
Audio and Video Communication in Multiplayer
Games through Generic Networking Middleware

Maarten Wijnants Wim Lamotte

Hasselt University Interdisciplinary institute
Expertise Centre for Digital Media for BroadBand Technology (IBBT)

and transnationale Universiteit Limburg Expertise Centre for Digital Media
Wetenschapspark 2, BE-3590 Diepenbeek, Belgium BE-3590 Diepenbeek, Belgium

{maarten.wijnants, wim.lamotte}@uhasselt.be

Abstract— On-line computer gaming is steadily becoming more
popular. This is partly due to the increasing realism, visual
and other, which recent games present to players. However,
one technological aspect that is often still neglected by the
current generation of games is the provision of in-game streaming
functionality. This can be attributed for a large part to the con-
siderable effort developers need to put into its implementation.
Client bandwidth is a valuable resource which should not be
squandered lightly, meaning an efficient and thus time-consuming
implementation is required. In this paper, we present our
networking middleware which facilitates the integration of real-
time streaming facilities in multiplayer games. The networking
middleware consists of a number of interconnected proxy servers
that are both application and network aware. In addition, the
proxies are extensible, meaning game developers can add specific
functionality to them when necessary. One example of such an
extension we implemented ourselves is a video transcoding plug-
in that enables the proxy to transcode video streams to a lower
quality on-the-fly. Through experimental results, we demonstrate
how our middleware exploits its compound awareness and video
transcoding functionality to automatically and intelligently route
and possibly also adapt multimedia network streams, thereby
relieving game developers of this burden.

Index Terms— Networking middleware, multimedia streaming,
multiplayer computer games

I. I NTRODUCTION

Continuously improving computer hardware allows devel-
opers to create ever more realistic games. For instance, the
introduction of the Graphics Processing Unit (GPU) has dras-
tically increased the visual realism of computer games. The
release of the first Physics Processing Unit (PPU), planned
for the end of this year, is expected to do the same to the
physical correctness of game worlds [1]. However, when it
comes to the communication facilities provided by on-line
multiplayer games, there has been very little progress. Many
games at the moment still only support textual chat, which
many players consider to be both awkward and slow to input.
Some games therefore already allow players to communicate
through audio streams, but there is still virtually no support
for video communication or, more general, the exchange of
multimedia streams other than audio.

Exchanging multimedia streams however does have a num-
ber of possible applications in networked computer games.
As already mentioned above, one interesting use would be
to enable players to communicate in a more natural and
immersive way. Audio and certainly video communication

inherently transfers information about the current emotional
state of players, something textual chat can only fake through
the use of emoticons. Even if video communication inside the
game world might look a bit overdone at the moment, it would
definitely be convenient if it were supported in game lobbies or
staging areas. In addition, audiovisual communication attaches
a distinct voice and face to nicknames, this way allowing
gamers to recognize others more easily in the virtual world.
Another possible use could be to enable the dynamic streaming
of multimedia content in games. For instance, in the near
future we envision game servers dynamically transmitting
video fragments, possibly advertisements, to players based on
their current interests and location in the game world.

The lack of support for exchanging multimedia network
streams in the current generation of on-line multiplayer games
can be attributed for a large part to the high bandwidth
requirements of these streams. This is especially true for
video, which can consume up to half a megabit per second,
depending on the video quality and the codec being used.
Consequently, game developers need to spend a lot of effort to
implement it efficiently, since client bandwidth should never
be wasted on multimedia streams the client is not interested
in. Furthermore, developers sometimes want their multiplayer
games to be playable on both low-bandwidth dial-in modems
as well as high-bandwidth DSL or cable modem connections,
which again requires extra code to be written.

In this paper, we present a generic networking middleware
that makes the process of incorporating multimedia streaming
facilities in multiplayer games considerably easier. The mid-
dleware consists of a number of interconnected proxy servers
that are positioned at the edge of the network, close to end-
users. Each proxy server isapplication and network aware,
meaning it has high-level knowledge of both the application
(i.e. game) it is serving as well as the state of the underlying
transportation network [2]. In addition, the proxy servers are
equipped with video transcoding functionality, which enables
them to on-the-fly scale down high-quality video streams
[3]. Based on their compound awareness and transcoding
capabilities, the proxy servers intelligently route and possibly
also adapt multimedia network streams destined for connected
clients (i.e. players). Consequently, game developers no longer
need to spend time on these issues and can instead focus on
other aspects of their game. Finally, our networking middle-
ware is also extensible, meaning game developers can easily



add specific functionality to it when needed.
The remainder of this paper is structured as follows. In

section II we briefly review related work on the distributed
proxy network architecture and on networking middleware.
Next, we discuss the implementation of our own networking
middleware in section III. In section IV we describe how we
integrated our work into an existing networked application,
while section V presents some experimental results that arose
from this integration and which clearly demonstrate the ben-
efits of our work. Finally, we conclude our paper and suggest
possible future research directions in section VI.

II. RELATED WORK

The network architecture of most current on-line multi-
player games is still based on the client/server model. How-
ever, game developers are slowly discovering the benefits
of incorporating proxy servers inside the network, either
to assist the central server or even to completely replace
it. The Massively Multiplayer On-line Game (MMOG) Eve
Online, for instance, utilizes a centralized server cluster to
compute the game state, but exploits proxy servers to relieve
the server cluster from certain tasks such as data integrity
checking [4]. By adhering to this approach, more players can
be simultaneously on-line in the game world. The research
community on the other hand has already been investigating
this topic for a couple of years now. For instance, Cronin et
al. present in [5] the results of porting a popular First Person
Shooter (FPS) game to the distributed proxy architecture. In
particular, they report that by eliminating the central server
and replacing it with a number of interconnected proxies
which are located close to the clients, they were able to at
all times guarantee a low end-to-end latency, which in turn
resulted in an increased player satisfaction. A number of
additional advantages of the distributed proxy architecture in
the context of multiplayer games is given by Mauve et al. in
[6]. Finally, Nguyen et al. discuss in [7] how the distributed
proxy architecture can be employed to provide immersive
audio communication to users of MMOGs. The presented
proxy system is however only capable of managing audio
streams, whereas our networking middleware can route and
adapt all possible kinds of multimedia streams.

The distributed proxy architecture is also receiving a great
deal of attention in the context of multimedia content deliv-
ery. Here, proxy servers are normally used to overcome the
mismatch between what the content server provides and what
the requesting client can handle. For instance, a number of
proxy systems can be found in the literature which try to
improve the delivery of web pages to clients by transcoding
the images contained inside HTML pages to a more suitable
format, either based on the client’s network connection, the
capabilities of his device, or both. Examples include [8], [9]
and [10]. Similar proxy systems have been devised to improve
the real-time streaming of video fragments to heterogeneous
clients, e.g. [11] and [12]. Other interesting proxy systems in
this context includeAMPS, a highly scalable proxy research
platform designed specifically to support a wide and extensible
set of streaming services [13], and theQTParchitecture which

Fig. 1. All network streams originating from or destined for a certain client
pass through the proxy server this client is connected to.

tries to satisfy simple Quality of Service requirements by
exploiting an intelligent version decision policy and service
admission control scheme [14].

There are many resemblances and overlaps between the
proxy systems cited in the previous paragraph and our own
networking middleware. However, our networking middle-
ware distinguishes itself from these systems by its appli-
cation awareness. Indeed, all cited systems lack application
awareness, which limits their use to simple content delivery
scenarios. Our networking middleware on the other hand
does take application related information into account when
making routing and transcoding decisions. Consequently, our
middleware can be employed not only in a content delivery
context, but also in more complex networked applications such
as multiplayer computer games, which in fact is the topic of
this paper.

III. I MPLEMENTATION

As stated in the introduction, our networking middleware
consists of a number of interconnected proxy servers that are
positioned at the edge of the network. Instead of directly
connecting to a central game server or to each other in
a peer-to-peer manner, clients need to connect to one of
these proxy servers, preferably the one nearest to them in
the network topology. By doing so, the client-to-proxy hop
count and delay will normally be kept to a minimum. The
proxy server subsequently becomes responsible for forwarding
relevant network streams to the client and, conversely, for
correctly routing packets sent by the client to their destination.
This is illustrated in figure 1.

To be able to make intelligent routing decisions, our net-
working middleware continuously retrieves and stores infor-
mation regarding the application(s) it is serving as well as
the current state of the transportation network. To acquire
application awareness, our middleware requires the client
application to send application related information to the proxy
this client is connected to. For instance, the client software
could keep the proxy server up-to-date regarding the relative
importance, from this client’s point of view, of the different
multimedia streams that are currently being exchanged inside



the application. The more application related information the
proxy receives, the more intelligent decisions it can make.
To gain network awarenesson the other hand, each proxy
periodically probes the network links of the clients that are
currently connected to it. This probing yields network related
information such as the current latency and throughput of
individual client network connections. In addition, the proxies
record the bandwidth usage of each network stream that passes
through them.

Based on its compound awareness, our networking middle-
ware intelligently manages the downstream bandwidth con-
nected clients have at their disposal. For instance, as players
move around in the virtual game world, the relative importance
of individual multimedia streams is likely to change. Due
to its application awareness, the middleware can detect such
shifts in stream importance and change the allocation of the
client’s downstream bandwidth accordingly. On the other hand,
its network awareness enables the middleware to intelligently
react to fluctuations in a client’s downstream capacity. For
instance, if a client’s downstream bandwidth no longer suffices
to receive all multimedia streams at their original quality,
the middleware will automatically determine which streams
should be reduced in quality or even completely blocked, this
way ensuring that the capacity of the client’s network link is
never exceeded. When making such decisions, the middleware
will always take both the relative importance of the involved
streams as well as their bandwidth requirements into account.
As a result, whenever possible, less important streams will
be transcoded or dropped by the middleware before more
significant streams are altered. A concrete example of how our
middleware could manage the client bandwidth in practice can
be found in section V.

When designing our networking middleware, applicability
in a wide range of networked applications was an important
objective. To achieve this goal, we decided to keep the
middleware as generic as possible. However, we soon realized
many applications require specific middleware functionality,
either to achieve an acceptable level of performance or to
support key features of the application. We therefore equipped
our proxy servers with a plug-in mechanism which can be
used to extend their functionality. Application developers can
implement their own plug-in that suits their particular needs,
hereby exploiting knowledge of specific characteristics or
features of their application, and install it in the proxy servers.
As an example, we implemented a plug-in that adds video
transcoding functionality to our networking middleware. We
would like to refer the interested reader to [3] for a detailed
description of this particular plug-in. Notice that although the
plug-ins reside on the proxy servers, they are conceptually
part of the application the middleware is serving. As a result,
the plug-in approach does not interfere with our middleware’s
generic design.

The main goal of our networking middleware is to sim-
plify and speed up the process of including efficient real-
time streaming functionality in networked applications. Con-
sequently, during the middleware’s design phase, we paid
extensive attention to the fact that it should cost developers
minimal effort to integrate our work into their application. First

Fig. 2. High-level overview of the operation of our generic networking
middleware.

of all, implementing a new plug-in simply involves deriving
from a plug-in base class and adding the desired functionality.
Secondly, instead of requiring application developers to com-
pletely recode their client software, we provide them with a
Network Intelligence Layer(NILayer) which they can utilize
to take care of the communication between the client and our
networking middleware. It suffices to insert the NILayer be-
tween the transport layer and the application layer of the client
software, and to interface it with the application’s awareness
manager1. The NILayer will automatically respond to probing
packets sent out by our middleware, and will continuously
query the awareness manager to collect application related
information, which it will pass on to the proxy server this
client is connected to. Besides including the NILayer, no other
adaptations to the client software are required.

To implement our networking middleware, we exploited the
functionality provided by the netfilter framework [15] which
enables packet filtering and mangling on the linux platform.
In particular, netfilter inspects all network packets that arrive
or pass through a linux machine and allows a userspace
application to register interest in particular network streams.
All packets belonging to these streams are subsequently trans-
ferred from the linux kernel to the application, which can then
decide what should be done with them.

The userspace application we developed for our networking
middleware continuously combines its application and network
awareness to decide whether or not a connected client should
receive the packets netfilter transfers to it. If so, the packets are
reinjected into the kernel for transmission to the client. If not,
they are discarded. By installing plug-ins, the functionality of
this basic userspace application can be extended. For instance,
the video transcoding plug-in enables the userspace application
to on-the-fly scale down high-quality video streams before
forwarding them to connected clients [3]. Notice that although
our networking middleware inspects and works on individual
network packets, it conceptually operates in the application
layer. This is illustrated in figure 2, which shows a schematic
overview of our middleware’s general mode of operation.

1An awareness manager is a piece of software responsible for identifying
which objects and information in a system are most relevant to a certain user.



TABLE I

QUALITY PARAMETERS OF THE THREE VIDEO STREAMS VIDEO-BASED

CLIENTS SEND OUT.

High Medium Low
Quality (HQ) Quality (MQ) Quality (LQ)

Codec H263 H263 H263
Resolution CIF (352x288) CIF (352x288) CIF (352x288)

FPS 25 15 15
Bitrate (bps) 200.000 100.000 50.000

IV. I NTEGRATION IN AN EXISTING NVE

We tested our networking middleware by integrating it
in our in-house developed Networked Virtual Environment
(NVE) which was first introduced in [16]. Probably the most
remarkable feature of the NVE is its support forvideo-based
avatars, a technique which allows users to be represented in
the virtual world by the video their webcam records [17]. Con-
sequently, the NVE requires video streams to be exchanged
between users in real-time. In addition, the NVE also allows
users to communicate verbally through audio streams. Based
on these observations, we decided the NVE was an excellent
candidate to test our work in. Indeed, although described here
in the context of on-line multiplayer gaming, our networking
middleware can just as well be incorporated in other kinds of
networked applications due to its generic design. Furthermore,
our middleware can attain a high level of performance in
all these different kinds of applications thanks to its plug-in
mechanism which ensures middleware extensibility.

The actual integration proved to be straightforward. All
that was required was inserting the NILayer in the client
software and linking it with the NVE’s awareness manager.
The NVE’s awareness manager is region-based, meaning it
tries to decrease the amount of information clients need to
receive and process by spatially dividing the virtual world into
a number of regions [16]. Every region has a distinct multicast
address associated with it which is used as communication
channel for the events that occur in that region. For instance,
clients are required to send their state updates to the multicast
address of the region in which they are currently residing. The
awareness manager at each client constantly determines which
regions this client should be aware of, and only the multicast
groups associated with these regions are joined. As a result,
clients will never receive information originating from regions
in which they are not interested.

Besides a multicast group for exchanging event information,
each region also has three multicast addresses associated with
it for distributing video data. Using these multicast groups,
the NVE requires video-based clients to send out three distinct
qualities of their video stream. This design decision was made
with scalability in mind: as can be seen in table I, the High
Quality (HQ) video setting requires twice as much bandwidth
as the Medium Quality (MQ) setting, which in turn consumes
twice the bandwidth of the Low Quality (LQ) setting. Each
client’s awareness manager is responsible for determining
which video quality should be received from every region the
local user is currently aware of, after which the corresponding
video multicast addresses are joined. A likely strategy would
be to subscribe to the HQ video multicast group of the region

the user is currently located in, and to the MQ or even LQ
multicast group of adjacent regions. Finally, there is also a
separate multicast address associated with regions which is
used solely to exchange audio streams. Analogous to the
distribution of state updates, clients send their audio stream
to the audio multicast address of the region in which they
are currently residing. Again, the NVE’s awareness manager
decides which audio multicast groups should be joined. Notice
that this means that, in contrast to video, the NVE does not
support multiple audio qualities. This decision is based on the
fact that audio streams containing voice require considerably
less bandwidth than video. As a result, clients either receive an
audio stream sent out by another client or they do not receive
the stream at all.

The NILayer dynamically extracts information about the
currently selected regions (i.e. their associated multicast
groups) from the client’s awareness manager and transfers
this information to the proxy server the client is connected
to. In addition, the NILayer continuously monitors the virtual
distance between the local user and the other clients that are
currently present in any of the regions the client is subscribed
to. Based on this positional information, the NILayer informs
the proxy server of the relative importance of the different
multimedia streams that are currently being exchanged inside
the NVE, this way providing our networking middleware with
application awareness. After all, a user is most likely to
interact with the clients he is closest to in the virtual world.
Consequently, if we want these interactions to be both efficient
and convincing, the user should receive the multimedia streams
sent out by nearby clients at a fidelity that is as high as possible
within the user’s current downstream bandwidth constraints.
This may imply that multimedia streams sent out by more
distant clients will be reduced in quality or even completely
blocked by our middleware to preserve bandwidth for the
more significant streams. Notice that such fine-grained control
over the transmission of multimedia streams is by default not
supported by the NVE. In particular, the NVE is not capable
of at run-time adjusting the quality of individual multimedia
streams, but instead is only flexible enough to reduce the
stream quality of entire regions.

V. EXPERIMENTAL RESULTS

After integrating our networking middleware into the NVE
as described in the previous section, we performed several
experiments to evaluate our middleware’s effectiveness. Two
such experiments are described here, one in full detail and
the second only briefly. The first experiment involved three
video-based clients which did not make use of our middleware
(clients C1, C2 and C3), and two clients that did (clients PA
and PB). For reasons of simplicity and clarity, these two latter
clients did not send out audio nor video streams. Furthermore,
all involved clients were located in the same region of the
virtual world. The initial client positioning in this region is
illustrated in figures 3(c) and 3(d) which respectively show a
2D top-down view and a 3D view of the virtual world.

To generate sufficiently elaborate results, we treated clients
PA and PB differently during the experiment. First of all, we



(a) network packets received by PA (b) network packets received by PB

(c) 2D view of the virtual world (d) 3D view of the virtual world

Fig. 3. Results of experiment 1: (a) and (b) network traces (stacked graphs) showing all multimedia network packets received by respectively client PA and
client PB; (c) 2D view illustrating the client positioning in the virtual world; (d) corresponding 3D view.

kept the downstream bandwidth of client PA fixed at 320 Kbits
per second (Kbps) for the entire duration of the experiment,
whereas client PB was subject to substantial downstream
bandwidth fluctuations. More specifically, at intervals of ap-
proximately 30 seconds, we set PB’s available downstream
bandwidth to respectively 440, 320 and 600 Kbps. Notice that
such severe bandwidth fluctuations are not very likely to occur
in a time span of 90 seconds in practice, but we nonetheless
decided to use these extreme values because they allow us to
clearly demonstrate the capabilities of our networking middle-
ware. Secondly, client PB remained stationary in the virtual
world during the experiment, whereas client PA moved along
the path which is depicted in figure 3(c) as two dotted arrows.
Analogous to PB’s bandwidth fluctuations, PA’s relocations
in the virtual world occurred at intervals of approximately
30 seconds. This means PB started off next to client C1, 30
seconds later rapidly moved towards client C2, and again 30
seconds later suddenly moved towards client C3.

Figures 3(a) and 3(b) show all multimedia network traffic
received during the experiment by respectively client PA and
client PB. We excluded the TCP data streams used by the NVE
(e.g. streams containing state updates) from these network
traces, because, compared to multimedia streams, they are
negligible in terms of bandwidth usage.

When examining the network traces, a first important obser-
vation is that both client PA and client PB stayed within their

bandwidth limitations for the entire duration of the experiment.
This is due to our middleware’s networking awareness, which
ensures there is never more data sent to a client than its
network link can handle. Also notice that the middleware
always leaves a small amount of the client’s downstream
bandwidth unused to ensure the client can withstand modest
irregularities in the bandwidth usage of the multimedia streams
he is currently receiving.

The second important observation is that our middleware
at all times leverages its application awareness to intelligently
distribute a client’s downstream bandwidth over the different
multimedia streams that are being exchanged in the appli-
cation. For instance, figure 3(a) indicates that as PA moved
away from C1 and towards C2, our middleware automatically
reduced the amount of bandwidth allocated to streams sent out
by C1 (i.e. PA started receiving the LQ video stream of C1
whereas he previously received the MQ version), and assigned
the newly available bandwidth to C2’s multimedia streams (i.e.
PA started receiving the HQ video stream of C2 instead of
the MQ version). As PA subsequently moved towards C3,
the middleware adjusted the allocation of PA’s downstream
bandwidth accordingly. In particular, besides switching to the
HQ version of C3’s video stream, PA also started receiving
C3’s audio stream. Client PB on the other hand was located
very close to C2 in the virtual world and remained stationary at
this position during the experiment. Based on this information,



the middleware allocated the majority of PB’s bandwidth to the
multimedia streams sent out by this client. This is illustrated
in the network trace shown in figure 3(b), which indicates PB
received the HQ video stream and the audio stream of C2
for the entire duration of the experiment, whereas he received
lower fidelity video from C1 and C2 during the first two
intervals of the experiment (when the available downstream
bandwidth was relatively low). In the second interval, our
middleware even completely blocked C3’s audio stream to
preserve sufficient bandwidth for C2’s streams.

To be able to fully comprehend the presented network
traces, some additional information about both the experiment
and the NVE application is required. First of all, the proxy
server used in the experiment had our video transcoding
plug-in installed. This plug-in contains specific knowledge
of the NVE application (e.g. information about the three
distinct video qualities) and in addition adds video transcoding
functionality to our middleware. Consequently, the proxy
server, whenever necessary, on-the-fly transcoded the HQ
video streams sent out by video-based clients to generate
the MQ and LQ variants. Again, we would like to refer
the interested reader to [3] for more information about the
implementation and benefits of this plug-in. Secondly, contrary
to what one would expect, the NVE was configured to give
video streams preference over audio in the experiment because
it allows us to better demonstrate the capabilities of our net-
working middleware. The NILayer informed our middleware
hereof, which in turn influenced the way our middleware
distributed the downstream bandwidth of connected clients.
In particular, it explains why, whenever a client’s downstream
bandwidth was inadequate, the middleware decided to block
audio streams sooner than video streams, even though an
audio stream and a LQ video stream require a comparable
amount of bandwidth. Third, instead of requiring participating
users to communicate verbally with each other during the
experiment, we generated the audio streams artificially by
placing microphones in front of a continuous sound source.
Although the former approach would have produced more
realistic results, it would also have resulted in highly irregular
audio streams (i.e. when a user stops talking, the bandwidth
usage of his voice stream becomes zero). Consequently, the
resulting network traces would have been very complex and
nearly impossible to comprehend. However, it is important to
note in this context that our middleware can detect changes
in stream bandwidth usage and, when it occurs, will adjust
the bandwidth distribution of its connected clients accordingly.
This is illustrated by the second experiment, which is described
in the next paragraph. Fourth, the reason a relatively large
amount of PB’s downstream bandwidth remains unused during
the third interval of the experiment is that PB at that moment
is already receiving all multimedia streams at maximal quality.
Finally, during the second interval, PA and PB had the same
amount of downstream bandwidth at their disposal and in
addition were located very close to each other in the virtual
world. This explains why they received the same set of
multimedia streams during this part of the experiment.

The second experiment, which we mention only briefly
here, involved three video-based clients which did not make

(a) network packets received by PA

(b) 2D view of the virtual world

Fig. 4. Results of experiment 2: (a) network trace (stacked graph) showing
all multimedia network packets received by client PA; (b) 2D view illustrating
the client positioning in the virtual world.

use of our middleware (clients C1, C2 and C3), and only
one client that did (client PA). Besides its video stream,
client C1 also sent out an audio stream during the first 30
seconds of the experiment. All clients remained stationary
in the virtual world as illustrated in figure 4(b). Finally, we
set the downstream bandwidth of client PA to 320 Kbps
for the entire duration of the experiment. As can be seen
in the network trace shown in figure 4(a), our middleware
automatically noticed that approximately halfway through the
experiment client C1 stopped transmitting audio and, after
a short transition period, reacted accordingly. In particular,
it exploited the newly available bandwidth to transmit the
MQ version of C2’s video stream to PA, whereas this client
previously only received the LQ variant of this stream. In
other words, this experiment indicates that our networking
middleware not only intelligently reacts to shifts in stream
importance, but also to variations in stream bandwidth usage.

The experimental results presented in this section clearly
demonstrate the benefits of our networking middleware. First
of all, due to the middleware’s network awareness, the current
downstream capacity of a client’s network connection will
always be respected. Consequently, stream playback at client-
side will normally improve, since all multimedia streams that
are actually sent to a client should arrive there in time and
with minimal transmission errors. Secondly, our middleware
at all times exploits its application awareness to intelligently
distribute a client’s available downstream capacity over the
different multimedia streams that are being exchanged inside



the application. As a result, clients will always receive the
streams that are most important to them at a quality that is
as high as possible within their current bandwidth limitations.
Since developers no longer need to spend precious time on
these issues, we can conclude that our networking middleware
considerably facilitates the integration of efficient real-time
streaming functionality in networked applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our networking middleware
consisting of a number of interconnected proxy servers that
are both application and network aware. Through experimental
results, we have demonstrated how the proxy servers exploit
their compound awareness to dynamically and intelligently
distribute a client’s downstream bandwidth over the differ-
ent multimedia streams that are being exchanged inside the
application. In addition, we have also demonstrated that our
middleware at all times respects the current downstream ca-
pacity of clients, this way ensuring that client network links
are never overwhelmed with data they cannot receive anyway.
Furthermore, due to its generic design, the middleware can be
incorporated in a wide range of networked applications (in-
cluding on-line multiplayer games), while the provided plug-
in mechanism ensures that our middleware can attain a high
level of performance in all these different situations. Finally,
to guarantee easy integration in existing applications, we also
implemented a Network Intelligence Layer which developers
can utilize to take care of the communication between their
client application and our networking middleware. Based on
these observations, we believe our networking middleware
enables developers to incorporate efficient real-time streaming
facilities in their application with minimal effort.

It is important to note that the networking middleware pre-
sented in this paper is a work in progress. At the moment, we
are investigating how we can efficiently adddevice awareness
to it. In particular, we envision our networking middleware
also taking the capabilities of the receiving client device into
account when making routing and transcoding decisions. The
first steps in this direction have already been taken, see [18].
Furthermore, we are currently also considering developing
some additional plug-ins for our networking middleware, for
instance a plug-in which adds 3D audio mixing functionality.
Finally, we also plan to integrate our work into a “shared
workspace” application that is currently under development at
the HCI department of our research institute. The goal of this
application is to efficiently support real-time meetings between
both collocated and distributed team members. As a result,
audio and video communication will play a crucial role in
this application.

ACKNOWLEDGMENTS

We wish to thank all the members of the NVE research
group at the EDM for their help and support.

REFERENCES

[1] “Physics, Gameplay and the Physics Processing Unit,” White
paper, AGEIA Technologies, Inc., March 2005. [Online]. Available:
http://www.ageia.com/pdf/wp20053 physicsgameplay.pdf

[2] M. Wijnants, P. Monsieurs, and W. Lamotte, “Improving the
User Quality of Experience by Incorporating Intelligent Proxies
in the Network,” Expertise Centre for Digital Media (EDM),
Tech. Rep. TR-LUC-EDM-0605, April 2005. [Online]. Available:
http://research.edm.luc.ac.be/mwijnants/pdf/wijnantsTRMSAN.pdf

[3] M. Wijnants, P. Monsieurs, P. Quax, and W. Lamotte, “Exploiting Proxy-
Based Transcoding to Increase the User Quality of Experience in Net-
worked Applications,” inProceedings of the 1st International Workshop
on Advanced Architectures and Algorithms for Internet DElivery and
Applications (AAA-IDEA’05), Orlando, Florida, June 2005.

[4] The EVE Online Technical FAQ. [Online]. Available: http://www.
eve-online.com/faq/faq07.asp

[5] E. Cronin, B. Filstrup, and A. Kurc, “A Distributed Multiplayer Game
Server System,” Electrical Engineering and Computer Science Depart-
ment, University of Michigan, UM Course Project Report EECS589,
May 2001.

[6] M. Mauve, S. Fischer, and J. Widmer, “A Generic Proxy System for
Networked Computer Games,” inProceedings of the 1st Workshop on
Network and System Support for Games (NetGames’02), Bruanschweig,
Germany, 2002, pp. 25–28.

[7] C. D. Nguyen, F. Safaei, and P. Boustead, “A Distributed Proxy System
for Provisioning Immersive Audio Communication to Massively Multi-
Player Games,” inProceedings of the 3rd Workshop on Network and
System Support for Games (NetGames’04), Portland, Oregon, September
2004, p. 166.

[8] J. Smith, R. Mohan, and C.-S. Li, “Content-Based Transcoding of
Images in the Internet,” inProceedings of the IEEE International
Conference on Image Processing (ICIP’98), vol. 3, Chicago, Illinois,
1998, pp. 7–11.

[9] B. Knutsson, H. Lu, J. Mogul, and B. Hopkins, “Architecture and
Performance of Server-Directed Transcoding,”ACM Transactions on
Internet Technology, vol. 3, no. 4, pp. 392–424, 2003.

[10] A. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy, “Tran-
Squid: Transcoding and Caching Proxy for Heterogenous E-Commerce
Environments,” inProceedings of the 12th IEEE International Workshop
on Research Issues in Data Engineering (RIDE), San Jose, California,
February 2002, pp. 50–59.

[11] E. Amir, S. McCanne, and H. Zhang, “An Application Level Video
Gateway,” inProceedings of the 3rd ACM International Conference on
Multimedia, San Francisco, California, November 1995, pp. 255–265.

[12] B. Shen, S.-J. Lee, and S. Basu, “Caching Strategies in Transcoding-
enabled Proxy Systems for Streaming Media Distribution Networks,”
IEEE Transactions on Multimedia, Special Issue on Streaming Media,
vol. 6, no. 2, pp. 375–386, April 2004.

[13] X. Zhang, M. Bradshaw, Y. Guo, B. Wang, J. Kurose, P. Shenoy, and
D. Towsley, “AMPS: A Flexible, Scalable Proxy Testbed for Imple-
menting Streaming Services,” inProceedings of the 14th International
Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV’04), Kinsale, Ireland, June 2004, pp. 116–121.

[14] J.-L. Huang, M.-S. Chen, and H.-P. Hung, “A QoS-Aware Transcoding
Proxy Using On-demand Data Broadcasting,” inProceedings of IEEE
INFOCOM, Hong Kong, China, March 2004.

[15] The Netfilter/IPTables Project Homepage. [Online]. Available: http:
//www.netfilter.org/

[16] P. Quax, T. Jehaes, P. Jorissen, and W. Lamotte, “A Multi-User
Framework Supporting Video-Based Avatars,” inProceedings of the 2nd
workshop on Network and System Support for Games (NetGames’03),
Redwood City, California, May 2003, pp. 137–147.

[17] P. Quax, C. Flerackers, T. Jehaes, and W. Lamotte, “Scalable Trans-
mission of Avatar Video Streams in Virtual Environments,” inPro-
ceedings of the IEEE International Conference on Multimedia & Expo
(ICME’04), Taipei, Taiwan, June 2004.

[18] P. Quax, T. Jehaes, M. Wijnants, and W. Lamotte, “Mobile Adaptations
for a Multi-User Framework Supporting Video-Based Avatars,” inPro-
ceedings of the 9th International Conference on Internet & Multimedia
Systems & Applications (IMSA’05), Hawaii, August 2005.

Maarten Wijnants graduated in computer sci-
ence in 2003 at the Limburgs Universitair Centrum
(LUC), Belgium. After a short stay at Androme
NV, he is currently a PhD candidate at the EDM,
a research institute of the LUC. His main research
interest is computer networking, with specific in-
terest in network architectures, multiplayer games,
scalability, and making the network more intelligent.
He is also interested in real-time computer animation
and performing services for real-time data such as
audio and video.


