
Augmented Video Viewing: Transforming Video
Consumption into an Active Experience

Maarten Wijnants∗ Jeroen Leën† Peter Quax∗ Wim Lamotte∗
Hasselt University – tUL – iMinds – Expertise Centre for Digital Media

Wetenschapspark 2, 3590 Diepenbeek, Belgium
∗firstname.lastname@uhasselt.be, †jeroen.leen@student.uhasselt.be

ABSTRACT
Traditional video productions fail to cater to the interactiv-
ity standards that the current generation of digitally native
customers have become accustomed to. This paper therefore
advertises the“activation”of the video consumption process.
In particular, it proposes to enhance HTML5 video playback
with interactive features in order to transform video view-
ing into a dynamic pastime. The objective is to enable the
authoring of more captivating and rewarding video experi-
ences for end-users. The proposed paradigm extends video
consumption, much like Augmented Reality (AR) does with
the physical world. Given this conceptual analogy, we have
adopted the term Augmented Video Viewing (AVV) to de-
nominate our approach. The current AVV implementation
embraces two independent yet cooperative video augmen-
tation concepts: enriching video playback with interactive
overlay elements, and erecting real-time interaction bridges
between video and digital games. A total of four AVV test
cases are presented to provide a hint of how our vision can
be realized and of the attainable creative results.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; C.2.5 [Computer-Communica-
tion Networks]: Local and Wide-Area Networks—Inter-
net ; H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and
virtual realities; H.5 [Information Interfaces and Pre-
sentation]: Hypertext/Hypermedia

General Terms
Design, Experimentation

Keywords
Augmented Video Viewing, interactive video, augmented
video, gaming, hypervideo, web technology, web standards

1. INTRODUCTION
Upon its inception in the 1900s, the video medium was

intended to yield entirely static, linear experiences. De-
spite its clear restrictions with respect to interactivity, this
“monolithic” video production-consumption chain has been

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

MMSys ’14, Mar 19-21 2014, Singapore, Singapore
ACM 978-1-4503-2705-3/14/03.
http://dx.doi.org/10.1145/2557642.2579368

embraced by the broad public for over a century. In recent
years however, consumers have become accustomed to ever
improving video production values. As a result, it is becom-
ing continually harder for video producers to attract and
retain the viewer’s attention. As an example, users increas-
ingly tend to combine the watching of TV shows with other
activities like, for instance, web browsing. Certain video
broadcasters have recently acknowledged this multitasking
trend by deploying second screen initiatives [2]. Although
second screen technology has already shown some promise
in captivating and more deeply engaging the viewer, it man-
dates the introduction of dedicated partner hardware in the
video viewing setup. As such, it fails to tackle the passive
nature of the video medium in an integrated fashion.

In this paper, we introduce Augmented Video Viewing
(AVV), a paradigm that is centered around the incorpora-
tion of end-user interaction and activity in the very fabric of
HTML5 video consumption. The objective here is to capti-
vate viewers and to maximize viewer retention by delivering
profound, (inter)active and highly rewarding video experi-
ences [3]. The AVV research does not represent a single
technological contribution or a tightly integrated framework;
instead, it promotes a novel conceptual mindset (and accom-
panying web-based codebase) with regard to video viewing
behavior. We describe a total of four highly diverse pro-
totypes that practically demonstrate how video can in a
meaningful manner be transformed from an exclusively pas-
sive to a much more (inter)active communication medium.
The AVV mindset can be imported in a plethora of appli-
cation areas and usage contexts, including consumer enter-
tainment and recreation, video-assisted remote tutoring, and
online video-based advertising [3]. Business-wise, the AVV
methodology might widen a video producer’s customer base
and as such allow it to capitalize on new consumer profiles.

2. AUGMENTED VIDEO VIEWING
This section will discuss the two disparate yet interoper-

able pillars that are discernible in the AVV codebase. Both
pillars have their own right of existence and are indepen-
dently capable of producing compelling interactive video so-
lutions, yet holistic advantages are likely to ensue from an in-
telligent blend of both components. To maximize the porta-
bility of our implementation, the AVV codebase exclusively
leverages standardized web technologies.

2.1 Interactive Video Overlays
The JavaScript Augmented Video Viewing API (JAVV

API) facilitates the rendering of interactive video overlay el-
ements or hotspots on top of a HTML5 video player. Com-
pared to the computational overhead of plain video decod-
ing, the additional demand that the library poses on client-
side hardware and software platforms is marginal.



The JAVV API has been designed with generality in mind.
Overlay elements can take on arbitrary graphical appear-
ances (via CSS), can embed custom (HTML) content, and
can execute arbitrary programmatic (JavaScript) logic. In
addition, an event-driven scripting model allows dedicated
interaction handlers to be associated with different types
of viewer actions. Finally, both spatial and temporal con-
straints can be attached to video overlay elements in order
to control their positioning and timing, respectively.

2.1.1 Implementation
The central component of the JAVV API is a manage-

ment entity that allows for the installation and destruction
of video overlay elements per individual video clip. When
registering an overlay with the manager, the latter instan-
tiates a dedicated HTML DOM node and assigns it the
video overlay element’s content, interaction handling code
and style customization. The DOM node is subsequently
allocated an elevated value for its z-index CSS property so
that the node is always visibly rendered in front of the video
player. Upon unregistration, the video overlay element’s as-
sociated DOM item is destructed.

The manager continuously monitors the playback time of
the video clip and warrants that the spatiotemporal con-
straints of the registered video overlay elements are respected.
Put simply, the manager guarantees that an overlay ele-
ment’s DOM representation is superimposed on the video
at the correct location and at the appropriate time during
video playback. To this end, it implements a keyframing-
like animation system that performs linear interpolation be-
tween the overlay element’s begin and end location during
the element’s visible state.

Responding to end-user interactions with video overlay
elements also falls under the responsibility of the manager.
The manager incorporates a dispatching model that allows
dedicated scripting logic to be attached to HTML5 events
that are emitted by the DOM representations of video over-
lay elements. No restrictions are enforced with regard to
the event types that can be listened for. In a desktop ap-
plication, for example, it will in many cases make sense
to respond to click, mouseover and mouseout interactions.
On (mobile) touchscreen platforms on the other hand, one
will likely install callback methods for touch events, such
as touchstart and touchmove. In any case, the event han-
dling function receives a reference to the fired event and to
the video overlay element that was interacted with, and can
have an arbitrary implementation.

The timing, spatial positioning, style, contents and inter-
action handling code of video overlay elements are likely to
be tailored to a specific video clip. This implies that the
need arises to switch between multiple sets of overlay ele-
ment definitions in case the video player supports playlists.
Doing so in a JAVV API setup is straightforward, flexible
and efficient. It suffices to express the video overlay element
definitions that are associated with a particular video frag-
ment in a proprietary JSON-encoded specification format,
and to host the resulting file alongside the fragment itself
on a webserver. Now whenever a novel source is loaded in
the video player, the client just needs to destruct the cur-
rently deployed video overlay elements, fetch the new video
overlay element definitions from the server, and install them.
The fetching and installation steps can be implemented by
means of technologies like AJAX or JSONP.

2.2 Coupling Classic Video with Game Engines
The second pillar of the AVV codebase is concerned with

interweaving HTML5-driven classical video playback with
(3D) virtual environments and games. The rationale here
is to combine the positive assets of both media types in or-
der to facilitate the realization of convincing and immersive
experiences with advanced interactivity properties.

The most agile solution to create a hybrid video-plus-game
installation that in addition prevents game engine vendor
lock-in, is to adopt a loosely coupled architecture where both
constituting technologies remain mutually detached, yet a
bi-directional programmatic bridge is erected between them.
In such a scheme, the composing technologies can evolve in-
dependently from each other and are separately exchange-
able. It also allows to allocate each individual task to the
technology that is most suited for handling it, which might
yield benefits, both performance-wise and in terms of func-
tional expressiveness. As an example, a video player might
support hardware-accelerated video decoding, while a game
engine might not. On the downside, some (minor) commu-
nication overhead and delay is clearly introduced compared
to a tightly integrated setup.

2.2.1 Implementation with Unity3D
The Unity3D game engine (http://unity3d.com/) has im-

pressive multi-platform publishing options. One of the sup-
ported platforms is the web: the Unity3D Web Player plug-
in allows games to be played directly in web browsers. The
game engine in addition provides an interface that affords
full-duplex interaction between the Unity3D Web Player and
the webpage that acts as its host. In particular, the encapsu-
lating HTML page is able to transmit triggers to and invoke
functions inside the embedded Unity3D Web Player, and the
same holds true for the opposite direction.

2.2.2 General Purpose Implementation
Not all game engines are as generous as Unity3D in terms

of offering external interfaces. To generalize our research,
we have designed a generic solution that imposes no pre-
requisites other than HTTP support from the game engine.
The proposed methodology revolves around the exchange
of instructions between the HTML5 video player and the
game by relaying them through an intermediate webserver.
The exact modalities of the implementation can vary (e.g.,
server-side caching combined with client-side polling, server-
side push, etcetera). Also note that the webserver not nec-
essarily needs to be a disjoint entity; it might just as well be
integrated in the game binary. As an example, a Unity3D ex-
ecutable is perfectly capable of hosting a WebSocket server.
An integrated server solution holds the advantage that no
network transmission overhead is incurred between the video
player and the game, which will in turn reduce communica-
tion delay and hence increase responsiveness.

3. AVV TEST CASES
In this section, we will present a total of four AVV pro-

totypes. The first two showcase the versatility of the JAVV
API by exemplifying the heterogeneous experiences that can
be authored with it. A similar role is fulfilled by the two fi-
nal demonstrators, yet in these cases the potential and ben-
efits of scaffolding interplay between respectively traditional
video consumption and game environments are highlighted.
All prototypes have been developed for desktop platforms



Figure 1: Click-based gameplay with HTML5 video

Figure 2: Non-linear, dynamic storytelling

but could easily be ported to other hardware and software
environments (including portable devices with touchscreens).
The prototypes are geared towards young children.

3.1 Timely Click Game
Figure 1 depicts a JAVV API-powered prototype that

integrates “quick time event”-like gameplay in traditional
video consumption. During playback, a number of overlay
elements appear on top of the video content, at predefined
locations and times. Viewers earn points by timely clicking
on these interactive items. The viewer’s score is visualized
on the encapsulating webpage and is updated in real-time.

3.2 Interactive Video Stories
The second demonstrator exerts the JAVV API to imple-

ment an interactive storytelling use case in which the viewer
is granted some degree of control over the unwinding of the
plot (see Figure 2). At well-determined moments during
video consumption, the playback pauses and the viewer is
instructed to actively choose between a number of alterna-
tives (represented by video overlay elements) that will define
the future direction of the narrative. In the developed pro-
totype, the video overlay elements are positioned on top of
in-scene objects or regions using a semi-transparent style so
that the underlying segment of the video remains visible. In
situations where the contextual information that is conveyed
by an overlay element itself (and the in-video object or re-
gion which it encapsulates) does not suffice to communicate
its repercussions on the storyline, a short textual descrip-
tion is visualized when the viewer hovers his mouse over it
in order to allow for informed decision making.

3.3 Video Racing
The next test case links video playback to a 3D racing

game that is implemented in Unity3D and deployed inside
a HTML page via the Unity3D Web Player plug-in for web
browsers. The game requires players to navigate along a
trajectory of checkpoints under predefined temporal dead-
lines. As long as players respect the imposed time limits and
punctually follow the intended route, the video plays back
normally. However, when the player fails to reach the next
checkpoint in time, he respawns at the previous checkpoint

Figure 3: The Video Racing demonstrator

Figure 4: Dynamically dimensioned video playback

and the video playback is rewound correspondingly. At the
same time, when the player diverges from the path, he has a
fixed amount of time to return to it. Failure to do so results
in a gameover situation and a complete halt of the video
playback. To provide the player with visual feedback and a
hint of the amount of time he has left to return to the tra-
jectory, the video is increasingly obscured while the player
is off-roading, up to the point where it turns completely
opaque (i.e., at gameover). Figure 3 presents an annotated
screenshot of this Video Racing Proof-of-Concept.

Implementation-wise, all logic and coordinating function-
ality is clustered inside the Unity3D application. As an ex-
ample, it maintains the timers that dictate the pace at which
checkpoints need to be crossed. In order to keep the state of
respectively the webpage and the game logic synchronized,
the Unity3D application exploits its communication inter-
face with the embedding HTML environment (see Section
2.2.1). The game logic for instance invokes JavaScript in-
structions to appropriately reset the video playback when a
checkpoint was missed, or to dispatch the required level of
video opaqueness when the player is deviating from the rac-
ing trajectory. The video opaqueness functionality is hereby
realized by overlaying a HTML5 canvas element on top of
the entire video player using the JAVV API.

3.4 Video Treasure Hunting
The final demonstrator revolves around treasure hunting

gameplay (see Figure 4). Here, a number of treasure chests
are scattered around the virtual environment; all of them
are empty, except for one, which holds the actual treasure.



Players need to locate this treasure, and the spatial dimen-
sions of the video content thereby act as a guiding compass:
video playback starts out small and gradually enlarges as
the player approaches a treasure chest. The video’s sound
output affords similar feedback, in the sense that the audio
volume is also related to the in-game distance between the
player and the nearest treasure chest in a directly propor-
tional manner. In case a chest is discovered but turns out
to be empty, the video playback spatially scales down again
and the sound volume is reset to its minimum value. At the
same time, a secondary video player shows a video fragment
of a void chest to inform the player. This process is repeated
until the chest that actually contains the treasure is found.

As was the case with the Video Racing Proof-of-Concept,
the game engine acts as dominant component in the imple-
mentation and orchestrates the game-video interplay.

4. RELATED WORK
SMIL (Synchronized Multimedia Integration Language) is

a W3C recommended markup language that has been inten-
tionally designed for the authoring of interactive multime-
dia presentations on the web (http://www.w3.org/TR/SMIL3/).
Unfortunately, the recommendation is plagued by limited
adoption by the Internet community. This manifests it-
self in poor native SMIL support in web browsers, which
substantially hampers its practicality. A more realistically
feasible category of related work is found in the academic
literature on the hypervideo methodology. A hypervideo is
defined as an online video document in which one or more
user-clickable anchors are embedded. Notable hypervideo
research efforts include HyperCafe [5], Hyper-Hitchcock and
its detail-on-demand video concept [6], HyLive [1], and the
Component-based Hypervideo Model (CHM) by Sadallah et
al. [4]. Finally, at the most tangible end of the spectrum of
related work, there exists a number of both free frameworks
and commercial products that encompass web-based interac-
tive and/or augmented video viewing properties. Examples
include cacophony.js (www.cacophonyjs.com), Mozilla’s Pop-
corn.js HTML5 media framework (popcornjs.org), Gravidi
(www.gravidi.com), and YouTube Video Annotations (www.
youtube.com/t/annotations_about).

The AVV paradigm evidently satisfies the hypervideo def-
inition and also exhibits considerable overlaps with the cited
web-based interactive video services, either conceptually, im-
plementation-wise or both. A distinguishing feature of the
AVV methodology however is its exploration of (3D) syn-
thetic environments as a medium to “activate” classic video
consumption. To the best of our knowledge, this approach
has been left virtually unconsidered in academic research
as well as commercialized offerings, and hence represents
an important scientific contribution of our work. In addi-
tion, our AVV proposal is, one way or another, more ex-
pressive, broadly applicable, powerful and/or practical than
each of the mentioned related systems. As an example, the
CHM project, although being founded on a solid theoreti-
cal framework, sacrifices low-level, fine-grained control over
video overlay element definition in favor of ease of specifica-
tion. The AVV codebase makes no such concessions, while
its specification terminology is still readily adopted by de-
signers and artists who have only the slightest familiarity
with web development. As another example, the YouTube
Video Annotation tools do not include constructs to interact
with the HTML page that surrounds the video player.

5. CONCLUSIONS AND FUTURE WORK
Even in this era of continuous technological innovations,

only a relatively negligible minority of video content sup-
pliers factor (inter)active features in as an essential facet
in video consumption. This article has promoted the Aug-
mented Video Viewing mindset, a broadly applicable par-
adigm that allows video viewing to be transformed into a
dynamic experience. Two distinct yet interoperable AVV
concepts have been introduced that are designed to funda-
mentally integrate (inter)activity in the video consumption
process. Firstly, a JavaScript API scaffolds the extension
and augmentation of a traditional HTML5 video player with
overlays that enable users to interact with the video footage
in a wide variety of manners. The second procedure con-
sists of exploiting full-duplex programmatic bridges between
game engines and (external) HTML5-based video visualiza-
tions to incorporate elaborate gameplay features in video
viewing environments. We claim that, either separately or
combined, these concepts afford content suppliers the neces-
sary toolbox to author compelling, arousing and richly inter-
active video experiences for end-users. This proposition has
been enforced by the presentation of a total of four largely
divergent prototypes that give a taste of the myriad of cre-
ative possibilities (with regard to the “activation” of video
viewing) that are unlocked by the AVV implementation.

A first future research direction involves the implementa-
tion of a logging and analytics framework that anonymously
records the (inter)actions performed by AVV consumers (to
enable quantitative analysis and mining of users’ AVV be-
havior). Secondly, we plan to organize user studies to collect
qualitative feedback regarding the AVV paradigm in general,
and the developed prototypes in particular.

6. ACKNOWLEDGMENTS
Part of the research described in this article was performed

in the context of the iMinds MiX project Wanagogo. This
project is cofunded by iMinds (Interdisciplinary institute for
Technology), a research institute founded by the Flemish
Government, and by IWT.

7. REFERENCES
[1] P. Hoffmann, T. Kochems, and M. Herczeg. HyLive:

Hypervideo-Authoring for Live Television. In Changing
Television Environments, volume 5066 of Lecture Notes in
Computer Science, pages 51–60. 2008.

[2] N. Narasimhan. When the Shift Hits the (Television) Fan: A
Growing Opportunity for Companion Devices. IEEE
Internet Computing, 15(5):83–86, September-October 2011.

[3] A. A. Raney, L. M. Arpan, K. Pashupati, and D. A. Brill. At
the Movies, on the Web: An Investigation of the Effects of
Entertaining and Interactive Web Content on Site and
Brand Evaluations. Journal of Interactive Marketing,
17(4):38–53, Autumn 2003.

[4] M. Sadallah, O. Aubert, and Y. Prié. CHM: An Annotation-
and Component-based Hypervideo Model for the Web.
Multimedia Tools and Applications, pages 1–35, July 2012.

[5] N. Sawhney, D. Balcom, and I. Smith. Authoring and
Navigating Video in Space and Time. IEEE MultiMedia,
4(4):30–39, October-December 1997.

[6] F. Shipman, A. Girgensohn, and L. Wilcox. Combining
Spatial and Navigational Structure in the Hyper-Hitchcock
Hypervideo Editor. In Proc. Hypertext 2003, pages 124–125,
Nottingham, UK, August 2003.


