
EFFICIENT TRANSMISSION OF RENDERING-RELATED DATA USING THE
NIPROXY

Maarten Wijnants Tom Jehaes Peter Quax Wim Lamotte

Hasselt University and Interdisciplinary institute for BroadBand Technology (IBBT)
Expertise Centre for Digital Media and transnationale Universiteit Limburg

Wetenschapspark 2, BE-3590 Diepenbeek, Belgium
e-mail: {maarten.wijnants,tom.jehaes,peter.quax,wim.lamotte}@uhasselt.be

ABSTRACT
Despite the emergence of broadband Internet connections,
client downstream bandwidth remains a scarce resource
and should hence be managed judiciously. Based on this
observation, we have previously introduced the NIProxy,
a network intermediary supporting automatic client band-
width management. However, the results presented in our
previous work were generated using “artificial” test appli-
cations whose bandwidth management requirements could
be satisfied using relatively straightforward strategies. In
this paper, we evaluate the NIProxy’s suitableness to man-
age client downstream bandwidth in a realistic, more com-
plex networked application. The considered application
supports real-time audiovisual user communication and in
addition employs an advanced rendering scheme which
imposes a number of specific requirements regarding the
distribution of rendering-related data to clients. Through
the presentation of representative experimental results, we
demonstrate that the NIProxy is not only capable of ful-
filling these requirements but also effectively improves the
Quality of Experience (QoE) provided to users of the con-
sidered application.

KEY WORDS
Multimedia communication systems, NIProxy, client band-
width management, QoE optimization, rendering-related
data transmission

1 Introduction
Support for custom or user-generated content in networked
multi-user applications is rapidly gaining popularity. One
example is the currently ongoing evolution of the World
Wide Web from a mostly static information source to a
more dynamic entity which allows users to generate and
distribute content themselves, for instance through blogs
and wikis (the so-called Web 2.0). Another example is the
emergence of social virtual worlds such as Second Life1

and There2, which support creation and even trading of
self-made virtual items.

As a logical consequence of this evolution, there is
an increasing need to transmit possibly large amounts of

1http://secondlife.com/
2http://www.there.com

custom data to clients of networked applications. Luck-
ily, the emergence of broadband Internet connections (such
as xDSL or broadband cable) has made this feasible.
Nonetheless, client downstream bandwidth is still limited
and does not necessarily suffice to effectively receive all
data produced by the network application(s) which the user
is currently running. Like any scarce resource, client down-
stream bandwidth should consequently be managed intelli-
gently and deliberately, with as ultimate goal providing the
user with a usage experience that is as good as possible,
given his current bandwidth constraints.

The most straightforward way to support client down-
stream bandwidth management is to integrate it in the soft-
ware of the networked application itself. However, provid-
ing a separate bandwidth management approach for each
individual networked application is an unprofitable solu-
tion from an economic point of view. A more cost-effective
approach is to develop a generic and hence reusable mid-
dleware solution that can perform bandwidth management
for multiple networked applications. In addition, the user
might be running more than one networked application
at the same time. If in this case the bandwidth manage-
ment solution is embedded in the networked applications
themselves, correct interoperation between the different ap-
proaches might not be guaranteed, resulting in bandwidth
distribution outcomes that are suboptimal at best. In con-
trast, the middleware approach is in such situations capa-
ble of maintaining a global picture of all network traffic in
which the client is currently interested and hence allows the
generation of optimal results.

The subject of this paper is the Network Intelli-
gence Proxy (NIProxy), a network intermediary which pro-
vides automatic and dynamic management of client down-
stream bandwidth. The NIProxy was previously intro-
duced in [1]; a detailed discussion of its bandwidth man-
agement functionality is provided in [2]. However, the
bandwidth management results presented in our previous
work were generated using “artificial” test applications. In
contrast, in this paper we report on our findings of em-
ploying the NIProxy to manage client bandwidth in a re-
alistic, real-world networked application supporting user-
generated content, which in this particular case imposed the
need for dynamically distributing rendering-related data to
clients. Compared to the previously used test setups, the



networked application considered in this work required a
much more sophisticated bandwidth management strategy.
The main contribution of this paper is hence an illustration
of the NIProxy’s ability to effectively manage client band-
width in real-world networked applications having possibly
complex requirements. As a side effect, this also demon-
strates the NIProxy’s flexibility and general applicability.

The remainder of this paper is organized as follows.
In section 2, we briefly describe the NIProxy and list its
main objectives and features. The networked application
which we used as test case to evaluate the NIProxy’s ap-
propriateness to manage client downstream bandwidth in a
real-world setting, is described next in section 3. Specific
focus in this section will be given to the application’s ren-
dering scheme. Section 4 harbors a number of implemen-
tational issues and in particular illustrates how the NIProxy
was exploited to manage the distribution of rendering-
related data to clients in the considered networked appli-
cation. The impact hereof is investigated next in section 5
through the discussion of representative experimental re-
sults. Finally, we review related work in section 6 and
present our conclusions in section 7.

2 NIProxy
2.1 Objectives and approach

The high-level objective of the NIProxy is to maximize
the Quality of Experience (QoE) provided to users of net-
worked multimedia applications3. The NIProxy attempts to
achieve this goal by incorporating different types of aware-
ness or context in the transportation network so that intel-
ligent and efficient delivery of content to clients becomes
possible. In particular, the NIProxy exploits its awareness
to enhance the user QoE in two complementary manners.
First of all, it provides automatic and dynamic manage-
ment of client downstream bandwidth, meaning it is ca-
pable of intelligently allocating the downstream bandwidth
available to a client. Secondly, the NIProxy supports mul-
timedia service provision, i.e. it is capable of applying ser-
vices on network flows containing multimedia content on
behalf of its clients.

2.2 Awareness introduction in the network

The context currently gathered by the NIProxy is twofold
and comprises both network- and application-related in-
formation. The NIProxy acquires its network awareness
through active probing of the client’s last mile network
connection, which yields measurements like the current
throughput, latency and packet loss rate of the client’s ac-
cess link. The NIProxy’s application awareness on the
other hand is composed of information regarding the net-
worked applications its connected clients are currently run-
ning. To amass this type of context, the NIProxy mainly
relies on the client software. In particular, the NIProxy

3Throughout this paper, we will use the term QoE to formally denote
the user’s experience and satisfaction; in contrast to Quality of Service
(QoS), it is a rather subjective criterion.

expects its clients to relay application-related information
to it. To facilitate this process, a support library called
the Network Intelligence Layer (NILayer) was developed,
which exports an API that allows application developers
to provide the NIProxy with application-related knowledge
with minimal effort. Due to the generic design of the NI-
Layer, it is highly reusable and can hence be integrated and
exploited in a wide variety of networked applications.

2.3 Client bandwidth management

The focus of this paper is on the NIProxy’s first QoE-
improving mechanism, client downstream bandwidth man-
agement. A detailed discussion of this subject is beyond
the scope of this paper, since it was already treated com-
prehensively in our previous work [2]. Instead, we will
limit ourselves to a recapitulation of its main features and
mode of operation so that the reader disposes of all infor-
mation necessary to comprehend the material presented in
this paper, without having to refer to our previous work.

The NIProxy’s bandwidth management mechanism
supports network traffic having either real-time or non real-
time characteristics. With real-time network traffic, we
refer to network flows transporting content with stringent
delivery constraints like, for instance, interactive audio or
video. In contrast, non real-time network traffic (e.g. net-
work flows containing file or P2P data) can typically cope
with relatively large and varying amounts of delivery delay,
but is more susceptible to packet loss and data corruption.
In other words, whereas real-time network traffic typically
needs to be delivered to the destination in time, non real-
time network traffic mainly needs to be delivered reliably
and error-free. Due to their widely divergent characteris-
tics, the NIProxy manages both categories of network traf-
fic differently, as will be explained later on.

From a technical point of view, the NIProxy’s band-
width management mechanism operates by organizing all
network flows in which a client is interested in a stream hi-
erarchy. Such a stream hierarchy has a tree-like structure
that is composed of both internal and leaf nodes. The inter-
nal hierarchy nodes implement a certain bandwidth distri-
bution strategy, whereas the leaf nodes always correspond
to an actual network flow (e.g. a specific video stream).
Different types of internal nodes are available, each with
their distinct characteristics and capabilities. Those internal
hierarchy nodes used to manage the bandwidth consumed
by the networked application considered in this paper, are
briefly enumerated below; a detailed discussion of these
nodes and the other internal hierarchy nodes supported by
the NIProxy can be found in our previous work [2].
• Priority: Partitions bandwidth among its children

on a one-by-one basis, in order of decreasing prior-
ity value; in particular, bandwidth is first allocated to
the child with the highest priority, excess bandwidth
(if any) is subsequently allotted to the child with the
second highest priority, and so on
• WeightData: Considers all of its children collec-

tively and distributes bandwidth among them in two



consecutive phases according to their current weight
value; in the initial phase, each child ci receives
BWi = wi ∗ BW ∗ 1∑

i
wi

bandwidth, where wi ∈

[0, 1] represents the child’s weight value and BW de-
notes the total amount of bandwidth available to the
WeightData node; if any bandwidth remains unused
after the execution of phase 1 (which will occur in case
at least one child consumes less bandwidth than its
assigned amount), this excess bandwidth is exploited
in the second phase to allow children, starting with
the one with the highest weight value, to switch to a
higher bandwidth consumption level

• WeightStream: Operates identically to the
WeightData node, except it also takes the
maximal bandwidth consumption of its chil-
dren into account, resulting in the following
bandwidth distribution during the first phase:
BWi = wi ∗MaxBWi ∗ BW∑

i
(wi∗MaxBWi )

• Percentage: Each child ci has a percentage pi ∈
[0, 1] associated with it (

∑
i pi should equal 1) and is

apportioned its corresponding percentage pi ∗ BW of
the total bandwidth BW available to the Percentage
node; if a child consumes less than its assigned
amount, the excess bandwidth is allocated to the other
children consecutively, in order of decreasing percent-
age value

As is the case for the internal nodes, there also exist
different categories of hierarchy leaf nodes. In particular,
leaf nodes for the management of both real-time and non
real-time network flows are available. Due to the strict de-
livery requirements of real-time network traffic, its process-
ing should introduce as little additional delay as possible.
Consequently, real-time leaf nodes are designed to toggle
the bandwidth consumption of its associated network flow
between a discrete number of values (i.e. they can turn the
stream off or can forward it to the client at maximal qual-
ity, or at any intermediate bandwidth consumption level
supported by the stream4). Non real-time network traffic
on the other hand is less sensitive to delivery delay, mean-
ing its processing is allowed to be more time-consuming.
As a result, non real-time hierarchy leaf nodes are capable
of forwarding their associated network flow to the client
at any rate in the continuous interval [0, maximal stream
bandwidth usage]. This is achieved through the adoption
of buffering as well as dynamic rate control techniques.

By adequately constructing the stream hierarchy, it is
possible to express relationships between network flows or,
conversely, to differentiate between them (or between col-
lections of flows, e.g. audio versus video). As soon as
the stream hierarchy has been composed, and assuming it
is kept up-to-date, managing client downstream bandwidth
simply amounts to allocating the correct amount of band-
width to the hierarchy root node.

4Intermediate bandwidth consumption levels typically only occur in
case the stream is scalable or multi-layer encoded.

3 Considered networked application
3.1 Overview

To evaluate the NIProxy’s suitableness to manage client
downstream bandwidth in a less artificial setting, we in-
tegrated it in a real-world 3D Networked Virtual Environ-
ment (NVE) application. The considered NVE assigns
great importance to user communication and hence sup-
ports both audio and video chat between users. Another im-
portant feature of the NVE is its rendering scheme, which
supports both hybrid 3D rendering techniques and sophis-
ticated Level of Detail (LoD) approaches (see section 3.2).
Finally, the NVE application enables users to populate the
shared virtual world with custom, possibly self-made 3D
content. Distribution of this user-provided data occurs
through a dedicated file server, which disseminates the data
to clients in a unicast manner as soon as it becomes needed
to be able to correctly render the virtual world.

3.2 Rendering scheme

The NVE’s rendering scheme uses a hybrid geometric -
image-based representation (IBR) approach [3]. In short,
relief texture mapped objects (RTMOs) are used, which
were first presented in [4], as an efficient representation
for distant objects. These representations are made up of
a collection of images with depth information, which are
warped during run-time in order to get an appropriate view
based on the current camera position. On the other hand,
objects close to the viewer are rendered using the progres-
sive meshes (PM) approach of [5], hereby assuring that ge-
ometric rendering does not cause the framerate to drop be-
low a predefined threshold. The main advantage of the ad-
hered hybrid rendering strategy is that it greatly reduces the
time needed for rendering complex virtual worlds, without
incurring too large a sacrifice in image quality.

We have also proposed some optimization techniques
for transmission of data associated with representations
in NVE applications using this hybrid representation ap-
proach [6]. By first streaming the low-detail image-based
representations of objects in the virtual environment, it be-
comes possible to quickly present the user with a complete,
albeit low-quality view of the world. This view is gradu-
ally upgraded as more detailed representations (i.e. geo-
metric information) are downloaded based on the current
rendering need. We have analyzed the network traffic asso-
ciated with these representation-related data streams and it
was shown that the reduced-detail representations strike an
effective balance between visual quality and transmission
time. As a result, the proposed representation transmission
scheme significantly reduces the time needed for render-
ing, at an acceptable quality, an initial view of the virtual
environment.

Since the considered NVE application lacked an intel-
ligent bandwidth management solution, such as the proxy
solution we are presenting here, the models were previ-
ously requested one at a time based on their current scene
priority. However, as priorities can possibly change rapidly



during scene traversal, and especially during viewpoint ro-
tation, a better solution needed to be found in order to be
able to more effectively manage the downloading of model
data required for rendering the world at client-side. More-
over, the combination of non real-time and real-time traffic
was not handled in this previous work. The remainder of
this paper therefore focusses on the use of the NIProxy for
the transmission of 3D model data. Additionally, we will
present results in which these transmissions are combined
with real-time video transmissions.

3.3 Model data

Name Text. Base L1 L2 L3 Base Compr.
Chimp 304 12 11 21 283
Cow 161 22 21 41 83 168

Table 1. Storage sizes (in KiloBytes) for several progres-
sive mesh models in the NVE database.

Resolution Num RTs Size Compressed
32x32 1 4 2

3 12 6
6 24 13

64x64 1 16 7
3 48 21
6 96 45

Table 2. Storage sizes (in KiloBytes) for RTMO image-
based representations.

The NVE’s model database stores representations in
the form of both progressive meshes and relief texture
mapped objects. Focussing first on the progressive mesh
data, table 1 presents the progressive mesh storage sizes of
two example models in the database. The first column in-
dicates the amount of texture data for each model, stored
in the JPEG format. If we compare this value to the data
size of the base mesh in the second column, we see that
the texture data far outweighs the base mesh data. Using a
multi-resolution texturing solution could decrease this gap,
but overall, texture data usually takes up a large piece of
the total model data. The columns numbered L1 to L3 in-
dicate the data size of each consecutive PM level, whereby
at each step the triangle count is doubled. In order to trans-
mit the PM models in an efficient way, they are stored in a
compressed format at server-side. After transmission, the
models are extracted at client-side, after which they can be
used in the render stage. The last column in table 1 indi-
cates the size after compression of the texture data together
with the base mesh. Since the texture data is already stored
in the JPEG file format, the additional compression does
not significantly reduce the total file size.

Looking at table 2, which displays the storage sizes
for the RTMO representations, we see a completely dif-
ferent situation. The storage size for an RTMO mainly
depends on the resolution used for the relief textures, in-
stead of on the model that is being represented. We use

quantized depth values so each depth pixel is stored as an
RGBA value, with the alpha value representing the quan-
tized depth value. For rendering an RTMO, at most three
relief textures are needed for a specific viewpoint. If we
therefore compare the compressed values for three relief
textures to the data size needed for the compressed PM base
representations, it is obvious that the RTMO transmission
size is much smaller. In the NVE database, only relief tex-
ture resolutions of 32x32 and 64x64 are used, since these
provide sufficient image quality for distant objects and for
the initial rendering of nearby objects. We can further see
that even if we would send the complete RTMO, we are
still better of compared to the PM base representation with
regard to transmission time.

4 Implementation
Based on the discussion in the previous section, it is ap-
parent that the NVE application requires the distribution of
real-time as well as non real-time network flows to clients.
Especially the application’s advanced rendering scheme
and support for user-generated content causes client band-
width management to be a far from trivial process and im-
poses a number of specific requirements and constraints.
In this section, we will report on how the NIProxy was ex-
ploited to intelligently fulfill this task and present the main
implementational issues it encompassed.

4.1 Devising a suitable structure for the client’s
stream hierarchy

To be able to effectively manage the bandwidth consump-
tion of the considered NVE application, the requirements
imposed by its distinct features had to be translated into an
appropriate structure for the client stream hierarchy. The
structure we arrived at is illustrated in figure 1. As can be
seen, the root node of the hierarchy is of type Percentage
and is used to discriminate between respectively the real-
time and non real-time network traffic generated by the
NVE application. In more detail, the real-time network
traffic receives 30 percent of the client’s available down-
stream bandwidth, while 70 percent is reserved for the re-
ception of non real-time network streams.

As root for the real-time subtree of the hierarchy, we
used a node of type WeightStream. All real-time (i.e.
audio and video) network flows are made direct children
of this root node using real-time leaf nodes, with their
weight values dynamically depending on virtual distance
as well as virtual orientation information5. The root of
the non real-time branch of the stream hierarchy on the
other hand consists of a Priority node and has two chil-
dren, which are both of type WeightData. The leftmost
WeightData node groups together all high-priority (HP)
rendering-related files that need to be received by the client,
whereas the rightmost is used as root for rendering-related

5A scheme similar to the one presented in [1] is used to dynamically
determine the weight value of each real-time network flow; please see our
previous work for more information.



Figure 1. General structure of the stream hierarchy used to
manage the downstream bandwidth of clients of the con-
sidered NVE application.

Figure 2. Categorization of rendering-related data.

data having normal-priority (NP). In particular, the HP por-
tion of the non real-time subtree is used exclusively to re-
ceive IBR data and, more specifically, only the IBR data
of those models that lie in the current viewing frustum and
are therefore crucial for rendering a first view of the virtual
environment. All other rendering-related files are incorpo-
rated under the NP part of the non real-time subtree. The
weights of the individual HP as well as NP non real-time hi-
erarchy leaf nodes are based on their scene priority. Scene
priority is determined by the NVE’s LoD selection mecha-
nism, which takes into consideration distance to the viewer
as well as model display size. Furthermore, we perform
pre-loading of IBR model data outside the frustum, but in-
side a circular Area of Interest around the viewpoint. These
data streams are given a low weight so they do not hin-
der the reception of higher priority streams. A schematic
overview of how rendering-related data is categorized and
incorporated in the stream hierarchy is given in figure 2.

Since the grouping HP root node has a higher prior-
ity value associated with it compared to the NP root node,
the entire percentage of the client’s available downstream
bandwidth that has been designated to the reception of non
real-time network traffic will first be exploited to receive
the HP rendering-related files; only if any bandwidth re-
mains in excess, it will subsequently be granted to the NP
branch of the non real-time subtree.

4.2 Support for hierarchy leaf node relocations

Since users can freely roam about the virtual world offered
by the considered NVE application, the importance of indi-

vidual real-time and non real-time network flows is likely
to change dynamically over time. For the real-time net-
work traffic, shifts in stream importance are captured by
appropriately updating the weight value of its correspond-
ing real-time hierarchy leaf node. For non real-time net-
work traffic however, the situation is somewhat more com-
plicated and possibly requires relocation of non real-time
leaf nodes in the client’s stream hierarchy. In particular,
as a user moves to a new location or changes his viewing
direction in the virtual world, non real-time data that previ-
ously belonged to the high-priority category might now be
classified as being normal-priority, and vice versa. When
this occurs, in addition to enforcing any necessary updates
to their individual weight values, the involved non real-
time leaf nodes are automatically transferred between the
HP and NP branches of the non real-time subtree. Finally,
besides parent switching, complete removal of leaf nodes
from the client’s stream hierarchy is also supported. A
plausible cause are radical user relocations in the virtual
environment, which could reduce the importance of cer-
tain network flows to such an extent that they should no
longer be allocated any client downstream bandwidth. By
(temporarily) pruning the corresponding leaf nodes from
the stream hierarchy, this can easily be guaranteed.

5 Evaluation
5.1 Experiment 1

To assess the presented bandwidth distribution strategy,
we first performed a minimalist test involving only a lim-
ited number of models. This setup allowed us to clearly
and comprehensively trace the reception of non real-time
rendering-related data at client-side. The results are shown
as a stacked graph in figure 3. Besides constraining the
model count in this initial experiment, we also opted to
limit the client downstream bandwidth to an unrealistically
low 20 KiloBytes per second (KBps) to allow for an in-
telligible analysis of the produced results. In section 5.2,
we will present experimental results attained during a more
realistic test involving a densely populated scene, a more
common client bandwidth limit and contention from real-
time network traffic.

Looking at figures 3 and 4, we see that at the begin-
ning of the experiment (view frustum 1), object 0 is further
away and only needed the IBR data, while object 1 is close
to the viewer and hence needed IBR data as well as all PM
levels. We can see that for both objects, the high-priority
IBR data was requested first, after which the reception of
object 1’s PM levels was started. Also, pre-loading of IBR
data of objects outside the view frustum began taking up a
small portion of the available bandwidth.

After about 30 seconds, the user performed a 90 de-
gree rotation (view frustum 2), which put both object 0 and
1 outside his view frustum. As a result, the weight values
associated with both model streams were significantly re-
duced. On the other hand, the view frustum now contained
objects 2 and 3, so their data was requested at a higher



Figure 3. Simple scenario network traffic chart (stacked graph) demonstrating intelligent management of non real-time (i.e.
rendering-related) traffic (in KBps).

Figure 4. Scene layout for experiment 1.

weight and priority than before. Again, object 3 was close
to the viewer and was given more weight, while only IBR
data was required for object 2. Note that, after the rotation,
only the PM data for object 3 was transmitted since the IBR
files for both objects had already been received because of
the NVE’s IBR pre-loading strategy for objects outside the
view frustum. The renderer could therefore immediately
present a first view of the objects in the environment.

Finally, at around 60 seconds, a forward translation
was performed (not shown in figure 4), resulting in object
3 falling outside the view frustum, objects 2 and 10 being
selected for PM rendering and object 8 being added to the
view at lowest resolution. The transmission continued as
before, except that now objects 2 and 10 needed to split
the available bandwidth based on the weights assigned to
them by the run-time LoD selection. The RTMO data for
object 2 was already received during the first experiment
interval, so it first had to wait for the transmission of the
IBR models of objects 8 and 10 to complete before it could
continue with upgrading its own PM level.

5.2 Experiment 2

Our second experiment involved the transmission of a com-
plex scene and hence demonstrates how the proposed band-
width management system behaves in lifelike situations.
Furthermore, besides rendering-related data, this experi-

ment also included the simultaneous reception of real-time
video traffic. During this experiment, the client down-
stream bandwidth was set to the more realistic value of 100
KBps.

By analyzing the graph in figure 56, we notice that at
the start of the experiment IBR data was given full priority
to be able to quickly provide the user with an initial view of
the virtual world using these low-quality model representa-
tions. After this, model data was incrementally upgraded
based on the resolution levels selected by the NVE’s LoD
approach. After approximately 35 seconds, most geomet-
ric data needed for the higher-fidelity rendering of objects
in the frustum was received by the client and, as a result,
the bandwidth amount assigned to the IBR pre-loading of
models outside the user’s view frustum was increased.

At around 55 seconds, two video sources entered the
user’s area of interest; each video stream consumed a band-
width of approximately 17 KBps. Recall from section 4.1
that the NIProxy reserves only 30 percent of the total client
bandwidth for the transmission of real-time network traf-
fic. This amount did not suffice to simultaneously receive
both video streams, but since there was excess bandwidth
from the non real-time network traffic category, the real-
time network flows were allowed to exceed their allocated
bandwidth share. Roughly 15 seconds later however, the
user rotated 90 degrees in the virtual world, causing model
importance to alter due to the user’s changed viewing di-
rection in the virtual world. As a result, new geometric
model data needed to be received by the client and hence
contention for the available client downstream bandwidth
between real-time and non real-time network traffic was
introduced. Due to the contention, the real-time network
traffic now needed to adhere to its assigned bandwidth per-

6Due to the large number of non real-time network flows involved in
the second experiment, the graph no longer shows the bandwidth con-
sumption of individual data streams; instead, the aggregate bandwidth
consumed by each category of non real-time data is displayed.



Figure 5. Stacked graph illustrating the client bandwidth distribution produced during a realistic scenario involving the reception
of both 3D object data and real-time video traffic (in KBps).

centage, which resulted in the NIProxy temporarily block-
ing one of the video streams to prevent the non real-time
network traffic from being denied its fair bandwidth share.
Only after the 3D model transmission was finished, the si-
multaneous forwarding of both video streams was resumed.

5.3 Discussion

The results produced during the two presented experiments
comprehensively demonstrate the benefits and capabilities
of the NIProxy’s bandwidth management mechanism. A
first important observation is that over-encumbrance of the
client’s network connection was at all times prevented. As
a result, packet delay and loss were minimized and an op-
timal data reception at client-side was achieved. Notice
that a small percentage of the client’s available downstream
bandwidth was even left unused in the experiments. This
unallocated amount is used as safety margin to guarantee a
certain amount of resilience to sudden surges in the band-
width consumption of the network flows which the client
is currently receiving. Secondly, the requirements of the
considered NVE application, and in particular its render-
ing scheme, were captured successfully by the NIProxy.
For instance, as is confirmed by the presented bandwidth
distributions, by assigning priority to the transmission of
IBR data, the NVE’s objective of quickly providing the user
with an initial view of the virtual world was fulfilled. Fi-
nally, the second experiment also indicates the NIProxy’s
ability to correctly deal with situations in which real-time
and non real-time network traffic contend for the down-
stream bandwidth available to the client. In particular, by
employing a Percentage node to differentiate between
real-time and non real-time network flows, both traffic cate-
gories received their fair bandwidth share during the entire
experiment. Based on these findings, we believe it is in-
tuitively apparent that the NIProxy positively impacts the
QoE provided to users of the considered NVE application.

6 Related work

Due to the increasing extent to which multimedia content
is being exploited in networked applications, management
of network resources, and client downstream bandwidth in
particular, is a topic of active research. Two of the initial
explorers of the issue were Floyd and Jacobson [7]. More
recently, Massoulié and Roberts studied the topic from a
more mathematical point of view [8]. Work in the net-
work resource management context is however not limited
to theoretical research. Interesting examples of concrete
systems and frameworks supporting automatic bandwidth
management include the GARA architecture [9], the Exact
Bandwidth Distribution Scheme (X-BDS) [10], the Band-
width Allocation Mechanism (BAM) for the Premium Ser-
vice presented in [11] and the bandwidth sharing algorithm
discussed in [12]. The NIProxy differentiates itself from
these approaches in that the latter are concerned with QoS
provision, whereas the NIProxy’s bandwidth distribution
mechanism pursues the more high-level goal of optimizing
the multimedia experience provided to users of networked
applications. Moreover, the NIProxy disposes of and ex-
ploits application-related information, a type of context that
is lacking in (most) related systems. A final distinctive fea-
ture of the NIProxy is that it integrates bandwidth manage-
ment with multimedia service provision in a single system
in such a manner that interoperation between both mech-
anisms becomes possible (not covered in this paper; see
[1][2] for more information).

Efficient network transmission of rendering-related
data, the primary focus of this paper, has also already re-
ceived considerable attention from the research commu-
nity. Interesting related work in this subdomain of auto-
matic bandwidth management includes the research per-
formed by Ioana Martin [13][14], the 3D models Trans-
port Protocol (3TP) [15] and the generic middleware for
the streaming of 3D progressive meshes proposed in [16].



These approaches concentrate solely on optimizing the de-
livery of 3D data over networks and hence provide ad-
vanced techniques targeted specifically at this type of mul-
timedia content. Scenarios requiring the simultaneous re-
ception of 3D data and other types of multimedia, such as
real-time video or P2P data, are not covered however. In
contrast, the NIProxy employs a more generic bandwidth
management scheme and supports client bandwidth man-
agement in the presence of different types of real-time as
well as non real-time network traffic. While this implies
that the mechanisms for the transmission of rendering-
related data supported by the NIProxy are less sophisticated
compared to the referred systems, it also guarantees a much
wider applicability.

7 Conclusions
The rate at which multimedia content is being incorporated
in networked applications seems to exceed the rate at which
the downstream capacity of client network connections is
evolving. As a result, the issue of client downstream band-
width management is rapidly gaining in importance. In this
paper, we have reported on the NIProxy, a network interme-
diary which introduces different types of awareness in the
transportation network in an attempt to improve multime-
dia content delivery to clients. In particular, we have pre-
sented our findings of employing the NIProxy to manage
client downstream bandwidth in a real-world NVE appli-
cation. The considered application requires effective dis-
tribution of rendering-related data and in addition supports
real-time streaming of audiovisual content. Using repre-
sentative experimental results, we have demonstrated the
NIProxy’s ability to translate the requirements imposed by
the application into efficient client bandwidth distributions.
This in turn yielded an improvement of the QoE provided
to the NVE’s users, meaning the NIProxy’s set forth objec-
tive was achieved. The presented results also highlight the
amount of flexibility afforded by the NIProxy’s generic ap-
proach to client bandwidth management, which enables it
to be integrated in a multitude of networked applications.

Acknowledgments
This research is part of the IBBT E2E QoE project, funded
by the Flemish government. Part of this research is also
funded by the EFRD.

References
[1] Maarten Wijnants and Wim Lamotte. The NIProxy: a Flexi-

ble Proxy Server Supporting Client Bandwidth Management
and Multimedia Service Provision. In Proceedings of the
IEEE International Symposium on a World of Wireless, Mo-
bile and Multimedia Networks (WoWMoM 2007), Helsinki,
Finland, June 2007.

[2] Maarten Wijnants and Wim Lamotte. Managing Client
Bandwidth in the Presence of Both Real-Time and non Real-
Time Network Traffic. In Proceedings of the 3rd IEEE Inter-
national Conference on COMmunication System softWAre

and MiddlewaRE (COMSWARE 2008), Bangalore, India,
January 2008.

[3] Tom Jehaes, Peter Quax, Patrick Monsieurs, and Wim Lam-
otte. Hybrid Representations to Improve Both Stream-
ing and Rendering of Dynamic Networked Virtual Environ-
ments. In Proceedings of the ACM International Conference
on Virtual-Reality Continuum and its Applications in Indus-
try (VRCAI 2004), pages 26–32, Singapore, June 2004.

[4] Manuel M. Oliveira, Gary Bishop, and David McAllister.
Relief Texture Mapping. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2000), pages 359–368, New Orleans,
USA, July 2000.

[5] Hugues Hoppe. Progressive Meshes. In Proceedings of the
23rd Annual Conference on Computer Graphics and Inter-
active Techniques (SIGGRAPH 1996), pages 99–108, New
Orleans, USA, August 1996.

[6] Tom Jehaes, Peter Quax, and Wim Lamotte. Analysis of
Scalable Data Streams for Representations in Networked
Virtual Environments. In Proceedings of the ACM Workshop
on Network and System Support for Games (NETGAMES
2004), Portland, USA, August 2004.

[7] Sally Floyd and Van Jacobson. Link-sharing and Resource
Management Models for Packet Networks. IEEE/ACM
Transactions on Networking, 3(4):365–386, August 1995.

[8] Laurent Massoulié and James Roberts. Bandwidth Shar-
ing: Objectives and Algorithms. IEEE/ACM Transactions
on Networking, 10(3):320–328, June 2002.

[9] Ian Foster, Markus Fidler, Alain Roy, Volker Sander, and
Linda Winkler. End-to-End Quality of Service for High-End
Applications. Computer Communications, 27(14):1375–
1388, 2004.

[10] Vasil Hnatyshin and Adarshpal S. Sethi. Architecture for
Dynamic and Fair Distribution of Bandwidth. International
Journal of Network Management, 16(5):317–336, Septem-
ber/October 2006.

[11] Marco Furini and Donald Towsley. Real-Time Traffic Trans-
mission over the Internet. IEEE Transactions on Multime-
dia, 3(1):33–40, March 2001.

[12] Farooq M. Anjum and Leandros Tassiulas. Fair Band-
width Sharing among Adaptive and Non-Adaptive Flows
in the Internet. In Proceedings of the IEEE Conference
on Computer Communications (INFOCOM 1999), pages
1412–1420, New York, USA, March 1999.

[13] Bengt-Olaf Schneider and Ioana M. Martin. An Adaptive
Framework for 3D Graphics over Networks. Computers &
Graphics, 23(6):867–874, 1999.

[14] Ioana M. Boier-Martin. Adaptive Graphics. IEEE Computer
Graphics and Applications, 23(1):6–10, January 2003.

[15] Ghassan AlRegib and Yucel Altunbasak. 3TP: An
Application-Layer Protocol for Streaming 3-D Models.
IEEE Transactions on Multimedia, 7(6):1149–1156, De-
cember 2005.

[16] Hui Li, Ming Li, and Balakrishnan Prabhakaran. Mid-
dleware for Streaming 3D Progressive Meshes over Lossy
Networks. ACM Transactions on Multimedia Computing,
Communications and Applications, 2(4):282–317, Novem-
ber 2006.


