tot geen voorzieningen voor QoS
garantie omvatten, ontbreekt het hen grotendeels aan intrinsieke QoE optima-
lisatie mogelijkheden. Het matigen van dit gebrek vormt het onderwerp en de
doelstelling van deze thesis.

De algemene onderzoeksbijdrage van dit eindwerk is de ontwikkeling van
de NIProxy, wat een acroniem is voor Network Intelligence Proxy. De NIProxy
is een software entiteit voor het GNU/Linux besturingssysteem welke in IPv4-
gebaseerde computer netwerken gëıntegreerd kan worden in de vorm van een
zogenaamde proxy server. Eens gëıntegreerd, voegt het QoE manipulatie en
optimalisatie mogelijkheden toe aan het netwerk. Zoals zijn benaming doet
vermoeden, vervult intelligentie of kennis hierbij een cruciale rol. De NIProxy
beheert een databank met contextuele gegevens en vult deze door drie verschil-
lende soorten informatie te verzamelen. Doordat de NIProxy een deel uit-
maakt van het telecommunicatie netwerk, vertaalt zich dit conceptueel tot het
“intelligenter” maken van het netwerk. De eerste informatiebron die geraad-
pleegd wordt is het computer netwerk zelf. Dit levert kwantitatieve metingen
en statistieken op zoals de doorvoersnelheid, de vertraging en de fouteigen-
schappen van netwerk connecties. Ten tweede interpelleert de NIProxy de
gedistribueerde applicatie. De contextuele kennis neemt in dit geval dus de
vorm aan van informatie betreffende de toepassing. Dit type context is zeer
variabel; de gedistribueerde applicatie kan naar eigen goeddunken de NIProxy
op de hoogte brengen van informatie die op één of andere manier te maken
heeft met zijn werking. Een typisch voorbeeld van applicatie-gerelateerde in-
formatie is de relatie, in termen van belangrijkheid voor de eindgebruiker, die
bestaat tussen de verschillende types netwerk trafiek die door de applicatie
gëıntroduceerd worden. De derde en laatste soort contextuele kennis omvat
informatie betreffende het apparaat en de voorkeuren van de eindgebruiker.
Voorbeelden van informatie die onder deze context categorie vallen zijn de re-
solutie van het scherm en het type inhoud (audio, video, . . .) dat de voorkeur
van de gebruiker wegdraagt.

Op basis van zijn vergaarde context biedt de NIProxy twee complementaire
(applicatie-laag) QoS gereedschappen aan waarmee de verspreiding van data
trafiek gemanipuleerd kan worden. Via deze technieken tracht de NIProxy
het vermogen van het netwerk wat betreft de behandeling van multimediale
data uit te breiden en aldus het netwerk te voorzien van mogelijkheden voor
het bëınvloeden en verbeteren van de QoE van gebruikers van gedistribueerde
applicaties.

288 Dutch Summary

Het eerste mechanisme dat ondersteund wordt is network traffic shaping
(NTS) en stelt de NIProxy in staat de manier waarop gedistribueerde appli-
caties gebruik maken van netwerk bandbreedte te coördineren. De doelstelling
van het NTS mechanisme is tweeledig. Ten eerste moet ervoor gezorgd worden
dat de verspreiding van data die geassocieerd is met de gedistribueerde appli-
catie het bandbreedte volume dat hiervoor gereserveerd werd niet overtreedt.
Dergelijke schendingen kunnen namelijk resulteren in netwerk congestie en
alle negatieve gevolgen die hier typisch mee verbonden zijn, zoals bijvoorbeeld
een toename van de introductie van fouten tijdens de transmissie van data.
De tweede doelstelling bestaat eruit het beschikbare bandbreedte budget zo
effectief mogelijk aan te wenden. Anders gezegd, het NTS algoritme tracht
een bepaalde hoeveelheid bandbreedte te verdelen over de netwerk trafiek die
gëıntroduceerd wordt door de gedistribueerde applicatie op zo een wijze dat
de gebruikerservaring gemaximaliseerd wordt.

Een centrale rol in de NTS methode van de NIProxy is weggelegd voor
de stroom hiërarchie. In deze boomstructuur worden de data stromen die
gegenereerd worden door de gedistribueerde applicatie opgenomen en, op ba-
sis van de verzamelde contextuele kennis, gerelateerd aan elkaar. De samen-
stelling en de opmaak van de stroom hiërarchie bepalen hoe de beschikbare
bandbreedte zal verdeeld worden over de aanwezige netwerk trafiek. Het struc-
tureren van de hiërarchie gebeurt aan de hand van interne knopen en het zijn
deze knopen die de operatie van het NTS mechanisme sturen en dus ook
grotendeels de NTS uitkomst bepalen. Verschillende soorten interne knopen
zijn voorhanden die elk een bepaalde bandbreedte allocatie procedure imple-
menteren. Effectieve netwerk stromen daarentegen worden steeds voorgesteld
met behulp van bladknopen in de boomstructuur en ook deze categorie knopen
omvat verschillende varianten. In tegenstelling tot hun interne tegenhangers,
voorzien bladknopen geen bandbreedte distributie functionaliteit. In plaats
daarvan specificeren ze de mogelijkheden betreffende het aanpassen van het
bandbreedte verbruik van de netwerk stroom waarmee ze geassocieerd zijn.
Zo definieert een discrete bladknoop bijvoorbeeld een beperkt aantal afzon-
derlijke niveaus die elk overeenkomen met een bepaalde consumptie van band-
breedte; afhankelijk van de hoeveelheid bandbreedte die toegewezen wordt aan
de bladknoop, zal één van deze niveaus geselecteerd worden en aldus het band-
breedte verbruik van de gerepresenteerde netwerk stroom bepaald worden.

De geldigheid van de NIProxy’s NTS aanpak en de mogelijkheden van deze
techniek wat betreft QoE optimalisatie blijken uit de uitkomst van meerdere
experimentele evaluaties. Deze experimenten waren uiteenlopend van opzet
en varieerden aanzienlijk wat betreft de samenstelling van de netwerk trafiek
die beheerd diende te worden. Zo wordt het bijvoorbeeld aangetoond dat de

289

NIProxy erin slaagt op te treden als bandbreedte makelaar in het geval dat het
computer netwerk belast is met de gelijktijdige uitwisseling van real-time en
non-real-time data. Deze soorten netwerk trafiek vertonen erg uiteenlopende
eigenschappen en vereisen aldus een verschillende aanpak wat betreft band-
breedte beheer. De experimentele resultaten bevestigen dat de NTS technolo-
gie van de NIProxy voldoende uitgebreid en geavanceerd is om beide soorten
netwerk trafiek aan elkaar te relateren en om hun bandbreedte verbruik ade-
quaat te reguleren.

De validatie van de NTS functionaliteit blijft niet beperkt tot artificiële ex-
perimenten waarbij gebruik gemaakt wordt van demonstratoren en kunstma-
tige applicaties die specifiek werden ontworpen voor evaluatie doeleinden. Zo
wordt de NIProxy ook aangewend om het bandbreedte consumptie gedrag van
een concrete Genetwerkte Virtuele Omgeving (GVO) toepassing te reguleren.
Deze applicatie introduceert een aantal vereisten wat betreft de verspreiding
van rendering-gerelateerde data en biedt bovendien audiovisuele voorzieningen
om zijn (geografisch verspreide) gebruikers in staat te stellen op een aangename
manier te converseren met elkaar. De experimentele resultaten bevestigen dat
de NIProxy ervoor kan zorgen dat de vereisten van de applicatie wat betreft
netwerk communicatie voldaan zijn, wat op zijn beurt een noodzakelijke voor-
waarde is voor het garanderen van een aangename gebruikerservaring.

Het tweede mechanisme dat de NIProxy in staat stelt de netwerk trans-
missie van data en dus, onrechtstreeks, de gebruikerservaring te manipuleren
is dienstverlening. De NIProxy kan de rol aannemen van een platform voor
de voorziening en uitvoering van diensten op onderschepte netwerk trafiek
en in het bijzonder trafiek dewelke multimediale data transporteert. Dankzij
een plug-in-gebaseerd ontwerp waarbij elke dienst overeenkomt met een NI-
Proxy plug-in, vereist de implementatie van diensten geen wijzigingen aan (en
dus hercompilatie van) de algemene software architectuur van de NIProxy.
Een ander belangrijk voordeel van dit ontwerp is dat het toelaat dat dien-
sten dynamisch gëınstalleerd en gedëınstalleerd worden terwijl de NIProxy in
uitvoering is, wat op zijn beurt dynamische expansie van de aangeboden func-
tionaliteit toelaat. Op deze manier wordt het mogelijk voor de NIProxy om
om te gaan met variabele condities in dynamische en heterogene netwerk om-
gevingen zonder dat hiervoor een herstart vereist is (dit wil zeggen zonder dat
dit leidt tot een tijdelijke onderbreking van zijn operatie).

Theoretisch gezien zijn er geen beperkingen wat betreft de diensten die
aangeboden kunnen worden door de NIProxy. Zo wordt er bijvoorbeeld een
dienst besproken die on-the-fly H.263 video transcoding functionaliteit imple-
menteert en aldus de NIProxy in staat stelt de bitrate van dit type netwerk
trafiek te reduceren. Een niet onbelangrijke restrictie van deze dienst is dat hij

290 Dutch Summary

“statisch” is: na opstart kan de configuratie van het transcoding proces niet
meer aangepast worden. Dit impliceert dat alle bitstreams die geproduceerd
worden door een bepaalde instantie van de dienst identieke kwaliteitsparame-
ters en zeer vergelijkbare bandbreedte vereisten zullen vertonen. Ondanks deze
beperking blijkt uit experimentele resultaten dat de dienst interessante moge-
lijkheden inhoudt op het gebied van QoE optimalisatie: daar waar de NIProxy
standaard verplicht zou zijn om de verspreiding van bepaalde video data te
blokkeren tijdens periodes van bandbreedte schaarste (wat zou inhouden dat
een gedeelte van de video trafiek zijn bestemming niet zou bereiken), wordt
het nu regelmatig mogelijk om de data alsnog af te leveren, zij het in lagere
kwaliteit. Een “dynamische” variant van deze dienst, ditmaal echter gericht
op H.264/AVC video, wordt ook gepresenteerd. Deze dienst ondersteunt met
andere woorden het transformeren van H.264/AVC data naar een willekeurige
en dynamisch aanpasbare bitrate. Er wordt getoond, opnieuw via experi-
mentele evaluatie, dat de dienst extra flexibiliteit introduceert in vergelijking
met zijn statische voorganger en alzo bijkomende opties met zich meebrengt
wat betreft het verbeteren van de gebruikerservaring, bijvoorbeeld door de
NIProxy toe te laten de beschikbare netwerk bandbreedte op een volledigere
en efficiëntere manier te benutten. Een laatste voorbeeld is de Forward Error
Correction (FEC) dienst dewelke redundantie toevoegt aan netwerk trafiek om
de ontvanger in staat te stellen data corruptie en zelfs het verlies van data dat
opgelopen wordt tijdens netwerk transmissie (enigszins) te verhelpen. Derge-
lijke problemen treden relatief frequent op in draadloze omgevingen omwille
van interferentie of ruis op het communicatie kanaal. Via een video distributie
applicatie wordt het experimenteel bewezen dat corrupte of ontbrekende data
een aanzienlijk negatieve invloed kan hebben op de gebruikerservaring en dat
de FEC dienst dus een waardevolle toevoeging vormt aan de functionaliteit
van de NIProxy.

Zowel de NTS als de dienstverlening gereedschappen zijn context-bewust en
context-adaptief aangezien ze beide ongebreidelde toegang hebben tot de con-
text databank van de NIProxy. Door bij het opstellen van de stroom hiërarchie
rekening te houden met contextuele kennis, zal deze informatie automatisch
een rol spelen tijdens het beheren en alloceren van de netwerk bandbreedte.
Diensten kunnen dan weer hun werking afstellen op de huidige context, wat op
zijn beurt ervoor zal zorgen dat de operaties die ze uitvoeren effectief zullen
leiden tot een verbetering van de ervaring van de eindgebruiker.

Een definiërend kenmerk van de NIProxy is dat het twee gereedschappen
voor de manipulatie van netwerk trafiek in één enkel systeem combineert en dat
het dit bovendien op zo een manier doet dat interactie en collaboratie tussen
beide technieken ondersteund is. In plaats van de NTS en dienstverlening

291

mechanismen als gëısoleerde elementen te implementeren, wordt er gekozen
voor een gëıntegreerde oplossing waarbij beide technieken in staat gesteld wor-
den samen te werken tijdens QoE manipulatie. Dit resulteert in een symbiose:
dankzij de mogelijkheid tot collaboratie wordt het QoE optimalisatie poten-
tieel van de individuele gereedschappen en dus ook dat van de NIProxy in zijn
geheel aanzienlijk uitgebreid. De interactieve aanpak evenals de voordelen die
eruit voortvloeien wat betreft het beheer van de gebruikerservaring, worden
gëıllustreerd door elk van de drie diensten die in de vorige paragraaf werden
aangehaald. Deze diensten introduceren elk een nieuw soort netwerk trafiek
en maken daarom gebruik van hun interface met het NTS mechanisme om
het te informeren over het bestaan van deze trafiek en over haar vereisten in
termen van netwerk bandbreedte. Zodra dit is gebeurd, zal de aangeleverde
informatie in overweging genomen worden tijdens bandbreedte bemiddeling.
Omgekeerd consulteren de aangehaalde diensten het NTS raamwerk om zich
ervan te vergewissen of ze hun functionaliteit moeten toepassen op onder-
schepte data en, zo ja, op welke manier. Merk op dat dit inhoudt dat het QoE
optimalisatie profijt dat geassocieerd is met elk van de besproken diensten
niet enkel de verdienste is van de functionaliteit die ze implementeren maar,
net zo belangrijk, ook van hun correcte interactie met het NTS mechanisme.
Op deze manier bewijzen ze impliciet dat de NIProxy’s gëıntegreerde aanpak
voor de manipulatie van netwerk trafiek resulteert in een QoE optimalisa-
tie performantie en potentieel die ruimschoots de mogelijkheden overschrijden
die bereikt kunnen worden wanneer beide gereedschappen losstaand toegepast
worden.

De software architectuur van de NIProxy is voldoende flexibel zodat de
aangeboden technieken voor de coördinatie van netwerk trafiek toegepast kun-
nen worden op zowel data die bestemd is voor een gebruiker die beheerd
wordt door de NIProxy als op de data die door een dergelijke gebruiker zelf
gëınjecteerd wordt in het netwerk. Het ligt voor de hand dat de eerste optie een
substantiële en onmiddellijke impact heeft op de QoE die ervaren wordt door
de beheerde eindgebruiker. Experimentele resultaten bevestigen dat ook de
tweede mogelijkheid potentieel vertoont wat betreft QoE optimalisatie. Meer
zelfs, het manipuleren van de data die een eindgebruiker zelf uitstuurt, houdt
QoE optimalisatie mogelijkheden in op twee fronten: niet enkel de bron van
de data profiteert van dergelijke operaties, ook andere gebruikers die mogelijk
niet rechtstreeks door een NIProxy instantie beheerd worden, kunnen er een
positieve invloed van ondervinden.

QoE optimalisatie is een erg uitgebreid onderzoeksdomein. De verzameling
van mogelijke technieken en operaties voor het verbeteren van de gebruikerser-
varing is dermate veelzijdig dat het onrealistisch is te veronderstellen dat een

292 Dutch Summary

individueel systeem ze allemaal zal kunnen voorzien. Een potentiële oplossing
voor dit probleem bestaat eruit meerdere raamwerken, bij voorkeur raamwer-
ken die zich concentreren op complementaire vormen van QoE manipulatie,
te bundelen. Het wordt gedemonstreerd dat de NIProxy open staat voor der-
gelijke initiatieven. Meer bepaald wordt een gelaagd platform voorgesteld
waarin de NIProxy gecombineerd wordt met overlay routering technologie.
Het platform wendt de NIProxy’s faciliteiten voor het beheren van netwerk
trafiek aan om de transmissie van multimediale inhoud over het laatste gedeelte
van een netwerkverbinding (het zogenoemde access netwerk) te optimaliseren,
terwijl de routering functionaliteit gebruikt wordt om veerkracht te bereiken
tegen architecturale problemen in de kern van het netwerk zoals hardware de-
fecten of congestie. Representatieve experimentele resultaten bevestigen dat
het gecombineerde platform slaagt in het toepassen van QoE optimalisatie ope-
raties langsheen bijna de volledige netwerk route tussen bron en bestemming;
enkel het initiële gedeelte van de netwerkverbinding (het access netwerk van de
bron) wordt niet expliciet beschermd. Het platform vormt het resultaat van
een samenwerkingsverband tussen Universiteit Hasselt en Universiteit Gent.

Samengevat contribueert dit proefschrift dus aan drie specifieke onder-
zoeksgebieden. De eerste bijdrage situeert zich in het domein van (applicatie-
laag) QoS voorziening en, meer bepaald, van intra-netwerk manipulatie van
data trafiek. De NIProxy incorporeert namelijk twee gereedschappen, net-
work traffic shaping en dienstverlening, waarmee het de netwerk transmissie
en distributie van (multimediale) data kan bëınvloeden. Ten tweede draagt de
NIProxy bij aan het onderzoek naar het ontwerpen en ontwikkelen van onder-
steunende netwerk infrastructuur en in het bijzonder intelligente intra-netwerk
entiteiten. De belangrijkste verwezenlijking in dit domein is de gëıntegreerde
aanpak waardoor de voorziene QoS gereedschappen in staat gesteld worden
samen te werken, wat op zijn beurt krachtige extra mogelijkheden betreffende
QoE optimalisatie toelaat. Als laatste presenteert dit proefschrift significante
resultaten op het gebied van context-bewuste en context-adaptieve data dis-
seminatie via IPv4-gebaseerde telecommunicatie netwerken en toont het aan
dat dit kan leiden tot een verbetering van de tevredenheid van de gebruiker van
(multimediale) gedistribueerde applicaties. Verschillende experimentele eva-
luaties en studies bevestigen dat de NIProxy in staat is om de gebruikerserva-
ring te verbeteren in uiteenlopende gedistribueerde scenario’s, in dynamische
omgevingen, onder variabele netwerk belasting en te midden van heterogene
soorten netwerk trafiek. Het wordt ook experimenteel bewezen dat de NIProxy
ontvankelijk is voor collaboratie met andere oplossingen voor QoS voorziening
of QoE optimalisatie en dat het aldus kan dienen als bouwsteen voor de con-
structie van omvangrijkere raamwerken.

293

Tenslotte loont het de moeite de onderwerpen te onderstrepen die door
deze thesis niet behandeld worden. De NIProxy is niet begaan met (me-
thoden voor) QoE meting of met het QoE concept op zichzelf. Daarnaast
bespreekt deze dissertatie evenmin het verzamelen van kwalitatieve feedback
via het organiseren van gebruikerstesten. Als laatste wordt het benadrukt
dat de NIProxy geen kant-en-klare oplossing is voor QoE optimalisatie maar
eerder een QoE manipulatie raamwerk wiens effectieve gedrag afgestemd dient
te worden op de omgeving waarin het gëıntroduceerd wordt, de gedistribueerde
applicatie waarop de QoE manipulatie van toepassing is en mogelijk een hele
resem additionele contextuele parameters. Dit houdt in dat het simpelweg in-
stalleren van een aantal NIProxy instanties in een computer netwerk geenszins
een garantie is voor succes. Het houdt eveneens in dat de absolute waardes van
de experimentele resultaten die gepresenteerd worden in dit proefschrift van
ondergeschikt belang zijn; de experimenten en studies hebben eerder als doel
de mogelijkheden van de NIProxy op het gebied van het optimaliseren van de
gebruikerservaring te demonstreren. De resultaten worden om deze reden niet
onderworpen aan een statistische analyse om hun statistische significantie te
achterhalen.

De technologie achter de NIProxy biedt ruimte voor uitbreiding en een
aantal bijkomende toepassingsgebieden zouden onderzocht kunnen worden.
Zo wordt kennis van het apparaat en de voorkeuren van de eindgebruiker
slechts sporadisch en miniem uitgebuit in de experimenten die besproken wor-
den in dit proefschrift. Het lijkt aangeraden meer aandacht te besteden aan dit
type context tijdens toekomstige experimentele evaluaties. Daarnaast wordt
het verwacht dat de implementatie van extra soorten interne knopen voor de
stroom hiërarchie de NIProxy’s opties betreffende bandbreedte bemiddeling
zou uitbreiden, terwijl de ontwikkeling van nieuwe diensten de veelzijdigheid
en de toepasbaarheid van de NIProxy zou verhogen. Een ander interessant
onderwerp voor toekomstig onderzoek is de combinatie van verschillende NI-
Proxy instanties zodat een hiërarchische of gelaagde oplossing voor QoE op-
timalisatie ontstaat waarbij de samenstellende instanties gestructureerd zijn
volgens kind/ouder relaties en dus “gebruikers” van elkaar zijn. Een volgende
mogelijke onderzoekspiste is QoE optimalisatie in draadloze omgevingen. De
NIProxy wordt in deze dissertatie voornamelijk onderzocht in de context van
draad-gebaseerde computer netwerken. Er bestaan heel wat verschillen tussen
beide types netwerken en daarom lijkt een aangepaste, gespecialiseerde aan-
pak voor draadloze omgevingen aangewezen. Tenslotte houdt ook QoE beheer
door middel van mobiele apparatuur zoals laptops en smartphones een groot
aantal mogelijkheden in die verder onderzoek verdienen.

Bibliography

[Abowd 99] Gregory D. Abowd & Anind K. Dey. Towards a Bet-
ter Understanding of Context and Context-Awareness.
In Proceedings of the 1st International Symposium
on Handheld and Ubiquitous Computing (HUC 1999),
pages 304–307, Karlsruhe, Germany, June 1999.

[Aghera 03] Parixit Aghera, Advait Dixit, Ricardo Oliveira &
Vidyut Samanta. Wireless Middleware: Dynamic
Video Transcoding. Project Report CS211, Com-
puter Science Department, UCLA, 2003. http://
compilers.cs.ucla.edu/vids/mws/mws_final.pdf.

[AlRegib 05] Ghassan AlRegib & Yucel Altunbasak. 3TP: An
Application-Layer Protocol for Streaming 3-D Models.
IEEE Transactions on Multimedia, vol. 7, no. 6, pages
1149–1156, December 2005.

[Amir 95] Elan Amir, Steven McCanne & Hui Zhang. An Appli-
cation Level Video Gateway. In Proceedings of the 3rd
ACM International Conference on Multimedia (MUL-
TIMEDIA 1995), pages 255–265, San Francisco, Cali-
fornia, USA, November 1995.

[Amir 97] Elan Amir, Steven McCanne & Randy Katz. Receiver-
driven Bandwidth Adaptation for Light-weight Ses-
sions. In Proceedings of the 5th ACM International
Conference on Multimedia (MULTIMEDIA 1997),

http://compilers.cs.ucla.edu/vids/mws/mws_final.pdf
http://compilers.cs.ucla.edu/vids/mws/mws_final.pdf

296 BIBLIOGRAPHY

pages 415–426, Seattle, Washington, USA, November
1997.

[Amir 98] Elan Amir, Steven McCanne & Randy Katz. An Ac-
tive Service Framework and its Application to Real-
time Multimedia Transcoding. In Proceedings of the
ACM SIGCOMM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication (SIGCOMM 1998), pages 178–189,
Vancouver, Canada, September 1998.

[Andersen 00] David Andersen, Deepak Bansal, Dorothy Curtis,
Srinivasan Seshan & Hari Balakrishnan. System Sup-
port for Bandwidth Management and Content Adap-
tation in Internet Applications. In Proceedings of the
4th Symposium on Operating Systems Design and Im-
plementation (OSDI 2000), pages 213–226, San Diego,
California, USA, October 2000.

[Andersen 01] David Andersen, Hari Balakrishnan, Frans Kaashoek
& Robert Morris. Resilient Overlay Networks. In
Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles (SOSP 2001), pages 131–145,
Banff, Canada, October 2001.

[Anjum 99] Farooq M. Anjum & Leandros Tassiulas. Fair Band-
width Sharing among Adaptive and Non-Adaptive
Flows in the Internet. In Proceedings of the 18th
IEEE Conference on Computer Communications (IN-
FOCOM 1999), pages 1412–1420, New York, New
York, USA, March 1999.

[ARIN 08] ARIN. American Registry for Internet Num-
bers (ARIN) and the Cooperative Association
for Internet Data Analysis (CAIDA): IPv6
Penetration Survey Results. Presented at the
ARIN XXI meeting, available online at https:
//www.arin.net/participate/meetings/reports/
ARIN_XXI/PDF/monday/IPv6_Survey_KC.pdf, April
2008.

[Arora 09] Roman Arora, Vangelis Metsis, Rong Zhang & Fillia
Makedon. Providing QoS in Ontology Centered Con-

https://www.arin.net/participate/meetings/reports/ARIN_XXI/PDF/monday/IPv6_Survey_KC.pdf
https://www.arin.net/participate/meetings/reports/ARIN_XXI/PDF/monday/IPv6_Survey_KC.pdf
https://www.arin.net/participate/meetings/reports/ARIN_XXI/PDF/monday/IPv6_Survey_KC.pdf

BIBLIOGRAPHY 297

text Aware Pervasive Systems. In Proceedings of the
2nd International Conference on PErvsive Technolo-
gies Related to Assistive environments (PETRA 2009),
pages 1–8, Corfu, Greece, June 2009.

[Balakrishnan 99] Hari Balakrishnan, Hariharan S. Rahul & Srinivasan
Seshan. An Integrated Congestion Management Ar-
chitecture for Internet Hosts. ACM SIGCOMM Com-
puter Communication Review, vol. 29, no. 4, pages
175–187, October 1999.

[Bandel 01] David A. Bandel. Taming the Wild Netfilter. On-
line, http://www.linuxjournal.com/article/4815,
September 2001.

[Banka 07] Tarun Banka, Panho Lee, Anura P. Jayasumana &
Jim Kurose. An Architecture and a Programming
Interface for Application-Aware Data Dissemination
Using Overlay Networks. In Proceedings of the 2nd
IEEE International Conference on COMmunication
System softWAre and MiddlewaRE (COMSWARE
2007), Bangalore, India, January 2007.

[Barrett 01] Lisa F. Barrett & Daniel J. Barrett. An Introduction
to Computerized Experience Sampling in Psychology.
Social Science Computer Review, vol. 19, no. 2, pages
175–185, Summer 2001.

[Barry 03] Douglas K. Barry. Web Services and Service-Oriented
Architectures: The Savvy Manager’s Guide. Morgan
Kaufmann, 2003.

[Beauregard 07] Russell Beauregard & Philip Corriveau. User Experi-
ence Quality: A Conceptual Framework for Goal Set-
ting and Measurement. In Proceedings of 1ste In-
ternational Conference on Digital Human Modeling
(ICDHM 2007), pages 325–332, Beijing, China, July
2007.

[Blake 98] Steven Blake, David L. Black, Mark A. Carlson, El-
wyn Davies, Zheng Wang & Walter Weiss. An Archi-
tecture for Differentiated Services. RFC 2475, Inter-

http://www.linuxjournal.com/article/4815

298 BIBLIOGRAPHY

net Engineering Task Force, December 1998. http:
//www.ietf.org/rfc/rfc2475.txt.

[Boier-Martin 03] Ioana M. Boier-Martin. Adaptive Graphics. IEEE
Computer Graphics and Applications, vol. 23, no. 1,
pages 6–10, January 2003.

[Bolla 08] Raffaele Bolla, Matteo Repetto, Saar De Zutter, Rik
Van de Walle, Stefano Chessa, Francesco Furfari,
Bernhard Reiterer, Hermann Hellwagner, Mark As-
bach & Mathias Wien. A Context-Aware Architecture
for QoS and Transcoding Management of Multimedia
Streams in Smart Homes. In Proceedings of 13th IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA 2008), pages 1354–
1361, Hamburg, Germany, September 2008.

[Bolot 99] Jean-Chrysostome Bolot, Sacha Fosse-Parisis & Don
Towsley. Adaptive FEC-Based Error Control for In-
ternet Telephony. In Proceedings of 18th IEEE Con-
ference on Computer Communications (INFOCOM
1999), pages 1453–1460, New York, New York, USA,
March 1999.

[Braden 94] Rob Braden, Dave Clark & Scott Shenker. Integrated
Services in the Internet Architecture: an Overview.
RFC 1633, Internet Engineering Task Force, June
1994. http://www.ietf.org/rfc/rfc1633.txt.

[Braden 97] Rob Braden, Lixia Zhang, Steve Berson, Shai Her-
zog & Sugih Jamin. Resource ReSerVation Proto-
col (RSVP). RFC 2205, Internet Engineering Task
Force, September 1997. http://www.ietf.org/rfc/
rfc2205.txt.

[Bush 01] Stephen F. Bush & Amit B. Kulkarni. Active Net-
works and Active Network Management: A Proactive
Management Framework. Kluwer Academic Publish-
ers, 2001.

[But 08] Jason But, Grenville Armitage & Lawrence Stewart.
Outsourcing Automated QoS Control of Home Routers

http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt

BIBLIOGRAPHY 299

for a Better Online Game Experience. IEEE Com-
munications Magazine, vol. 46, no. 12, pages 64–70,
December 2008.

[Cai 08] Wen-Yu Cai & Hai-Bo Yang. A Hierarchical QoS
Framework for Wireless Multimedia Network. In Pro-
ceedings of the International Conference on Communi-
cations, Circuits And Systems (ICCCAS 2008), pages
732–736, Fujian, China, May 2008.

[Cardinaels 06] Maarten Cardinaels, Geert Vanderhulst, Maarten Wi-
jnants, Chris Raymaekers, Kris Luyten & Karin Con-
inx. Seamless Interaction between Multiple Devices
and Meeting Rooms. In Proceedings of the CHI Work-
shop on Information Visualization and Interaction
Techniques for Collaboration across Multiple Displays
(IVITCMD 2006), Montreal, Canada, April 2006.

[Chandra 00] Surendar Chandra, Carla Schlatter Ellis & Amin Vah-
dat. Differentiated Multimedia Web Services Using
Quality Aware Transcoding. In Proceedings of the
19th IEEE Conference on Computer Communications
(INFOCOM 2000), pages 961–969, Tel Aviv, Israel,
March 2000.

[Chen 04] Lei Chen & Wendi Heinzelman. Network Architec-
ture to Support QoS in Mobile Ad Hoc Networks. In
Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME 2004), pages 1715– 1718,
Taipei, Taiwan, June 2004.

[Clark 92] David D. Clark, Scott Shenker & Lixia Zhang. Sup-
porting Real-Time Applications in an Integrated Ser-
vices Packet Network: Architecture and Mechanism.
In Proceedings of the ACM SIGCOMM Conference on
Communications Architectures and Protocols (SIG-
COMM 1992), pages 14–26, Baltimore, Maryland,
USA, August 1992.

[Creemers 09] Tomas Creemers. Detecteren, Representeren en Uit-
buiten van de Mogelijkheden van het Apparaat van de
Eind-Gebruiker. Master’s thesis, Hasselt University,
June 2009.

300 BIBLIOGRAPHY

[D-Link 10] D-Link. The D-Link DGL-4500 Xtreme N Gaming
Router Product Page. Online, http://www.dlink.
com/products/?pid=643, 2010.

[DARPA 10] DARPA. The Defense Advanced Research Projects
Agency Homepage. Online, http://www.darpa.mil/,
2010.

[De Marez 09] Lieven De Marez & Katrien De Moor. The Chal-
lenge of User- and QoE-Centric Research and Product
Development in Today’s ICT-Environment, pages 56–
78. Chapter in “ICT for Development. Prospects and
Problems”. The Icfai University Press, 2009.

[De Silva 99] Ranil De Silva, Björn Landfeldt, Sebastien Ar-
don, Aruna Seneviratne & Christophe Diot. Man-
aging Application Level Quality of Service through
TOMTEN. Computer Networks - The International
Journal of Computer and Telecommunications Net-
working, vol. 31, no. 7, pages 727–739, April 1999.

[De Vleeschauwer 04] Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt &
Piet Demeester. On the Construction of QoS Enabled
Overlay Networks. In Quality of Future Internet Ser-
vices (QofIS 2004), volume 3266 of Lecture Notes in
Computer Science, pages 164–173, Barcelona, Spain,
September 2004.

[De Vleeschauwer 06] Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt
& Piet Demeester. Dynamic Algorithms to Provide a
Robust and Scalable Overlay Routing Service. In Pro-
ceedings of the 20th IEEE International Conference
on Information Networking (ICOIN 2006), pages 945–
954, Sendai, Japan, January 2006.

[De Vleeschauwer 07a] Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt
& Piet Demeester. Online Management of QoS En-
abled Overlay Multicast Services. In Proceedings
of the IEEE Global Telecommunications Conference
(GLOBECOM 2007), San Fransisco, California, USA,
November 2007.

http://www.dlink.com/products/?pid=643
http://www.dlink.com/products/?pid=643
http://www.darpa.mil/

BIBLIOGRAPHY 301

[De Vleeschauwer 07b] Bart De Vleeschauwer, Pieter Simoens, Wim Van de
Meerssche, Filip De Turck, Bart Dhoedt, Piet De-
meester, Kris Struyve, Tom Van Caenegem, Edith
Gilon, Hans Dequeker & Erwin Six. Enabling Au-
tonomic Access Network QoE Management Through
TCP Connection Monitoring. In Proceedings of the
1st IEEE Workshop on Autonomic Communications
and Network Management (ACNM 2007), Munich,
Germany, May 2007.

[De Vleeschauwer 08a] Bart De Vleeschauwer. Quality Optimization of Multi-
media Services through Overlay Networks. PhD thesis,
Ghent University, Department of Information Technol-
ogy (INTEC), 2008.

[De Vleeschauwer 08b] Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt,
Piet Demeester, Maarten Wijnants & Wim Lamotte.
End-to-end QoE Optimization Through Overlay Net-
work Deployment. In Proceedings of the 22nd IEEE
International Conference on Information Networking
(ICOIN 2008), Busan, Korea, January 2008.

[De Vleeschauwer 10] Bart De Vleeschauwer, Filip De Turck, Bart Dhoedt
& Piet Demeester. Dynamic Overlay Networks for
Robust and Scalable Routing. In Handbook of Re-
search on P2P and Grid Systems for Service-Oriented
Computing: Models, Methodologies and Applications,
pages 543–565. Information Science Publishing, Jan-
uary 2010.

[Deryckere 08] Tom Deryckere, Wout Joseph, Luc Martens, Lieven
De Marez, Katrien De Moor & Katrien Berte. A Soft-
ware Tool to Relate Technical Performance to User
Experience in a Mobile Context. In Proceedings of
the 9th IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoW-
MoM 2008), pages 673–678, Newport Beach, Califor-
nia, USA, June 2008.

[Dey 08] Sujit Dey. Mobile Video Streaming Quality and
System Design for QoE. EE Times India,
available online at http://www.eetindia.co.in/

http://www.eetindia.co.in/ART_8800546515_1800005_TA_9482845d.HTM
http://www.eetindia.co.in/ART_8800546515_1800005_TA_9482845d.HTM

302 BIBLIOGRAPHY

ART_8800546515_1800005_TA_9482845d.HTM, Octo-
ber 2008.

[Dovrolis 99] Constantinos Dovrolis & Parameswaran Ramanathan.
A Case for Relative Differentiated Services and the
Proportional Differentiation Model. IEEE Network,
vol. 13, no. 5, pages 26–34, September/October 1999.

[Dovrolis 08] Constantine Dovrolis. What Would Darwin Think
about Clean-Slate Architectures? ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1,
pages 29–34, January 2008.

[Eberle 05] Wolfgang Eberle, Bruno Bougard, Sofie Pollin &
Francky Catthoor. From Myth to Methodology: Cross-
Layer Design for Energy-Efficient Wireless Commu-
nication. In Proceedings of the 42nd Annual Design
Automation Conference (DAC 2005), pages 303–308,
Anaheim, California, USA, June 2005.

[Feamster 03] Nick Feamster, David G. Andersen, Hari Balakrishnan
& M. Frans Kaashoek. Measuring the Effects of Inter-
net Path Faults on Reactive Routing. In Proceedings
of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems,
pages 126–137, San Diego, California, USA, June 2003.

[FFMPEG 10] FFMPEG. The FFMPEG Homepage. Online, http:
//ffmpeg.org/, 2010.

[Filho 06] Fernando Silveira Filho, Edson H. Watanabe & Ed-
mundo de Souza e Silva. Adaptive Forward Error Cor-
rection for Interactive Streaming Over the Internet. In
Proceedings of the 49th IEEE Global Telecommunica-
tions Conference (GLOBECOM 2006), pages 1–6, San
Francisco, California, USA, November 2006.

[Floyd 95] Sally Floyd & Van Jacobson. Link-sharing and
Resource Management Models for Packet Networks.
IEEE/ACM Transactions on Networking, vol. 3, no. 4,
pages 365–386, August 1995.

http://www.eetindia.co.in/ART_8800546515_1800005_TA_9482845d.HTM
http://www.eetindia.co.in/ART_8800546515_1800005_TA_9482845d.HTM
http://ffmpeg.org/
http://ffmpeg.org/

BIBLIOGRAPHY 303

[Foster 04] Ian Foster, Markus Fidler, Alain Roy, Volker Sander
& Linda Winkler. End-to-End Quality of Service for
High-End Applications. Computer Communications,
vol. 27, no. 14, pages 1375–1388, September 2004.

[Fox 96] Armando Fox, Steven D. Gribble, Eric A. Brewer &
Elan Amir. Adapting to Network and Client Variability
via On-Demand Dynamic Distillation. ACM SIGOPS
Operating Systems Review, vol. 30, no. 5, pages 160–
170, December 1996.

[Fox 98] Armando Fox, Steven D. Gribble, Yatin Chawathe &
Eric A. Brewer. Adapting to Network and Client Vari-
ation Using Active Proxies: Lessons and Perspectives.
IEEE Personal Communications, vol. 5, no. 4, pages
10–19, August 1998.

[Froehlich 07] Jon Froehlich, Mike Y. Chen, Sunny Consolvo, Bev-
erly Harrison & James A. Landay. MyExperience: A
System for In Situ Tracing and Capturing of User
Feedback on Mobile Phones. In Proceedings of the 5th
International Conference on Mobile Systems, Applica-
tions and Services (MobiSys 2007), pages 57–70, San
Juan, Puerto Rico, June 2007.

[Frossard 01] Pascal Frossard & Olivier Verscheure. Joint
Source/FEC Rate Selection for Quality-Optimal
MPEG-2 Video Delivery. IEEE Transactions on Image
Processing, vol. 10, no. 12, pages 1815–1825, Decem-
ber 2001.

[Furini 01] Marco Furini & Donald Towsley. Real-Time Traffic
Transmission over the Internet. IEEE Transactions on
Multimedia, vol. 3, no. 1, pages 33–40, March 2001.

[Gavrilovska 05] Ada Gavrilovska, Sanjay Kumar, Srikanth Sun-
daragopalan & Karsten Schwan. Platform Overlays:
Enabling In-Network Stream Processing in Large-scale
Distributed Applications. In Proceedings of the 15th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSS-
DAV 2005), pages 171–176, Stevenson, Washington,
USA, 2005.

304 BIBLIOGRAPHY

[Gelas 00] Jean-Patrick Gelas & Laurent Lefèvre. TAMANOIR:
A High Performance Active Network Framework. In
Proceedings of the 2nd Annual Workshop on Ac-
tive Middleware Services (AMS 2000), pages 105–114,
Pittsburgh, Pennsylvania, USA, August 2000.

[Gilon - de Lumley 07] Edith Gilon - de Lumley, Jeroen Hoet, Hans Dequeker,
Raf Huysegems, Erwin Six, Wim Van de Meerssche,
Pieter Simoens, Bart De Vleeschauwer, Cristina Pena,
Bjoern Nagel & Peter Vetter. Service Rich Access Net-
works: The Service Plane Solution. In Proceedings
of BroadBand Europe, Antwerp, Belgium, December
2007.

[Gimson 03] Roger Gimson, Shlomit Ritz Finkelstein, Stéphane
Maes & Lalitha Suryanarayana. Device Indepen-
dence Principles. W3C Working Group Note,
W3C, September 2003. http://www.w3.org/TR/
2003/NOTE-di-princ-20030901/.

[Gruenen 06] Jana Van Gruenen, Yury Markovsky, Chris R. Baker,
Jan Rabaey, John Wawrzynek & Adam Wolisz.
ZUMA: A Platform for Smart-Home Environments,
The Case for Infrastructure. In Proceedings of the
2nd International Conference on Intelligent Environ-
ments (IE 2006), pages 257–266, Athens, Greece, July
2006.

[GT NPG 10] GT NPG. The Georgia Tech Network Proces-
sors Group Homepage. Online, http://www.cercs.
gatech.edu/projects/npg/index.html, 2010.

[Gupta 02] Rajarshi Gupta, Mike Chen, Steven McCanne & Jean
Walrand. A Receiver-Driven Transport Protocol for
the Web. Telecommunication Systems, vol. 21, no. 2,
pages 213–230, December 2002.

[Hemminger 05] Stephen Hemminger. Network Emulation with NetEm.
In Proceedings of linux.conf.au (LCA 2005), Canberra,
Australia, April 2005.

[Hnatyshin 06] Vasil Hnatyshin & Adarshpal S. Sethi. Architecture
for Dynamic and Fair Distribution of Bandwidth. In-

http://www.w3.org/TR/2003/NOTE-di-princ-20030901/
http://www.w3.org/TR/2003/NOTE-di-princ-20030901/
http://www.cercs.gatech.edu/projects/npg/index.html
http://www.cercs.gatech.edu/projects/npg/index.html

BIBLIOGRAPHY 305

ternational Journal of Network Management, vol. 16,
no. 5, pages 317–336, September/October 2006.

[Hoppe 96] Hugues Hoppe. Progressive Meshes. In Proceedings
of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 1996), pages
99–108, New Orleans, Louisiana, USA, August 1996.

[Huston 00] Geoff Huston. Next Steps for the IP QoS Architecture.
RFC 2990, Internet Engineering Task Force, Novem-
ber 2000. http://www.ietf.org/rfc/rfc2990.txt.

[IETF 10] IETF. The Internet Engineering Task Force Home-
page. Online, http://www.ietf.org/, 2010.

[ISO/IEC 02] ISO/IEC. ISO/IEC 21000-1: Information Technol-
ogy — Multimedia Framework (MPEG-21) — Part 1:
Vision, Technologies and Strategy. Technical report,
ISO, 2002.

[ISO/IEC 04] ISO/IEC. ISO/IEC 21000-7: Information Technol-
ogy — Multimedia Framework (MPEG-21) — Part 7:
Digital Item Adaptation. Technical report, ISO, 2004.

[Jacobs 98] Stephen Jacobs, Alexandros Eleftheriadis & Ros Eleft-
heriadis. Streaming Video using Dynamic Rate Shap-
ing and TCP Congestion Control. Journal of Vi-
sual Communication and Image Representation, vol. 9,
no. 3, pages 211–222, September 1998.

[Jain 05] Manish Jain & Constantinos Dovrolis. End-to-end Es-
timation of the Available Bandwidth Variation Range.
In Proceedings of the ACM International Conference
on Measurements and Modeling of Computer Systems
(SIGMETRICS 2005), pages 265–276, Banff, Canada,
June 2005.

[Jehaes 04a] Tom Jehaes, Peter Quax & Wim Lamotte. Analy-
sis of Scalable Data Streams for Representations in
Networked Virtual Environments. In Proceedings of
the ACM SIGCOMM Workshop on Network and Sys-
tem Support for Games (NETGAMES 2004), Port-
land, Oregon, USA, August 2004.

http://www.ietf.org/rfc/rfc2990.txt
http://www.ietf.org/

306 BIBLIOGRAPHY

[Jehaes 04b] Tom Jehaes, Peter Quax, Patrick Monsieurs & Wim
Lamotte. Hybrid Representations to Improve Both
Streaming and Rendering of Dynamic Networked Vir-
tual Environments. In Proceedings of the ACM SIG-
GRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry (VRCAI
2004), pages 26–32, Singapore, June 2004.

[Jehaes 08] Tom Jehaes. Efficient Representation, Transmission
and Rendering of Networked 3D Virtual Environments
on Desktop and Mobile Systems. PhD thesis, Hasselt
University, Expertise centre for Digital Media (EDM),
2008.

[Kassler 01] Andreas Kassler, Christian Kücherer & Andreas
Schrader. Adaptive Wavelet Video Filtering. In Pro-
ceedings of the 2nd International Workshop on Quality
of Future Internet Services (QofIS 2001), pages 32–44,
Coimbra, Portugal, September 2001.

[Kassler 03] Andreas Kassler & Andreas Schorr. Generic QoS
Aware Media Stream Transcoding and Adaptation. In
Proceedings of the 13th IEEE Packet Video Workshop
(PV 2003), Nantes, France, April 2003.

[Knutsson 03] Björn Knutsson, Honghui Lu, Jeffrey Mogul & Bryan
Hopkins. Architecture and Performance of Server-
Directed Transcoding. ACM Transactions on Internet
Technology, vol. 3, no. 4, pages 392–424, November
2003.

[Kohler 00] Eddie Kohler, Robert Morris, Benjie Chen, John Jan-
notti & M. Frans Kaashoek. The Click Modular
Router. ACM Transactions on Computer Systems,
vol. 18, no. 3, pages 263–297, August 2000.

[Kumar 03] Rajeev Kumar. A Protocol with Transcoding to Sup-
port QoS over Internet for Multimedia Traffic. In Pro-
ceedings of the IEEE International Conference on Mul-
timedia and Expo (ICME 2003), pages 465–468, Bal-
timore, Maryland, USA, July 2003.

BIBLIOGRAPHY 307

[Kumar 05] Kshitij Kumar. A Marriage Made in QoE Heaven:
Flow-Based IP and PacketCable Multimedia. CED
Magazine, July 2005.

[Kusmierek 02] Ewa Kusmierek, Baek-Young Choi, Zhenhai Duan &
Zhi-Li Zhang. An Integrated Network Resource and
QoS Management Framework. In Proceedings of the
IEEE Workshop on IP Operations and Management
(IPOM 2002), pages 68–72, Dallas, Texas, USA, Oc-
tober 2002.

[Lefèvre 01] Laurent Lefèvre, Cong duc Pham, Pascale
Primet, Bernard Tourancheau, Benjamin Gaid-
ioz, Tourancheaubenjamin Gaidioz, Jean-Patrick
Gelas & Moufida Maimour. Active Networking Sup-
port for The Grid. In Proceedings of the IFIP-TC6
3rd International Working Conference on Active
Networks (IWAN 2001), pages 16–33, Philadelphia,
Pennsylvania, USA, October 2001.

[Legedza 98] Ulana Legedza, David J. Wetherall & John Guttag.
Improving the Performance of Distributed Applica-
tions Using Active Networks. In Proceedings of the
17th IEEE Conference on Computer Communications
(INFOCOM 1998), pages 590–599, San Francisco, Cal-
ifornia, USA, April 1998.

[Lei 03] Zhijun Lei & Nicolas D. Georganas. Video Transcoding
Gateway For Wireless Video Access. In Proceedings
of the IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE 2003), pages 1775–
1778, Montreal, Canada, May 2003.

[Li 04] Zhi Li & Prasant Mohapatra. QRON: QoS-aware
Routing in Overlay Networks. IEEE Journal on Se-
lected Areas in Communications, vol. 22, no. 1, pages
29–40, January 2004.

[Li 06] Hui Li, Ming Li & Balakrishnan Prabhakaran. Middle-
ware for Streaming 3D Progressive Meshes over Lossy
Networks. ACM Transactions on Multimedia Comput-
ing, Communications and Applications, vol. 2, no. 4,
pages 282–317, November 2006.

308 BIBLIOGRAPHY

[Li 07] Adam Li. RTP Payload Format for Generic Forward
Error Correction. RFC 5109, Internet Engineering
Task Force, December 2007. http://www.ietf.org/
rfc/rfc5109.txt.

[Liang 05] Jin Liang & Klara Nahrstedt. Service Composition for
Advanced Multimedia Applications. In Proceedings of
the 12th Annual Multimedia Computing and Network-
ing Conference (MMCN’05), pages 228–240, San Jose,
California, USA, January 2005.

[Lin 04a] Ching-Yung Lin, Apostol Natsev, Belle L. Tseng,
Matthew Hill, John R. Smith & Chung-Sheng Li. Con-
tent Transcoding Middleware for Pervasive Geospatial
Intelligence Access. In Proceedings of the IEEE Inter-
national Conference on Multimedia and Expo (ICME
2004), Taipei, Taiwan, June 2004.

[Lin 04b] Shu Lin & Daniel J. Costello. Error Control Coding.
Prentice-Hall, 2nd edition, 2004.

[Lum 02] Wai Yip Lum & Francis Lau. A Context-Aware Deci-
sion Engine for Content Adaptation. IEEE Pervasive
Computing, vol. 1, no. 3, pages 41–49, July-September
2002.

[Lyijynen 03] Marko Lyijynen, Titta Koskinen, Sami Lehtonen &
Juuso Pesola. Content Adaptation on LANE Active
Network Platform. In Proceedings of the 7th Inter-
national Conference on Telecommunications (ConTEL
2003), pages 11–14, Zagreb, Croatia, June 2003.

[Maheshwari 02] Anuj Maheshwari, Aashish Sharma, Krithi Ramam-
ritham & Prashant Shenoy. TranSquid: Transcoding
and Caching Proxy for Heterogenous E-Commerce En-
vironments. In Proceedings of the 12th IEEE Interna-
tional Workshop on Research Issues in Data Engineer-
ing (RIDE 2002), pages 50–59, San Jose, California,
USA, February 2002.

[Mankin 97] Allison Mankin, Fred Baker, Bob Braden, Scott Brad-
ner, Michael O’Dell, Allyn Romanow, Abel Weinrib
& Lixia Zhang. RSVP Applicability and Deployment.

http://www.ietf.org/rfc/rfc5109.txt
http://www.ietf.org/rfc/rfc5109.txt

BIBLIOGRAPHY 309

RFC 2208, Internet Engineering Task Force, Septem-
ber 1997. http://www.ietf.org/rfc/rfc2208.txt.

[Marcus 98] William S. Marcus, Ilija Hadzic, Anthony J. McAuley
& Jonathan M. Smith. Protocol Boosters: Applying
Programmability to Network Infrastructures. IEEE
Communications Magazine, vol. 36, no. 10, pages 79–
83, October 1998.

[Martin 00] Ioana M. Martin. ARTE - An Adpative Rendering
and Transmission Environment for 3D Graphics. In
Proceedings of the 8th ACM International Conference
on Multimedia (MULTIMEDIA 2000), pages 413–415,
Los Angeles, California, USA, November 2000.

[Martin 02] Ioana M. Martin. Hybrid Transcoding for Adap-
tive Transmission of 3D Content. In Proceedings
of the IEEE International Conference on Multimedia
and Expo (ICME 2002), pages 373– 376, Lausanne,
Switzerland, August 2002.

[Mohan 99] Rakesh Mohan, John R. Smith & Chung-Sheng Li.
Adapting Multimedia Internet Content for Universal
Access. IEEE Transactions on Multimedia, vol. 1,
no. 1, pages 104–114, March 1999.

[Monsieurs 05] Patrick Monsieurs, Maarten Wijnants & Wim Lam-
otte. Client-controlled QoS Management in Networked
Virtual Environments. In Proceedings of the 4th Inter-
national Conference on Networking (ICN 2005), pages
268–276, Reunion Island, April 2005.

[Moon 05] Todd K. Moon. Error Correction Coding: Mathe-
matical Methods and Algorithms. Wiley-Interscience,
2005.

[Mulder 05] Ingrid Mulder, Henri ter Hofte & Joke Kort. SocioXen-
sor: Measuring User Behaviour and User Experience
in Context with Mobile Devices. In Proceedings of the
5th International Conference on Methods and Tech-
niques in Behavioral Research (Measuring Behavior
2005), pages 355–358, Wageningen, the Netherlands,
September 2005.

http://www.ietf.org/rfc/rfc2208.txt

310 BIBLIOGRAPHY

[Mulroy 06] Patrick Mulroy. Application Layer QoS for Videotele-
phony. BT Technology Journal, vol. 24, no. 2, pages
167–173, April 2006.

[MyExperience 10] MyExperience. The MyExperience Homepage. Online,
http://myexperience.sourceforge.net/, 2010.

[Nahrstedt 01] Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul
& Baochun Li. QoS-Aware Middleware for Ubiquitous
and Heterogeneous Environments. IEEE Communica-
tions Magazine, vol. 39, no. 11, pages 140–148, Novem-
ber 2001.

[Nahrstedt 05] Klara Nahrstedt, Bin Yu, Jin Liang & Yi Cui. Hour-
glass Multimedia Content and Service Composition
Framework for Smart Room Environments. Elsevier
Journal on Pervasive and Mobile Computing, vol. 1,
no. 1, pages 43–75, March 2005.

[netem 10] netem. The netem Homepage. Online, http://www.
linuxfoundation.org/en/Net:Netem, 2010.

[Netfilter 10] Netfilter. The Netfilter/iptables Project Homepage.
Online, http://www.netfilter.org/, 2010.

[Niedermeier 03] Christoph Niedermeier, Reiner Schmid, Changpeng
Fan, David Carlson, Andreas Schrader, Andreas
Kassler & Andreas Schorr. MASA - A Scalable QoS
Framework. In Proceedings of the 7th IASTED In-
ternational Conference on Internet and Multimedia
Systems and Applications (IMSA 2003), Honolulu,
Hawaii, USA, August 2003.

[Nielsen 94] Jakob Nielsen. Usability Engineering. Morgan Kauf-
mann, 1994.

[Noble 97] Brian D. Noble, M. Satyanarayanan, Dushyanth
Narayanan, James Eric Tilton, Jason Flinn &
Kevin R. Walker. Agile Application-Aware Adaptation
for Mobility. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles (SOSP 1997),
pages 276–287, Saint-Malo, France, October 1997.

http://myexperience.sourceforge.net/
http://www.linuxfoundation.org/en/Net:Netem
http://www.linuxfoundation.org/en/Net:Netem
http://www.netfilter.org/

BIBLIOGRAPHY 311

[Nokia 04] Nokia. Quality of Experience (QoE) of Mobile Ser-
vices: Can it Be Measured and Improved? White
paper, November 2004.

[Oliveira 00] Manuel M. Oliveira, Gary Bishop & David McAllister.
Relief Texture Mapping. In Proceedings of the 27th
Annual Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 2000), pages 359–368,
New Orleans, Louisiana, USA, July 2000.

[Perkis 06] Andrew Perkis, Solveig Munkeby & Odd I. Hillestad.
A Model for Measuring Quality of Experience. In Pro-
ceedings of the 7th Nordic Signal Processing Sympo-
sium (NORSIG 2006), pages 198–201, Reykjavik, Ice-
land, June 2006.

[Postel 80] Jon Postel. User Datagram Protocol. RFC 768, In-
ternet Engineering Task Force, August 1980. http:
//www.ietf.org/rfc/rfc768.txt.

[Postel 81a] Jon Postel. Internet Protocol. RFC 791, Internet En-
gineering Task Force, September 1981. http://www.
ietf.org/rfc/rfc791.txt.

[Postel 81b] Jon Postel. Transmission Control Protocol. RFC
793, Internet Engineering Task Force, September 1981.
http://www.ietf.org/rfc/rfc793.txt.

[Quax 03] Peter Quax, Tom Jehaes, Pieter Jorissen & Wim
Lamotte. A Multi-User Framework Supporting Video-
Based Avatars. In Proceedings of the 2nd Workshop on
Network and System Support for Games (NetGames
2003), pages 137–147, Redwood City, California, USA,
May 2003.

[Quax 04] Peter Quax, Chris Flerackers, Tom Jehaes & Wim
Lamotte. Scalable Transmission of Avatar Video
Streams in Virtual Environments. In Proceedings of
the IEEE International Conference on Multimedia and
Expo (ICME 2004), pages 631–634, Taipei, Taiwan,
June 2004.

http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt

312 BIBLIOGRAPHY

[Quax 05a] Peter Quax, Tom Jehaes, Maarten Wijnants & Wim
Lamotte. Mobile Adaptations for a Multi-User Frame-
work Supporting Video-Based Avatars. In Proceedings
of the 9th IASTED International Conference on Inter-
net and Multimedia Systems and Applications (IMSA
2005), pages 412–417, Honolulu, Hawaii, USA, August
2005.

[Quax 05b] Peter Quax, Maarten Wijnants, Tom Jehaes & Wim
Lamotte. Bridging the Gap between Fixed and Mo-
bile Access to a Large-Scale NVE Incorporating Both
Audio and Video. In Proceedings of the IASTED In-
ternational Conference on Web Technologies, Appli-
cations, and Services (WTAS 2005), Calgary, Canada,
July 2005.

[Quax 07] Peter Quax. An Architecture for Large-scale Virtual
Interactive Communities. PhD thesis, Hasselt Univer-
sity, Expertise centre for Digital Media (EDM), 2007.

[Rakocevic 01] Veselin Rakocevic, John Griffiths & Graham Cope.
Performance Analysis of Bandwidth Allocation
Schemes in Multiservice IP Networks using Utility
Functions. In Proceedings of the 17th International
Teletraffic Congress (ITC 2001), Salvador da Bahia,
Brazil, December 2001.

[Ramanathan 01] Ananthanarayanan Ramanathan & Manish Parashar.
Active Resource Management for The Differentiated
Services Environment. In Proceedings of the 3rd An-
nual International Workshop on Active Middleware
Services (AMS 2001), pages 78–86, San Francisco, Cal-
ifornia, USA, August 2001.

[Rejaie 01] Reza Rejaie & Jussi Kangasharju. Mocha: A Qual-
ity Adaptive Multimedia Proxy Cache for Internet
Streaming. In Proceedings of the 11th International
Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV 2001),
pages 3–10, Port Jefferson, New York, USA, June
2001.

BIBLIOGRAPHY 313

[Rho 05] Seungmin Rho, Eenjun Hwang & Minkoo Kim. An
Implementation of QoS Adaptive Multimedia Content
Delivery. In Proceedings of the 9th IASTED Interna-
tional Conference on Internet and Multimedia Systems
and Applications (IMSA 2005), pages 316–321, Hon-
olulu, Hawaii, USA, August 2005.

[Rosen 01] Eric C. Rosen, Arun Viswanathan & Ross Callon. Mul-
tiprotocol Label Switching Architecture. RFC 3031, In-
ternet Engineering Task Force, January 2001. http:
//www.ietf.org/rfc/rfc3031.txt.

[Saltzer 84] Jerome H. Saltzer, David P. Reed & David D. Clark.
End-to-End Arguments in System Design. ACM
Transactions on Computer Systems, vol. 2, no. 4,
pages 277–288, November 1984.

[Schill 99] Alexander Schill, Sascha Kümmel, Thomas Springer
& Thomas Ziegert. Two Approaches for an Adaptive
Multimedia Transfer Service for Mobile Environments.
Computers & Graphics, vol. 23, no. 6, pages 849–856,
December 1999.

[Schneider 99] Bengt-Olaf Schneider & Ioana M. Martin. An Adaptive
Framework for 3D Graphics over Networks. Compu-
ters & Graphics, vol. 23, no. 6, pages 867–874, Decem-
ber 1999.

[Schulzrinne 03] Henning Schulzrinne, Stephen L. Casner, Ron Fred-
erick & Van Jacobson. RTP: A Transport Protocol
for Real-Time Applications. RFC 3550, Internet En-
gineering Task Force, July 2003. http://www.ietf.
org/rfc/rfc3550.txt.

[Second Life 10] Second Life. The Second Life Official Website. Online,
http://secondlife.com/, 2010.

[Sels 09] Olivier Sels. Beheren van een Netwerk van Proxy
Servers. Bachelor’s thesis, Hasselt University, June
2009.

[Siller 03a] Mario Siller & John Charles Woods. Improving Qual-
ity of Experience for Multimedia Services by QoS Ar-
bitration on a QoE Framework. In Proceedings of

http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://secondlife.com/

314 BIBLIOGRAPHY

the 13th IEEE Packet Video Workshop (PV 2003),
Nantes, France, April 2003.

[Siller 03b] Mario Siller & John Charles Woods. QoS Arbitration
for Improving the QoE in Multimedia Transmission. In
Proceedings of the International Conference on Visual
Information Engineering (VIE 2003), pages 238–241,
Guildford, United Kingdom, July 2003.

[Simoens 07] Pieter Simoens, Bart De Vleeschauwer, Wim Van de
Meerssche, Filip De Turck, Bart Dhoedt, Piet De-
meester, Tom Van Caenegem, Kris Struyve, Hans De-
queker & Edith Gilon. RTP Connection Monitoring
for Enabling Autonomous Access Network QoS Man-
agement. In Proceedings of the 11th European Confer-
ence on Networks and Optical Communications (NOC
2007), Stockholm, Sweden, July 2007.

[Singhal 99] Sandeep Singhal & Michael Zyda. Networked Virtual
Environments: Design and Implementation. Addison-
Wesley Professional, 1999.

[Soldani 06] David Soldani. Means and Methods for Collecting and
Analyzing QoE Measurements in Wireless Networks.
In Proceedings of the 7th IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM 2006), pages 531–535, Buffalo,
New York, USA, June 2006.

[Sommerville 06] Ian Sommerville. Software Engineering. Addison-
Wesley, 8th edition, 2006.

[Spirent 10] Spirent. The Spirent Homepage. Online, http://www.
spirent.com/, 2010.

[Steenkiste 02] Peter Steenkiste, Prashant Chandra, Jun Gao &
Umair Shah. An Active Networking Approach to Ser-
vice Customization. In Proceedings of the DARPA
Active Networks Conference and Exposition (DANCE
2002), pages 305–318, San Francisco, California, USA,
May 2002.

http://www.spirent.com/
http://www.spirent.com/

BIBLIOGRAPHY 315

[Subramanian 04] Lakshminarayanan Subramanian, Ion Stoica, Hari
Balakrishnan & Randy Katz. OverQoS: An Over-
lay based Architecture for Enhancing Internet QoS. In
Proceedings of the 1st Symposium on Networked Sys-
tems Design and Implementation (NSDI 2004), pages
71–84, San Francisco, California, USA, March 2004.

[Tanenbaum 02] Andrew S. Tanenbaum. Computer Networks. Prentice
Hall PTR, 4th edition, August 2002.

[Tennenhouse 96] David L. Tennenhouse & David J. Wetherall. To-
wards an Active Network Architecture. ACM SIG-
COMM Computer Communication Review, vol. 26,
no. 2, pages 5–18, April 1996.

[Tennenhouse 97] David L. Tennenhouse, Jonathan M. Smith, W. David
Sincoskie, David J. Wetherall & Gary J. Minden. A
Survey of Active Network Research. IEEE Communi-
cations Magazine, vol. 35, no. 1, pages 80–86, January
1997.

[Underwood 01] Todd Underwood. Netfilter and iptables: Stateful
Firewalling for Linux. Tech News on ZDNet, avail-
able online at http://news.zdnet.com/2100-10532_
22-296775.html, October 2001.

[Vanhaverbeke 09] Frederik Vanhaverbeke, Marc Moeneclaey, Koen
Laevens, Natalie Degrande & Danny De Vleeschauwer.
Video Quality Protection Strategies for HDTV in the
Presence of Buffer Overflow. In Proceedings of the
8th International Conference on Networks (ICN 2009),
pages 342–346, Cancun, Mexico, March 2009.

[Vetro 03] Anthony Vetro, Charilaos Christopoulos & Huifang
Sun. Video Transcoding Architectures and Techniques:
An Overview. IEEE Signal Processing Magazine,
vol. 20, no. 2, pages 18–29, March 2003.

[Vetro 05] Anthony Vetro & Christian Timmerer. Digital Item
Adaptation: Overview of Standardization and Re-
search Activities. IEEE Transactions on Multimedia,
vol. 7, no. 3, pages 418–426, June 2005.

http://news.zdnet.com/2100-10532_22-296775.html
http://news.zdnet.com/2100-10532_22-296775.html

316 BIBLIOGRAPHY

[Wetherall 99] David J. Wetherall, John Guttag & David L. Tennen-
house. ANTS: Network Services without the Red Tape.
IEEE Computer, vol. 32, no. 4, pages 42–48, April
1999.

[White 97] Paul P. White. RSVP and Integrated Services in the
Internet: A Tutorial. IEEE Communications Maga-
zine, vol. 35, no. 5, pages 100–106, May 1997.

[Wijnants 05a] Maarten Wijnants & Wim Lamotte. Audio and
Video Communication in Multiplayer Games through
Generic Networking Middleware. In Proceedings of
the 7th International Conference on Computer Games
(CGAMES 2005), pages 52–58, Angoulême, France,
November 2005.

[Wijnants 05b] Maarten Wijnants, Patrick Monsieurs & Wim
Lamotte. Improving the User Quality of Ex-
perience by Incorporating Intelligent Proxies in
the Network. Technical Report TR-UH-EDM-
0502, Expertise centre for Digital Media (EDM),
April 2005. http://research.edm.uhasselt.be/

~mwijnants/pdf/wijnantsTRMSAN.pdf.

[Wijnants 05c] Maarten Wijnants, Patrick Monsieurs, Peter Quax &
Wim Lamotte. Exploiting Proxy-Based Transcoding to
Increase the User Quality of Experience in Networked
Applications. In Proceedings of the 1st International
Workshop on Advanced Architectures and Algorithms
for Internet DElivery and Applications (AAA-IDEA
2005), pages 73–80, Orlando, Florida, USA, June 2005.

[Wijnants 06] Maarten Wijnants, Bart Cornelissen, Wim Lamotte &
Bart De Vleeschauwer. An Overlay Network Providing
Application-Aware Multimedia Services. In Proceed-
ings of the 2nd International Workshop on Advanced
Architectures and Algorithms for Internet DElivery
and Applications (AAA-IDEA 2006), Pisa, Italy, Oc-
tober 2006.

[Wijnants 07] Maarten Wijnants & Wim Lamotte. The NIProxy:
a Flexible Proxy Server Supporting Client Bandwidth

http://research.edm.uhasselt.be/~mwijnants/pdf/wijnantsTRMSAN.pdf
http://research.edm.uhasselt.be/~mwijnants/pdf/wijnantsTRMSAN.pdf

BIBLIOGRAPHY 317

Management and Multimedia Service Provision. In
Proceedings of the 8th IEEE International Sympo-
sium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM 2007), Helsinki, Finland, June
2007.

[Wijnants 08a] Maarten Wijnants, Tom Jehaes, Peter Quax & Wim
Lamotte. Efficient Transmission of Rendering-Related
Data Using the NIProxy. In Proceedings of the
IASTED International Conference on Internet and
Multimedia Systems and Applications (EuroIMSA
2008), Innsbruck, Austria, March 2008.

[Wijnants 08b] Maarten Wijnants & Wim Lamotte. Managing Client
Bandwidth in the Presence of Both Real-Time and
non Real-Time Network Traffic. In Proceedings of
the 3rd IEEE International Conference on COMmu-
nication System softWAre and MiddlewaRE (COM-
SWARE 2008), Bangalore, India, January 2008.

[Wijnants 08c] Maarten Wijnants, Wim Lamotte, Bart De
Vleeschauwer, Filip De Turck, Bart Dhoedt, Piet
Demeester, Peter Lambert, Dieter Van de Walle,
Jan De Cock, Stijn Notebaert & Rik Van de Walle.
Optimizing User QoE through Overlay Routing,
Bandwidth Management and Dynamic Transcoding.
In Proceedings of the 2nd International Workshop on
Adaptive and DependAble Mobile Ubiquitous Sys-
tems (ADAMUS 2008), Newport Beach, California,
USA, June 2008.

[Wijnants 09a] Maarten Wijnants & Wim Lamotte. Effective and
Resource-Efficient Multimedia Communication Using
the NIProxy. In Proceedings of the 8th International
Conference on Networks (ICN 2009), pages 266–274,
Cancun, Mexico, March 2009.

[Wijnants 09b] Maarten Wijnants & Wim Lamotte. FEC-Integrated
Network Traffic Shaping Using the NIProxy. In Pro-
ceedings of the 1st International Conference on Emerg-
ing Network Intelligence (EMERGING 2009), pages
51–60, Sliema, Malta, October 2009.

318 BIBLIOGRAPHY

[Wijnants 10] Maarten Wijnants, Wim Lamotte, Bart De
Vleeschauwer, Filip De Turck, Bart Dhoedt, Piet
Demeester, Peter Lambert, Dieter Van de Walle,
Jan De Cock, Stijn Notebaert & Rik Van de Walle.
Optimizing User Quality of Experience through Over-
lay Routing, Bandwidth Management and Dynamic
Transcoding. Special Issue of the International Jour-
nal of Adaptive, Resilient and Autonomic Systems
(IJARAS) on the Adaptive and Dependable Mobile
Ubiquitous Systems (ADAMUS) Workshop, 2010. In
Press.

[Wolski 97a] Rich Wolski. Forecasting Network Performance
to Support Dynamic Scheduling Using the Network
Weather Service. In Proceedings of the 6th IEEE
International Symposium on High Performance Dis-
tributed Computing (HPDC 1997), pages 316–325,
Portland, Oregon, USA, August 1997.

[Wolski 97b] Rich Wolski, Neil Spring & Chris Peterson. Imple-
menting a Performance Forecasting System for Meta-
computing: The Network Weather Service. In Proceed-
ings of the ACM/IEEE Conference on Supercomput-
ing (SC 1997), San Jose, California, USA, November
1997.

[Woodrow 04] Chris Woodrow, Johan Hjelm, Hidetaka Ohto, Luu
Tran, Franklin Reynolds, Graham Klyne & Mark H.
Butler. Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0. W3C Rec-
ommendation, W3C, January 2004. http://www.w3.
org/TR/2004/REC-CCPP-struct-vocab-20040115/.

[Wu 09] Wanmin Wu, Ahsan Arefin, Raoul Rivas, Klara
Nahrstedt, Renata Sheppard & Zhenyu Yang. Qual-
ity of Experience in Distributed Interactive Multime-
dia Environments: Toward a Theoretical Framework.
In Proceedings of the 17th ACM International Con-
ference on Multimedia (MULTIMEDIA 2009), pages
481–490, Beijing, China, October 2009.

http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

BIBLIOGRAPHY 319

[Yang 06] Zhenyu Yang, Bin Yu, Klara Nahrstedt & Ruzena Ba-
jcsy. A Multi-stream Adaptation Framework for Band-
width Management in 3D Tele-immersion. In Pro-
ceedings of the 16th International Workshop on Net-
work and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV 2006), Newport, Rhode Is-
land, USA, May 2006.

[Zenel 99] Bruce Zenel. A General Purpose Proxy Filtering Mech-
anism Applied to the Mobile Environment. Wireless
Networks, vol. 5, no. 5, pages 391–409, October 1999.

[Zhang 04] Xiaolan Zhang, Michael Bradshaw, Yang Guo, Bing
Wang, Jim Kurose, Prashant Shenoy & Don Towsley.
AMPS: A Flexible, Scalable Proxy Testbed for Imple-
menting Streaming Services. In Proceedings of the
14th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video
(NOSSDAV 2004), pages 116–121, Kinsale, Ireland,
June 2004.

[Zheng 06] Yongjie Zheng, Alvin T. S. Chan & Grace Ngai. Ap-
plying Coordination for Service Adaptation in Mobile
Computing. IEEE Internet Computing, vol. 10, no. 5,
pages 61–67, September-October 2006.

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Motivation
	Contributions
	Terminology
	Outline
	Publications
	Articles in International Journals
	Articles in International Conference Proceedings
	Internal Technical Reports

	Background and Related Work
	Quality of Service Provision
	Layered Networking Model
	Service Level Agreement
	QoS Provision in IPv4-Based Networks
	QoS provision in non-IPv4-based networks

	Quality of Experience
	Definitions
	Measurement

	Context-Aware Networking
	Network Traffic Engineering
	Bandwidth Management
	Multimedia Service Provision
	NIProxy Contributions

	Active Networking
	Classification
	Benefits
	Achievements
	Discussion and Comparison with the NIProxy

	A Taxonomy of QoS/QoE Frameworks

	I Network Intelligence Proxy
	Overview
	Objectives and Methodology
	Context Introduction in the Network
	Network Awareness
	Application Awareness
	Terminal Awareness And User Preferences

	Traffic Management Techniques
	Inbound and Outbound Optimization
	Network Intelligence Layer
	Deployment
	The NIProxy as Part of Larger QoE Optimization Frameworks

	Network Traffic Shaping
	Arranging Network Traffic in a Stream Hierarchy
	Internal Node Types
	Mutex
	Priority
	Percentage
	WeightStream
	WeightData

	Leaf Node Types
	Discrete Leaf Node
	Continuous Leaf Node

	Maximal Bandwidth Consumption
	Sibling Dependencies Framework
	Overflow Prevention Buffer
	Stream Hierarchy Construction and Management
	Global Stream Hierarchy Layout Determination
	Stream Hierarchy Governance

	A Comprehensive Example

	Multimedia Service Provision
	Pluggable Design
	Network Traffic Shaping Interoperation
	A Representative Example: Static Video Transcoding
	Stream Hierarchy Incorporation
	Mode of Operation
	NTS Interoperation
	Implementation

	Software Architecture
	Netfilter-Based Design
	Netfilter
	iptables
	Implementation

	Refactored Design
	Motivation
	Implementation
	Application-Layer Protocol Support

	Summary

	II Practical QoE Optimization Results
	Overview
	Reference Scenario and Baseline Results
	Evaluation Environment
	Experiment Description
	Experimental Results
	Conclusions

	Combined Real-Time and Non-Real-Time Network Traffic Shaping
	Real-Time versus Non-Real-Time Network Traffic
	Implementation
	Buffering and Rate Control
	Determination of Maximal Bandwidth Consumption
	Granularity Level

	Evaluation
	Test Setup
	Experiment 1: Managing Non-Real-Time Network Traffic
	Experiment 2: Simultaneously Managing Real-Time and Non-Real-Time Network Traffic

	Conclusions

	Efficient Transmission of Rendering-Related Data
	Introduction
	Considered Distributed Application
	Rendering Scheme
	Model Data
	Network Communication Issues

	Implementation
	Stream Hierarchy Design
	Support for Stream Hierarchy Leaf Node Relocations

	Evaluation
	Minimalist Experiment
	Representative Experiment
	Discussion

	Related work
	Conclusions

	Outbound Traffic Engineering
	Architectural Modifications
	Conceptual Implications
	Use Case: Outbound Static Video Transcoding
	Mode of Operation
	Stream Hierarchy Manipulation and Awareness Extension

	Evaluation
	Experimental Setup
	Experiment 1: Simultaneous Audio and Video Streaming to a Single Client
	Experiment 2: Simultaneous Video Streaming to Multiple Clients
	Discussion

	Conclusions and Future Work

	FEC-Integrated Network Traffic Shaping
	Introduction
	XOR-Based Parity Coding
	FEC Integration in the NIProxy
	Stream Hierarchy Incorporation
	Implementation
	Supporting Additional FEC Techniques

	Evaluation
	Experiment Description and Setup
	Experimental Results
	Discussion

	Related Work
	Conclusion and Future Work

	End-to-End QoE Optimization Through Overlay Routing Interoperation
	Introduction
	Proposed Two-Tier Platform
	Overview
	Tier-1 Functionality and Constituting Component Types
	Tier-2 Functionality
	End-to-End Path Coverage

	Evaluation
	Evaluation Testbed
	Experimental Results
	Discussion

	Related Work
	Conclusions and Future Work

	Increasing Bandwidth Brokering Flexibility via Dynamic Video Transcoding Support
	Background
	Implementation
	Implications on the QoE Optimization Platform
	Evaluation
	Evaluation Testbed and Experimental Setup
	Experiment 1: Optimizing Network Core Routing
	Experiment 2: Exploiting Dynamic Video Transcoding on the Last Mile
	Discussion

	Conclusions

	Conclusions and Directions for Future Research
	Conclusions
	Directions for Future Research

	Appendices
	Early Results
	Experimentation in the ALVIC Framework
	ALVIC
	NIProxy Integration
	Video Quality Selection Through Filtering
	Static Video Transcoding
	Mobile Access
	Audio Filtering
	Audio Mixing

	Incorporation in the iConnect System
	iConnect
	Video-Based Avatar Creation

	Example MPEG-21 UED Document
	Dutch Summary
	Bibliography

