Talking Video Heads

Saving Streaming Bitrate by Adaptively Applying Object-based Video Principles to Interview-like Footage

Maarten Wijnants

Sven Coppers

Gustavo Rovelo Ruiz

1. Research Question

For talking heads video, does reducing the quality of the background have a perceptual impact? If not, bitrate savings and OTT streaming cost reduction become feasible.

CRF rises. H.264's default CRF value is 23.

- Implemented with **OBV-agnostic participants** (n=30)

5. Experiment 1: Results

Contour versus bounding box CRF values plus median bitra	ate
savings relative to TR at CRF 23:	

Clip	Task	CRF distribution	Bitrate saving
	NoDiff BVDiff		-5.5% / 9.4% 5.9% / 22.0%

In terms of **objective quality metrics** (averaged over content corpus), traditional encoding at CRF 23 outperforms its four OBV competitors:

6. Experiment 2: Results

Peter Quax

	Y-PSNR	SSIM	VMAF	
TR_CRF23	41.993 ± 1.148	0.981 ± 0.007	93.808 ± 2.291	
CT_NoDiff	41.196 ± 1.297	0.978 ± 0.007	90.740 ± 1.910	
CT_BVDiff	40.671 ± 1.414	0.976 ± 0.007	88.932 ± 2.558	
BB_NoDiff	38.508 ± 0.684	0.977 ± 0.007	91.055 ± 1.523	
BB_BVDiff	38.212 ± 0.795	0.976 ± 0.007	89.476 ± 1.972	

Wim Lamotte

However, the ACR Mean Opinion Scores (MOS) and Standard deviation of Opinion Scores (SOS) prove that these **objective quality differences are not necessarily perceived** by human viewers:

					SUMMIT2014 EU-US BRUSSELS USSELS	Veli DATE JOYCE BARLOW	
	elections	journalist	meridian1	meridian3	obama	preacher	average
TR_CRF23	3.90 ± 0.88	3.03 ± 0.76	4.00 ± 0.91	4.03 ± 0.76	3.27 ± 0.78	3.17 ± 0.83	3.57 ± 0.92
T_NoDiff	3.97 ± 0.85	2.90 ± 0.92	3.67 ± 0.99	3.40 ± 0.97	3.33 ± 0.84	3.20 ± 1.00	3.41 ± 0.98
T_BVDiff	4.00 ± 0.87	2.73 ± 0.78	3.70 ± 0.95	3.57 ± 1.04	3.43 ± 0.77	3.13 ± 1.01	3.43 ± 0.99
B_NoDiff	3.73 ± 0.91	2.77 ± 0.86	3.70 ± 1.06	3.47 ± 0.94	3.13 ± 1.07	3.17 ± 0.83	3.33 ± 1.00
B_BVDiff	3.73 ± 0.91	2.70 ± 0.79	3.57 ± 1.07	3.10 ± 1.12	3.00 ± 0.98	3.17 ± 1.02	3.21 ± 1.04

Only meridian3 showed statistically significant differences (non-parametric Friedman test, Bonferroni corrections): TR vs BB BVDiff (p < 0.005, r = 0.44), TR vs BB NoDiff (p < 0.01, r = 0.33), and TR vs CT NoDiff (p < 0.01, r = 0.34). The meridian clips were the only filmic videos in our corpus; movie content poses high subjective quality requirements^{*}. Without meridian, the MOS averaging becomes:

	average w/o meridian3	average w/o meridian1/3
CT_NoDiff	3.47 ± 0.92 3.41 ± 0.98	3.34 ± 0.87 3.35 ± 0.98
CT_BVDiff	3.40 ± 0.98	3.33 ± 0.97
BB_NoDiff BB_BVDiff	3.30 ± 1.01 3.23 ± 1.02	3.20 ± 0.98 3.15 ± 0.99

Song et al., "Saving Bitrate vs. Pleasing Users: Where is the Break-even Point in Mobile Video Quality?", 2011.

7. Conclusions

1. For the non-movie content in our corpus, contour-based OBV lowers bitrate requirements by **14% on average** (compared to frame-based H.264 video coding at CRF 23) without incurring statistically significant penalties w.r.t. perceived quality; average MOS difference is as small as 0.01 on a 5-point categorical scale

2. OBV-aware viewers can incur quite extensive background quality reductions (cf. StillAcc in Exp. 1) **3. Bounding boxed OBV** is economically attractive (w.r.t. production cost) plus yields substantial

bitrate bonuses

4. OBV works well with classic *talking heads* footage, is less compatible with movie-like content

5. Spatiotemporal compression artifacts like time-varying blockiness were found to be extremely detrimental and frustrating in terms of perceived video quality

Acknowlegdments: At the time this research was conducted, Maarten Wijnants was funded by a VLAIO InnovationMandate (project number HBC.2016.0625), co-sponsored by Androme. Sven Coppers is funded by the Special Research Fund (BOF) of Hasselt University (R-8150). We thank our colleague dr. Davy Vanacken for his methodological advice and our shepherd prof. Wei Tsang Ooi for his help and support.

