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Abstract—Optimizing the satisfaction of users of distributed
applications is an important yet non-trivial task. Data corrup-
tion incurred during network transmission plays a significant
role in this context since it is likely to result in user frustra-
tion. As a countermeasure, Forward Error Correction (FEC)
schemes complement source data with redundant information
to enable data recovery at destination-side. This paper discusses
the inclusion of adaptive parity-based FEC support in the
NIProxy, a context-aware network intermediary which intro-
duces network traffic shaping and multimedia service provision
functionality in IP-based networks as tools to influence the
user experience. Since FEC coding increases the load on
the transportation network, an integrated approach with the
NIProxy’s network traffic shaping mechanism was adhered to
enable deliberate FEC control and to guarantee the bandwidth
overhead it introduces is justified. Representative experimental
results confirm the validity of our approach and prove that,
if applied in a well-considered manner, FEC coding is able
to beneficially affect user experience and is hence a valuable
addition to the NIProxy’s feature list.

Keywords-Multimedia networking, Forward Error Correc-
tion, bandwidth brokering, Quality of Experience

I. INTRODUCTION

Exchanging data over packet-switched computer networks
can lead to corruption, rendering the data (partly) unusable
for the receiver. The type and amount of errors incurred
during transmission depend on multiple factors. Broadly
speaking however, data corruption can be caused by either
the loss of entire packets or by the introduction of biter-
rors. Insufficiently capacitated network infrastructure (e.g.
routers) is a frequent source for packet loss. Transmission
errors on the other hand typically result from signal interfer-
ence and noise on the communication channel, a common
issue in wireless networks. Irrespective of its cause, data
corruption is likely to have a detrimental effect on user
experience and hence effort should be made to minimize it.
Lost or contaminated data can for instance lead to hitches
in voice streams or visual artifacts in video playback.

Solutions for dealing with data corruption can be cat-
egorized into two groups. The first category consists of
retransmission-based techniques, where the receiver requests
the source to retransmit missing or corrupted data [1].
This process can in theory be repeated indefinitely until
all data has been received correctly. In practice however,
timing constraints might limit the amount of retransmission

attempts for a certain data item or might even render
retransmission completely unfeasible. In the Forward Error
Correction (FEC) approach on the other hand, the sender
supplements the source data with redundant information
which allows the receiver to repair, to a certain extent,
errors introduced during transmission [2]. FEC schemes
in other words enable the destination to recover lost or
damaged data without incurring the round-trip time delay
overhead introduced in retransmission-based solutions. This
is an important advantage in case the network traffic has
real-time characteristics like for instance a live video feed.

Despite their radically different methodology,
retransmission- and FEC-based schemes share a common
disadvantage. They both intrinsically introduce overhead in
terms of the amount of data that needs to be transmitted
over the communication network. Stated differently, they
raise the bandwidth requirements of data streams and hence
the load on the network. Because of this drawback, the
surprising scenario might occur where the addition of error
protection yields an increased instead of a decreased error
rate. As a result, deliberate decision making regarding the
amount of protection to add to network traffic is advocated.

The subject of this paper is the NIProxy, a network
intermediary which aims to improve the experience of users
of networked applications by performing network traffic
shaping as well as multimedia service provisioning, hereby
exploiting relevant contextual information [3]. Given its
negative impact on user experience, techniques to counter
lost or damaged data seemed like a meaningful extension
of the NIProxy’s feature list. The main contributions of
this paper are hence a description of how FEC-based error
protection functionality was introduced in the NIProxy and
an investigation of its influence on user satisfaction. The
decision to opt for a FEC solution instead of a retransmission
scheme is motivated by the NIProxy’s focus on real-time
network traffic. FEC support was adaptively incorporated
in the NIProxy to enable dynamic control of the error
protection process on a per-flow basis. More importantly,
an integrated approach with the NIProxy’s network traffic
shaping mechanism was adhered, this way guaranteeing that
error protection coding reckons with contextual information
(e.g. the currently prevailing channel conditions) and in
addition will actually result in an optimization of the user’s
experience.



The outline for the remainder of this paper is as follows.
Section II introduces the NIProxy network intermediary. The
user experience optimization techniques currently supported
by the NIProxy form the topic of the next two sections.
Section V describes how FEC-based error protection was
incorporated in the NIProxy. This inclusion and its impact
on user experience is subsequently evaluated in Section VI.
Section VII summarizes related work. Finally, Section VIII
presents our conclusion and suggests possible future research
directions.

II. NETWORK INTELLIGENCE PROXY

The objective of the Network Intelligence Proxy
(NIProxy) consists of optimizing the experience of users of
networked applications. In research contexts, user satisfac-
tion is often referred to as Quality of Experience (QoE, see
for instance [4]). Guaranteeing a high QoE is particularly
challenging for distributed applications because, compared
to standalone systems, these involve an additional network-
ing aspect which might introduce significant complications.
As an example, streaming multimedia content imposes high
and strict requirements on the networking substrate, for
instance in terms of bandwidth guarantees and delay bounds.
It is consequently not uncommon that trade-offs need to be
made due to network resources being insufficiently available.
Whenever such situations arise, the experience of the end-
user should always be reckoned with, i.e. the detrimental
impact of each trade-off decision on the user satisfaction
should be minimized.

As alluded to by its name, the NIProxy’s methodology
to obtain its objective is to introduce additional “intelli-
gence” in the networking infrastructure [3]. This intelligence
is accumulated by collecting different types of contextual
information. The NIProxy at the moment queries two distinct
sources to fill up its context repository. The first source is the
transportation network and the contextual knowledge in this
case takes the form of network-related measurements and
statistics like for instance the current bandwidth capacity
of communication links. This type of context is obtained
through performing active network probing. The second
context source is the end-user application. Applications can
provide the NIProxy with any application-related knowledge
they deem relevant. An example could for instance be the
relative importance of the different (categories of) network
flows incorporated by the application. To streamline this
process, a support library has been developed which enables
applications to relay application-specific information to the
NIProxy with minimal effort and without requiring drastic
modifications to the application software [3].

Gathering contextual information by itself of course does
not enhance the user experience, it is merely the means
which enables it. The NIProxy exerts its contextual aware-
ness to outfit IP-based networks with two traffic engineering
techniques which improve their multimedia traffic handling

capabilities and which hence enable them to influence user
satisfaction. These techniques will be discussed in the next
two sections.

III. NETWORK TRAFFIC SHAPING

The first QoE optimization mechanism provided by the
NIProxy is network traffic shaping. The accumulated contex-
tual knowledge is in this case hence exploited to orchestrate
the bandwidth consumption of distributed applications. How
this is achieved exactly will be described in this section.

A. NI Stream Hierarchy

The NIProxy implements network traffic shaping by ar-
ranging network flows in a NI stream hierarchy [5]. The
goal of this tree-like structure is to express the relationships
that exist between network traffic introduced by a distributed
application. Actual network streams are represented by leaf
nodes in the NI stream hierarchy. Internal nodes on the
other hand steer the traffic engineering as each implements
a certain bandwidth distribution strategy.

The network traffic shaping process is controlled entirely
by the choice of types of internal nodes to use and the
way these nodes are composed to model the general layout
of the NI stream hierarchy. Once this layout has been
designed and assuming the NI stream hierarchy is kept up-
to-date (e.g. newly initiated network flows are adequately
incorporated), performing network traffic shaping becomes
as simple as appointing the correct bandwidth amount to
the hierarchy root node. The internal nodes, commencing
with the root node, will automatically start distributing
the bandwidth value they have been assigned among their
children according to the bandwidth distribution approach
they implement. Eventually, portions of the total bandwidth
capacity will reach one or more leaf nodes, at which point
this bandwidth amount is reserved for the transmission of
the network stream that is associated with the leaf node.

B. Internal NI Hierarchy Node Types

The internal NI stream hierarchy nodes dictate the band-
width brokering process by allocating bandwidth to their
children in a specific manner. Different classes of internal
nodes are available to structure the NI stream hierarchy [5].
Table I summarizes the behavior and mode of operation
of the internal node types which played a role in the
experimental evaluation performed for this paper.

C. Leaf NI Hierarchy Node Types

As is the case for internal NI hierarchy nodes, there also
exist multiple leaf node types [5]. The classification of leaf
nodes is based on their capabilities to control the bandwidth
consumption of the network stream they represent. Leaf
nodes belonging to the discrete category are limited to
switching the bandwidth usage of their associated network
flow between a discrete number of levels. In its most



Table I
BANDWIDTH DISTRIBUTION BEHAVIOR OF INTERNAL NI HIERARCHY NODE TYPES

Node Type Behavior

Mutex Implements mutex behavior in that the available bandwidth BW is allotted in its entirety to the child node with the
largest still satisfiable bandwidth requirement; none of the other children receive any bandwidth. In case no child node
with reconcilable bandwidth needs exists, the Mutex will consume no bandwidth at all.

Percentage Implements a two-phase bandwidth distribution process. In the initial phase, each child c is granted its corresponding
percentage value pc ∈ [0 , 1 ] of the distributable bandwidth BW , i.e. child c is apportioned a bandwidth amount
BWc = pc × BW . Child percentage values are scaled so that they sum up to 1 . After executing phase 1, a portion
of BW might be left unallocated due to children not fully consuming their assigned bandwidth percentage. If so, the
second phase attempts to distribute this excess bandwidth by assigning it to child nodes on a one-by-one basis, in order
of decreasing percentage value. The second phase in other words allows children to upgrade their bandwidth consumption
based on unused bandwidth inherited from phase 1, hereby favoring children with a higher percentage value.

rudimentary form, a discrete leaf node supports only two
such levels, corresponding to respectively a zero and maxi-
mal stream bandwidth consumption. Such nodes are hence
confined to turning their associated network flow off and
on and can consequently only effectively represent single-
quality network flows in the NI stream hierarchy. Contrary to
discrete leaf nodes, the class of continuous leaves is able to
modify their associated stream’s bandwidth consumption in
a continuous manner. Stated differently, these nodes define
a bandwidth consumption range and provide functionality
to set their corresponding flow’s bandwidth usage to an
arbitrary value within this range. Continuous leaf nodes
are more powerful than discrete leaves as they enable
additional flexibility and dynamism to be introduced in the
network traffic shaping process. This however comes at the
expense of increased resource consumption and processing
requirements.

D. Sibling Dependencies Framework

A secondary contribution of this paper is the incorpo-
ration of a framework in the NIProxy’s network traffic
shaping mechanism that enables dependencies to be en-
forced between sibling nodes in the NI stream hierarchy.
Currently only the SD_BW_ALLOC_CONSTRAINED depen-
dency has been defined but the set of supported sibling
dependency types could readily be extended, for example
based on future network traffic shaping requirements. The
SD_BW_ALLOC_CONSTRAINED dependency introduces a
bandwidth allocation constraint between siblings in the NI
stream hierarchy. In particular, the existence of such a
dependency between sibling nodes A and B specifies that
B is allowed to consume bandwidth if and only if A’s
bandwidth consumption is non-zero. In case this constraint
is violated, node A is allowed to alter the current bandwidth
distribution by “borrowing” the bandwidth amount assigned
to node B. If the combined bandwidth reserved for nodes
A and B remains insufficient to satisfy node A’s minimal
bandwidth requirements, both nodes will be turned off and

a new network traffic shaping iteration will be performed
from which the subtrees that are rooted at nodes A and B
are excluded. As a result, the bandwidth that was originally
allocated to node B will be distributed over the other nodes
in the NI stream hierarchy (recall that node A’s bandwidth
consumption was zero in the initial iteration). If on the
other hand the additional bandwidth enables node A to
switch to its minimal non-zero bandwidth consumption,
node A is allowed to do so; any bandwidth that remains
will subsequently be made available to node B. Note that this
latter amount will inherently be smaller than the bandwidth
that was at first reserved for node B, meaning node B might
be forced to lower its bandwidth consumption or might even
get completely disabled.

IV. MULTIMEDIA SERVICE PROVISION

As a second technique to boost their multimedia handling
capabilities, the NIProxy introduces the possibility to per-
form processing on multimedia traffic inside communication
networks. This is achieved by acting as a service provision
platform, meaning the NIProxy enables the in-network exe-
cution of services on transported data. The range of services
that can be provided is theoretically limitless, spanning
from lightweight data filtering to flow aggregation and even
adaptation. In previous work, we for example presented a
service which enables the NIProxy to modify the bitrate of
video streams by on-the-fly transcoding them to a lower
quality [3]. Like the network traffic shaping mechanism,
provided services have access to the NIProxy’s context
repository and can exploit it to make sure the processing they
implement will actually lead to an improvement of the end-
user experience. The contextual knowledge could however
also be exploited for secondary purposes, for instance to
optimize the efficiency of resource-intensive services.

A. Services as NIProxy Plug-Ins

To guarantee maximal flexibility and to achieve run-time
extensibility of the NIProxy’s functionality, each service is



implemented as a plug-in that can be (un)loaded dynam-
ically during NIProxy execution. By opting for a plug-
in based design, services become standalone entities that
are conceptually separated not only from each other but
also from the NIProxy’s general software architecture. This
separation confers several advantages like for instance third-
party service development [3]. Despite their isolation from
each other, services are still able to cooperate. Multiple
services, each implementing a well-delineated function, can
namely be combined to form a service chain. Services
belonging to a chain are executed consecutively so that the
output produced by each service serves as input for the next
service in the chain, this way achieving collaboration.

B. Network Traffic Shaping Interoperation

Besides inter-service collaboration through service chain-
ing, the NIProxy also enables services to interoperate with
its network traffic shaping mechanism. To be more precise,
services are able to query and even influence the network
traffic shaping strategy devised for NIProxy clients. An
exemplification hereof is again provided by the previously
mentioned video transcoding service [3]. This service in-
troduces a new type of network traffic, i.e. the transcoded
version of original video flows. To inform the NIProxy of
the existence of this new flow type and to ensure it is
taken into consideration during bandwidth brokering, the
video transcoding service extends the NI stream hierarchy
by incorporating nodes representing transcoded video flows.
Once incorporated, the NIProxy’s network traffic shaping
mechanism can start making deliberate decisions about
which video version to assign bandwidth to. These decisions
in turn influence the operation of the video transcoding
service, since the service will only transcode incoming
video flows in case consultation of the NI stream hierarchy
indicates the transcoded video flow is currently enabled. As
a result, unnecessary transcoding operations are avoided.

Practical experience and empirical evaluation has shown
supporting service and network traffic shaping interfacing to
be a powerful feature since it enables the implementation
of highly effective and resource-efficient services. More
importantly however, we put forward the proposition that it
unlocks end-user QoE optimization possibilities and results
that could not be attained by applying both mechanisms
independently. Illustrations of this argument were already
provided in our previous work (e.g. [3]) and it will again be
confirmed in the evaluation section of this paper.

V. FEC INTEGRATION IN NIPROXY

A. XOR-Based Parity Coding

A large variety of schemes to enable receiver-side correc-
tion of transmission errors exists [2]. Each has its particular
characteristics in terms of error correction capabilities, com-
putational complexity, information rate (the ratio between
media data and redundancy), etcetera. For this paper, we

opted for a parity-based technique that relies on bitwise
XOR (eXclusive OR) encoding [6]. As input, this technique
accepts a group of n media packets and produces as output
a single parity packet. This parity packet is constructed by
applying the XOR operator on the bits stored at identical
locations in the n media packets and subsequently saving the
outcome at the corresponding location in the parity packet.
Each bit in the parity packet in other words represents the
parity of the equivalent bits in the input packets. At decoding
side, the parity packet can be used to recover a singly lost or
corrupted media packet that contributed to its construction.
This is achieved by XOR-ing the (n − 1 ) correctly received
media packets with the (also perfectly received) parity
packet. In case the packet is corrupted instead of completely
lost, the number of introduced biterrors is irrelevant to the
recovery process; as long as all biterrors are confined to a
single packet per input group, recovery will be perfect.

Our choice for an XOR-based parity scheme is motivated
by the fact that it exhibits a number of characteristics that
make it very suitable for inclusion in a middleware system
aiming to improve the end-user experience. First of all, the
scheme has maximal usability as it is a generic technique
that is not bound to a particular media type. Adaptability
is another very important asset as protection can at run-
time be traded off for bandwidth consumption by varying
the size of the input packet group used to constitute a
single parity packet. A certain level of scalability is also
guaranteed due to the scheme being lightweight in terms of
computational requirements. Final advantages include ease
of implementation, the existence of an efficient and standard-
ized transport mechanism for the redundant data [6] and the
backward compatibility of the scheme with FEC-agnostic
receivers [6]. The main disadvantage of the parity approach
is that it is a relatively bandwidth consuming technique as
it generates additional packets that need to be transmitted
over the transportation network. This introduces significant
overhead since each packet requires its own protocol headers
and, as a result, schemes with higher information rates exist.
This effect is further aggravated in case the sizes of the
to-be-protected media packets exhibit high variability, as it
imposes the need for extensive padding [2].

B. NI Stream Hierarchy Incorporation

Like any other FEC technique, parity coding introduces
overhead in terms of redundant data that needs to be trans-
mitted over the communication network. Since this FEC-
generated network traffic might consume significant amounts
of bandwidth, it should be reckoned with by the NIProxy’s
network traffic shaping mechanism. This in turn necessitates
its integration in the NI stream hierarchy. Redundant parity
information is therefore represented as a discrete NI stream
hierarchy leaf node which provides a discrete bandwidth
consumption level for each supported input packet group-
ing size (plus an additional level corresponding to a zero



bandwidth usage to indicate that parity coding should be
disabled). Merely representing the FEC data does not suffice
however, it also needs to be adequately related to the media
stream it protects as any bandwidth allocated to the FEC
information can no longer be consumed by the media flow
itself. The objective is hence to amortize the bandwidth
that has been reserved for FEC-protected traffic among
the media data and its FEC overhead in such a manner
that the reception at the destination is optimized. This
process is often referred to as Joint Source-Channel Coding
(JSCC) and its impact on user QoE should be apparent.
As will be demonstrated in Section VI, in this paper we
rely on the Percentage node type to group together
a media flow with its FEC protection in the NI stream
hierarchy. By adjusting the percentage values assigned to
both nodes, the JSCC process can be controlled. It should
be noted however that our current approach might prove
to be too coarse and rudimentary to be practically usable
in realistic environments. The results that will be presented
later on in this paper can consequently be considered to
be preliminary as one of the objectives of our future work
is to investigate the integration of more fine-grained JSCC
support in the NIProxy. Finally, as the FEC redundancy is
rendered useless in case the media data it protects is not
received by the destination, a sibling dependency of type
SD_BW_ALLOC_CONSTRAINED is defined between the NI
stream hierarchy nodes representing the media and its FEC
protection. As described in Section III-D, doing so installs
the condition that FEC traffic can consume bandwidth if and
only if its associated media flow is currently enabled.

C. Implementation

FEC support was not incorporated in the NIProxy as
an integral part of its general software architecture but
instead as a NIProxy service. As explained previously in
Section IV, the advantage of this design decision is that
FEC-related functionality will only be loaded in case it is
effectively needed and that any issues it might introduce
will not contaminate the NIProxy’s basic implementation.
The service accepts as input original media data and sup-
plements it with redundant parity information. The plug-
in’s exact mode of operation is as follows. First of all, it
registers interest for the class of network streams carrying
data that is eligible for FEC protection1. On the discovery
of each such network stream, the service performs two
initialization tasks. The first task consists of instantiating a
FEC encoder for the newly discovered flow, in this case an
XOR-based parity coder. Secondly, as explained in Section
V-B, the service informs the bandwidth brokering process
of the possibility to FEC protect the media stream and the

1NIProxy services are able to control the data they are handed
over by registering interest for certain network stream types or
even individual network streams [3]. Only data transported on these
streams will be provided to the service as input.

thereby associated bandwidth requirements. On completion
of this initialization phase, the network flow is added to
the service’s main processing loop. Each iteration of this
loop starts with the service exploiting its interface with the
network traffic shaping mechanism to determine the discrete
level to which the FEC data for the media flow that is
being processed is currently set. The corresponding FEC
encoder is subsequently switched to the input grouping size
that is associated with this level, after which it is fed with
the input media packet. In case this packet completed a
protection group, the media packet is outputted together with
the resulting parity packet. If not, only the media packet
is returned as output of the service. As an exception, if
the FEC stream’s current discrete level corresponds with a
zero bandwidth consumption, FEC processing is bypassed
by simply not handing over the input packet to the parity
encoder.

D. Supporting Other FEC Techniques

It is important to note that the NIProxy’s FEC support
does not need to be limited to parity-based coding. Other
FEC schemes such as the popular ReedSolomon (RS) code
[2] could just as well be incorporated. Analogous to the
way parity coding was integrated, this would involve the
introduction of a new FEC encoder in the NIProxy as well as
a representation of the network traffic it generates in the NI
stream hierarchy. Being able to fall back on a catalog of FEC
schemes would likely improve the NIProxy’s performance
as the effectiveness of individual FEC approaches tend to
vary considerably depending on environmental factors like
for instance the current characteristics of the data corruption
process. In case multiple FEC codes would be supported, the
NIProxy could exploit its contextual awareness to estimate
the beneficial impact of each code on the user QoE under the
present conditions. Based on these estimations, the optimal
FEC technique could subsequently be selected. It would even
be possible to enable collaboration between different FEC
techniques through concatenation in case this would benefit
the end-user experience.

VI. EVALUATION

This section harbors experimental results which com-
prehensively demonstrate the added value of integrating
FEC-based error protection functionality in the NIProxy. In
particular, the advantageous influence on the NIProxy’s user
QoE optimization capabilities will be evaluated by analyzing
the outcome of a practical experiment that was conducted
multiple times under varying circumstances. The presented
experiment, which will be described in detail in Section
VI-A, was deliberately kept simple to ensure the reader’s
attention is focused on the specific contributions of this paper
and to enable intelligible distillation of their impact from the
produced results. Furthermore, despite the experiment being
minimalist, the presented results are representative as they



Figure 1. Experimental setup

can be extrapolated to realistic contexts in a straightforward
manner.

A. Experiment Description and Setup

The experiment simulated a video streaming scenario
between a multimedia server and a receiving client. As
depicted in Figure 1, the server was conceptually deployed
somewhere inside a high-capacity and relatively error-free
network backbone. The client on the other hand was located
at the periphery of the network and was connected to the
backbone through a resource constrained access network
(the so-called last mile). In between these two end-hosts, a
NIProxy component was interposed which was responsible
for engineering the network traffic destined for the receiving
client. The objective was hence to determine whether the
user benefitted from the inclusion of the NIProxy in the
experiment. The NIProxy instance was conceptually de-
ployed on the boundary between the backbone and the access
network. This location was chosen as it represents a crucial
junction point in the simulated network topology where
data emitted by the multimedia server needed to transfer
from the resource-abundant network core to the much less
capacitated and possibly error-prone access network. Finally,
to be able to emulate packet loss on the client’s access link,
the experimental setup also included an instance of the netem
network emulator [7].

Within this experimental setup, the multimedia server
maintained two simultaneous RTP video sessions VS1 and
VS2 with the receiving client. The streaming server emitted
video data in unprotected form (i.e. without FEC infor-
mation) as the network core was assumed to be nearly
error-free. The NIProxy instance however had its FEC
service loaded and was hence able to add XOR-based parity
protection to transiting network traffic. Parity coding could
be performed per 3 or per 6 input packets. Recall that
resorting to a smaller input grouping size increases the
error recovery possibilities at the expense of elevating the
bandwidth required for transporting the parity information.
To unambiguously demonstrate the effect of the FEC pro-
cessing and the bandwidth requirements it imposed, in the
experiment only video session VS2 was marked as being
eligible for receiving FEC protection. For the comparison
with unprotected flow VS1 to be meaningful, an identical

Table II
VIDEO ENCODING PARAMETERS

Resolution Framerate Bitrate Codec

Original 320× 240 20 120.000 H.263+

Transcoded 176× 144 15 60.000 H.263+

video fragment was streamed over both sessions. Besides
the FEC service, the NIProxy also made use of its video
transcoding service and was consequently able to address
bandwidth shortage on the access network by reducing the
bitrate of incoming video streams. The quality parameters of
the employed video fragment as well as the output settings
of the video transcoding process are listed in Table II.

Figure 2 depicts the NI stream hierarchy which steered
the transmission of the two video flows over the receiving
client’s access connection during the experiment. The root
node was of type Percentage and had as children two
subtrees which each represented one of the video flows
emitted by the streaming server. Both subtrees were assigned
a percentage value of 0.5 to specify that the bandwidth
capacity of the access link should at all times be split
perfectly fair over both video connections. This was again
decided to enable meaningful comparison of the way both
video streams were treated by the NIProxy as well as of their
reception at client-side. The leftmost subtree corresponded
with video session VS1 that was not qualified for receiving
FEC protection from the NIProxy. This subtree comprised
two discrete leaf nodes which respectively represented the
original and transcoded version (OV and TV) of the trans-
ported video fragment and which were differentiated from
each other using an internal node of type Mutex. Both
leaf nodes supported two discrete bandwidth consumption
levels representing the extremes of respectively obstructing
their associated network stream and forwarding it at its
maximal rate. An analogous construction can be found in the
rightmost subtree, which however also included a number of
additional nodes as it corresponded with video flow VS2 that
was considered for being FEC protected by the NIProxy. The
XOR-based parity FEC data was incorporated as a discrete
leaf node providing three discrete bandwidth levels, one
for each supported input grouping size plus an additional
level associated with a zero bandwidth consumption. As
previously discussed in Section V-B, JSCC was implemented
by making this FEC node a sibling of the quality grouping
Mutex node using a Percentage node as parent. In this
experiment, a static JSCC approach was employed where
90 percent of the available bandwidth was always assigned
to the media stream itself, while the remaining 10 percent
was reserved for the parity data. Also observe the sibling
dependency of type SD_BW_ALLOC_CONSTRAINED that
was defined between the quality grouping Mutex and the



Figure 2. NI stream hierarchy which steered the shaping of
the network traffic destined for the receiving client during the
experiment

Figure 3. Stacked graph illustrating the network traffic received by
the destined client during the error-free execution of the experiment

FEC leaf node.
The described experiment was executed twice, once with-

out and once with the netem component introducing packet
loss on the last mile. During each experiment execution,
all conditions remained constant, except for the bandwidth
capacity of the access link. Artificially modifying the access
network throughput at predefined points in time enabled us
to investigate the effect of these bandwidth fluctuations on
the way the NIProxy shaped the network traffic destined
for the receiving client. Five such bandwidth modifications
were performed throughout the experiment, causing it to be
conceptually divided into six discrete intervals.

B. No Packet Loss

The experiment was first executed in an error-free envi-
ronment to enable complete and perfect tracing of the way
the video traffic transited the access network and arrived
at the destined client. The outcome is plotted in Figure
3. In this network chart, the solid red line specifies the

bandwidth capacity of the access connection, whereas the
dashed vertical lines separate the consecutive experiment
intervals. As can been seen, the interval transitions occurred
at interspaces of approximately 30 seconds and always
coincided with an (artificial) reduction in access bandwidth.
Finally, the dashed horizontal lines indicate the bandwidth
percentages reserved for both video connections during the
different experiment intervals. As each connection was as-
signed an equal percentage value in the NI stream hierarchy,
the bandwidth capacity of the access link was cut in halve
and split perfectly fair over both. Notice however that in the
case of video session VS2, the allocated bandwidth amount
needed to be distributed over the video data itself and its
FEC protection.

Except during the first experiment interval, the NIProxy
was forced to apply network traffic engineering due to access
bandwidth being insufficiently available to inject all involved
network streams at their maximal rate into the last mile. In
the third interval for example the client received VS1 at full
quality and the parity coding for VS2 also ran at maximal
bandwidth consumption; VS2 itself however was transcoded
to a lower quality by the NIProxy before it was relayed to the
access network. As the experiment progressed, access band-
width became gradually more constrained and consequently
increasing bandwidth reductions needed to be enforced for
the involved network streams, up to the point where FEC
coding was even completely disabled in the last experiment
interval. Also observe from the network trace that reducing
the bandwidth consumption of the media data yielded an
equivalent reduction in the bandwidth requirements of its
FEC protection. This is explained by the fact that as data
packets decrease in size, so do the packets carrying parity
information. Finally, the network graph also reveals that the
available access bandwidth was not always fully exploited.
This is most pronounced in experiment interval 4 where
approximately a quarter of the bandwidth capacity remained
unallocated. This behavior was nonetheless justified as in
these situations none of the involved network flows could
be switched to a higher bandwidth consumption level, ei-
ther because doing so would violate the current bandwidth
constraints or because they were already running at their
maximal rate.

C. 10 Percent Packet Loss

In the second iteration of the experiment, the access
connection suffered from 10 percent packet loss, randomly
introduced by the netem component of our experimental
setup. As illustrated in Table III, this caused video data as
well as FEC protection packets to be lost. On the other hand,
it also resulted in the FEC data being put to meaningful
use, i.e. to reconstruct lost packets at receiver-side. Table
III therefore also includes packet recovery statistics for
video stream VS2. Looking at the table, we see that the
redundant parity information enabled the receiving client



Table III
PACKET LOSS AND RECOVERY STATISTICS (10 PERCENT PACKET LOSS RANDOMLY INTRODUCED ON ACCESS LINK)

Experiment Interval Total

1 2 3 4 5 6

# Lost

VS1 47 45 52 32 21 27 224

VS2 56 31 38 34 27 24 210

FEC 15 6 11 11 3 0 46

% Lost

VS1 11.03 10.23 11.79 9.07 7.09 9.64 10.02

VS2 12.33 7.11 10.83 11.53 9.12 8.39 9.92

FEC 10.27 6.38 12.09 11.22 4.69 0 9.33

# Recovered 40 18 20 22 18 0 118

% Recovered 71.43 58.06 52.63 64.71 66.67 0 56.19

to recreate 56.19 percent of the packets that were lost on
video session VS2, yielding a residual loss of 92 packets
instead of the original 210. Besides collecting packet loss
and recovery statistics, data reception at client-side was
again also recorded. Unsurprisingly, the resulting network
trace perfectly resembled the chart depicted in Figure 3,
except for the bandwidth consumption of the monitored
streams this time displaying occasional irregularities (i.e.
drops) caused by the packet loss. As the network trace does
not convey extra information nor provides any additional
insight, it was omitted from this paper.

Executing the experiment in an error-free environment
yielded perfect video playback at the destination. This was
unfortunately no longer the case in this iteration of the
experiment. As the destination did not always have all
video packets at its disposal, decoding issues arose which
in turn caused (sometimes severe) perceptual artifacts to be
introduced in the decoded video. The availability of FEC
information for VS2 however enabled the receiver to repair
a substantial fraction of the packets that went missing on
this session. Compared to video stream VS1, the playback
of VS2 was hence significantly less distorted as decoding
artifacts were much less pronounced. Space limitations un-
fortunately refrain us from providing screenshots to endorse
this statement.

D. Discussion

A number of important findings can be deduced from
the network chart presented in Figure 3. First of all, it
proves that the NIProxy shaped the network traffic destined
for the client in such a manner that the capacity of the
client’s access connection was at all times respected. A

second observation is that the bandwidth distribution strategy
delineated for this experiment was successfully put into
effect by the NIProxy, as the available access bandwidth
was shared equitably among the involved video sessions.
Either network connection was only allowed to raise its
bandwidth consumption beyond its “fair share” in case
spare bandwidth originally reserved for the other connection
was available. This is a direct consequence of the two-
phase bandwidth distribution approach implemented by the
Percentage NI stream hierarchy node and it resulted
in a more complete exploitation of the access bandwidth
capacity. Notice that this observation is not limited to the
way bandwidth was shared among the video connections
themselves but that it also applied to the JSCC process
for the FEC protected video stream. This is exemplified in
experiment intervals 3 and 4, where the FEC data stream
was initially entitled to a bandwidth percentage that barely
sufficed to perform parity coding per 6 input packets. As
the video data it protected however did not fully consume
its reserved bandwidth amount, the FEC stream was able to
claim this excess bandwidth and exploited it to switch to a
grouping size of 3 packets. Third, the presented experimental
results are an interesting exemplification of the potential of
supporting interoperation between NIProxy services and its
bandwidth brokering operations. In particular, the network
trace demonstrates how the JSCC process (i.e. the amount of
client bandwidth spent on FEC data) was directed entirely by
the NIProxy’s network traffic shaping mechanism2. Notice

2As stated previously, the current implementation of the JSCC
control leaves room for considerable improvement as it should
more accurately and flexibly exploit contextual knowledge.



that JSCC might result in the need to reduce the quality
of the multimedia data to accommodate its FEC protection
flow. In the presented experiment, this occurred in the
third interval, where sufficient bandwidth was available to
forward video stream VS2 at its maximal rate. However, as
its associated FEC data was entitled to a fraction of this
bandwidth capacity, VS2 itself needed to be transcoded to
a lower quality. In contrast, since video stream VS1 was
not subject to FEC protection, the client received VS1 in
original quality during this experiment interval. Remark that
all discussed findings also apply to the second iteration of
the experiment as the NIProxy enforced an identical traffic
shaping strategy in both experiment executions.

The discussion thus far has revealed that FEC protecting
a multimedia flow does not come for free as it imposes an
unnegligible bandwidth overhead. The bandwidth consumed
by the redundant information however enables missing or
corrupted data to be repaired at the destination. The benefi-
cial impact hereof cannot be inferred from the presented
network trace but instead is comprehensively highlighted
by the loss and recovery statistics provided in Table III.
In the third experiment interval for instance, recall that it
was necessary to transcode video stream VS2 to a lower
bitrate to accommodate its FEC protection. Table III however
demonstrates that the availability of the FEC data in this
interval enabled the receiving client to reconstruct 52.63
percent of the packets belonging to video stream VS2 that
were corrupted during their passage through the noisy access
network. In contrast, in the same experiment interval the
client received video stream VS1 at original quality but as
this stream lacked FEC protection, none of its 52 lost packets
could be recovered. Comparing the playback of VS1 and
VS2 on the end-user device, the latter was much smoother
and less perceptually degraded. It is our belief that a lower
quality but only mildly distorted version of a video fragment
yields a more enjoyable viewing experience than a high-
quality video fragment displaying grave visual deformations
and/or temporal interruptions caused by unaccounted for
transmission errors. Notice that this claim is highly subjec-
tive and has not yet been formally confirmed by subjecting
the QoE optimization attempts executed by the NIProxy to
a qualitative user study. In any case, if a user does not share
our vision and actually prefers distorted high-quality video
over a less distorted lower quality variant, it is possible
to prevent the network traffic destined for this user from
receiving FEC protection from the NIProxy. In fact, FEC
support was incorporated in the NIProxy in a sufficiently
flexible manner so that such decisions can even be made on
a per-flow basis.

VII. RELATED WORK

As means to improve user satisfaction, the NIProxy
network intermediary provides network traffic shaping as
well as multimedia service provision functionality. Both

techniques are topics of active research. Interesting related
work on network traffic shaping and bandwidth brokering
includes the utility-based bandwidth partitioning scheme
proposed in [8] and the mathematical study by Massoulié
and Roberts [9]. The NIProxy’s multimedia service provi-
sion mechanism on the other hand is largely related to the
Service Oriented Architecture (SOA) paradigm [10] and the
Active Networking (AN) design philosophy [11]. The Pro-
tocol Boosters approach [12] and the general purpose proxy
filtering mechanism presented in [13] are concrete examples
of platforms which, like the NIProxy, enable in-network
processing of transported data. Finally, the NIProxy shows
substantial interfaces with architectures that are concerned
with Quality of Service (QoS) provision such as the Conges-
tion Manager middleware [14] and the OverQoS framework
[15]. The NIProxy consequently does not innovate in terms
of the objectives it sets forth nor the techniques it employs
to achieve them. What does distinguish the NIProxy from
related research is that it integrates both techniques in a
single system and in addition does so in an interoperable
and collaboration-enabled manner. As is again validated in
this paper, this integrated approach confers a number of
important advantages and unlocks potent user QoE optimiza-
tion possibilities. Also, the NIProxy’s awareness includes
application-related context, a type of knowledge that is often
left unconsidered in other approaches.

This paper specifically addressed the incorporation of FEC
support in the NIProxy. An excellent reference work on error
correction coding is the book by Moon [2]. An important
consequence of FEC-based solutions is the need to perform
Joint Source-Channel Coding (JSCC). Examples of proposed
JSCC strategies and implementations can be found in [16],
[17] and [18]. It is important to note that every JSCC
approach could theoretically be incorporated in the NIProxy
by implementing its behavior and mode of operation in a
new type of internal node for the NI stream hierarchy.

VIII. CONCLUSION AND FUTURE WORK

Multimedia data destined for clients of distributed appli-
cations might arrive in corrupted form or could even be par-
tially lost during its propagation through error-prone trans-
portation networks. The typical outcome is a deteriorated
media presentation at receiver-side which in turn is a likely
source for user frustration. Forward Error Correction (FEC)
schemes address this issue by adding redundancy to the
transported data to enable receivers to repair compromised
or lost information. Given its ability to negate or at least
alleviate the detrimental effects of data corruption, it was
decided to introduce FEC coding in the NIProxy, a network
intermediary which strives to optimize the experience wit-
nessed by users of distributed applications. FEC support was
incorporated in the form of an adaptive XOR-based parity
coder whose operation is directed by the NIProxy’s network
traffic shaping mechanism to ensure the bandwidth overhead



it introduces is justifiable and is adequately weighed against
not only the multimedia stream it protects but also any
other network traffic that is being exchanged as part of the
distributed application. The FEC inclusion was practically
evaluated using a video streaming use case. The resulting ex-
perimental results comprehensively corroborate that adaptive
FEC support was successfully incorporated in the NIProxy
and in addition demonstrate that it is a valuable addition to
the NIProxy’s toolset to improve the experience of users of
distributed applications.

Our future research directions have already been men-
tioned throughout this paper. To recapitulate, these include
extending the NIProxy’s FEC support with techniques other
than XOR-based parity protection (e.g. RS coding) and the
introduction of more powerful and effective JSCC algo-
rithms. Regarding the JSCC topic, a first important improve-
ment would be to make the division of bandwidth among the
media data and its FEC protection dynamic so that it at least
takes the current loss characteristics into account. Secondly,
it might turn out beneficial to design a new type of internal
NI stream hierarchy node to direct the JSCC instead of re-
lying on an existing type, as none of these might be capable
of efficiently modeling the JSCC process. Finally, besides
performing implementational adjustments, we also plan to
organize user studies to obtain qualitative feedback regarding
the user experience optimization attempts performed by the
NIProxy.
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