
Cross that boundary: Investigating the feasibility of cross-layer
information sharing for enhancing ABR decision logic over QUIC

Joris Herbots
Hasselt University – tUL – EDM

Diepenbeek, Belgium
joris.herbots@uhasselt.be

Arno Verstraete
Hasselt University – tUL – Flanders

Make – EDM
Diepenbeek, Belgium

arno.verstraete@uhasselt.be

Maarten Wijnants
Hasselt University – tUL – Flanders

Make – EDM
Diepenbeek, Belgium

maarten.wijnants@uhasselt.be

Peter Quax
Hasselt University – tUL – Flanders

Make - EDM
Diepenbeek, Belgium
peter.quax@uhasselt.be

Wim Lamotte
Hasselt University – tUL - EDM

Diepenbeek, Belgium
wim.lamotte@uhasselt.be

ABSTRACT
With HTTP Adaptive Streaming (HAS), client-side Adaptive Bi-
trate (ABR) algorithms drive the (quality-variant) scheduling and
downloading of media segments. These ABR algorithms are imple-
mented in the application layer and can therefore base their logic
only on relatively coarse and/or inaccurate application-layer met-
rics. The recently standardized QUIC transport protocol has many
userspace implementations, which paves the way for cross-layer op-
timizations by exposing transport-layer metrics to application-layer
algorithms. In this paper, we investigate whether the availability
of fine-grained transport-level throughput metrics can positively
impact the operation of ABR algorithms and hence the Quality of
Experience (QoE) of HAS users in Video on Demand (VoD) settings.
Our results show that QUIC-level throughput data can indeed aid
ABR algorithms to more accurately predict playout buffer under-
runs, which in turn allows the ABR logic to take reactive measures
in a timely fashion such that playback stalls can be avoided under
challenging network conditions. Overall, our work presents a step
towards improving ABR operation via cross-layer data exchange.

CCS CONCEPTS
• Networks → Transport protocols; Application layer proto-
cols; • Information systems → Multimedia streaming.

KEYWORDS
MPEG-DASH, HAS, QoE, playback stall prediction

ACM Reference Format:
Joris Herbots, Arno Verstraete, Maarten Wijnants, Peter Quax, and Wim
Lamotte. 2023. Cross that boundary: Investigating the feasibility of cross-
layer information sharing for enhancing ABR decision logic over QUIC. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0184-9/23/06. . . $15.00
https://doi.org/10.1145/3592473.3592563

The 33rd edition of the Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV ’23), June 7–10, 2023, Vancouver, BC,
Canada. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3592473.
3592563

1 INTRODUCTION
HTTP Adaptive Streaming (HAS), with its standardized MPEG-
DASH specification, is the state-of-the-practice solution for on-
demand video streaming across the Internet. Due to its adoption
by major video streaming platforms like YouTube and Netflix, HAS
data dominates the Internet traffic mix nowadays [27]. In the HAS
paradigm, video content is temporally segmented in chunks that
are made available in multiple bitrates, which are differentiated by
their resolution, framerate, picture quality etc. Client-side Adaptive
BitRate (ABR) algorithms, which operate integrally in the applica-
tion layer of the OSI reference model, dynamically steer the HAS
streaming session by deciding which media segments to fetch and
in what quality to do so. Measurements or estimations of network
conditions typically play a prominent role in ABR implementations.
As an example, if segment bitrates drastically exceed network ca-
pacity for prolonged periods of time, the client-side playback buffer
will drain. This will yield playback stalls, which are extremely detri-
mental to the Quality of Experience (QoE) [19].

Broadly speaking, ABR algorithms can be categorized in heuristics-
based and (machine) learning-based approaches [6]. The former
category is the focus of this paper and can be further subdivided into
throughput-based, buffer-based and hybrid schemes. Throughput-
and buffer-based schemes base their operation on network through-
put measurements, and the state of the client-side playback buffer,
respectively; hybrid ABR algorithms mix throughput- and buffer-
basedmechanisms. An important challenge that all types of heuristics-
based ABR algorithms face is that they have to ground their segment
quality selection decisions on a limited set of data points. In effect,
since ABR algorithms are implemented in the application layer,
their network throughput estimations (and indications of playback
buffer changes) use integral HASmedia segments (typically contain-
ing multiple seconds of video) as a data unit. Such application-layer
metrics are coarse-grained and highly periodic (i.e., with relatively
large temporal gaps between consecutive data points). Especially
for network throughput estimations, this information is available in

50

https://orcid.org/0000-0002-8987-0824
https://orcid.org/0000-0002-4442-5401
https://orcid.org/0000-0002-6351-2148
https://orcid.org/0000-0003-4811-0578
https://orcid.org/0000-0003-1888-6383
https://doi.org/10.1145/3592473.3592563
https://doi.org/10.1145/3592473.3592563
https://doi.org/10.1145/3592473.3592563
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592473.3592563&domain=pdf&date_stamp=2023-06-07

NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada Herbots and Verstraete, et al.

a more granular and timely fashion in lower layers of the network
stack. For instance, at the transport layer, network throughput can
be measured at the TCP segment or UDP datagram level, which is
much more granular compared to application-layer media segments
(one HAS segment easily spans over 100 transport-layer packets).

This work investigates the feasibility of improving HAS ABR
algorithms in Video on Demand (VoD) settings by exploiting cross-
layer information exchange between the OSI transport and applica-
tion layers. In more detail, our contribution is three-fold. Firstly, we
contribute a proof-of-concept cross-layer MPEG-DASH client, im-
plemented in quic-go and goDASH, where fine-grained throughput
measurements are exposed from the transport layer (i.e., QUIC) to
theMPEG-DASH client. Secondly, we exploit the resulting transport-
layer data to integrate stall prediction in the BBA-2 ABR algorithm.
Finally, testbed-based experimental results show the ability of the
cross-layer stall prediction algorithm to prevent video playback
stalls when working with small HAS playback buffers under vary-
ing throughput-constrained network conditions.

2 RELATEDWORK
2.1 Cross-layer network optimization
Fu et al. [10] provide a survey of cross-layer designs in wireless
networks, hereby discussing various architectures and methods
for exchanging information between network layers. According to
their proposed taxonomy, our work would be classified as a non-
manager cross-layer method (i.e., a direct data exchange between
two adjacent layers). Recent work by Xixi et al. [29] proposes a cross-
layer joint scheduling scheme between the physical and data link
OSI layers to improve resource scheduling for infrastructure-less
device-to-device communication in cellular networks. The cross-
layer architecture proposed by Piri et al. [22] allows for real-time
(i.e., RTP-like) adaptive streaming over heterogeneous wireless net-
works using the IEEE 802.21 Media Independent Handover (MIH)
Function. Their cross-layer approach, called Triggering Engine, col-
lects and exchanges information across multiple OSI layers and
performs MIH with an access point. An application controller con-
nected to this cross-layer signaling system can subsequently adjust
video transmission parameters based on the transmission channel
characteristics. Later work by Piri et al. [23] uses the Triggering En-
gine to exchange cross-layer network information in an end-to-end
fashion between client and server for Scalable Video Coding (SVC),
again in a real-time (i.e., non-HAS) video conferencing setting.

As the above works illustrate, the majority of the cross-layer
prior art focuses on low(er) OSI layers, whereas our work is con-
cerned with the OSI transport- and application layer. In addition,
the idea of cross-layer HAS optimization is relatively underexplored,
especially in the VoD context that this paper focuses on.

2.2 Exploiting QUIC features for HAS
Compared to TCP, QUIC introduces multiple new features in the
transport layer that can be utilized to improve adaptive streaming
protocols. Two relevant examples are VOXEL and Days of Future
Past (DoFP). VOXEL [20] leverages the unreliable extension of
QUIC [21] to create a partially reliable streaming architecture. An a
priori calculation decides what video frames can be streamed unre-
liably (i.e., without recovery for lost packets) while still delivering

a high QoE and lowering the need for rebuffering. DoFP [16] uses
QUIC’s multiplexing feature to improve the QoE by redownloading
already buffered (but not yet played) HAS segments in a higher
quality. Their work, similar to ours, makes use of the abort mecha-
nism of QUIC-HTTP/3 to halt scheduled HAS segments that will
not arrive in time for playback (in the DoFP case: higher-quality
redownloads of already buffered segments).

2.3 ON-OFF behavior
The ON-OFF behavior is a well-discussed HAS topic [5, 12], where it
is known to cause poor bandwidth utilization and fairness issues for
TCP and QUIC [7]. ON-OFF behavior can also be used to explain the
sequential nature of HAS. ABR algorithms fetch segments during
the ON periods and then execute their ABR scheduling logic during
the OFF period. The authors of BOLA [28] proposed a variation
of their ABR algorithm called BOLA-FINITE that uses a segment
abandonment strategy to prevent stalls. BOLA-FINITE, similar to
our work, proposes to monitor during the ON period, instead of
executing ABR logic exclusively during the OFF period. Contrary to
our work, BOLA-FINITE solely employs application layer metrics.

3 EXPERIMENTAL METHODOLOGY
To investigate the feasibility of sharing transport layer metrics with
ABR algorithms, we needed to create a setupwhere such an informa-
tion exchange could occur. Traditional OSI transport layer protocols,
most notably TCP, are implemented in kernel space. While this
yields performance benefits, it is unfortunately circuitous to apply
changes or extract metrics from kernel-space implementations. As
such, in this paper, we look at QUIC and HTTP/3, recent additions
to the transport layer and HTTP protocol collections standardized
by the IETF [8, 14]. Unlike TCP, all current QUIC implementations
are available as user-space libraries [1], allowing for extracting
transport layer metrics with less overhead. Also, most available
QUIC implementations support the structured qlog format [18] – a
unified way of logging QUIC and HTTP/3 events. This includes, but
is not limited to, metrics we are interested in, such as congestion
control metrics, flow control metrics and per-packet information.

3.1 Client Implementation
Ideally, our setup would use a reference player like the dash.jsweb
implementation [2]. However, extracting transport layer metrics
from the browser’s QUIC implementation is, similarly to kernel
space implementations, a circuitous route. Instead, we have forked
the open-source goDASH implementation [25], a headless framework
for streaming MPEG-DASH video content. goDASH is implemented
in the Go programming language and supports QUIC-HTTP/3 video
streaming by utilizing the open-source quic-go library [3] that
implements the QUIC protocol, also written in the Go programming
language. quic-go adopts the qlog logging format.

Because both projects are written in Go, we implemented the
Go message channel concept between the quic-go and the goDASH
GoRoutines (i.e., a message pipe between two threads) to exchange
quic-go’s qlog metrics with goDASH. The message channel effec-
tively creates a unidirectional cross-layer information exchange
from the transport layer to the application layer. Additionally, we
changed goDASH’s handling of HTTP/3 requests to reuse the QUIC

51

Investigating the feasibility of cross-layer information sharing for enhancing ABR decision logic over QUIC NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada

connection instead of creating a new QUIC-HTTP/3 connection
for each MPEG-DASH request. This more closely resembles the
desired behavior for QUIC connections.

goDASH comes equipped with a range of MPEG-DASH ABR al-
gorithms, including sophisticated buffer-based algorithms such as
BBA-1 by Huang et al. [13]. Unfortunately, BBA-2 – which provides
a better QoE during the startup phase by being more aggressive
than BBA-1 [13] – is unavailable. Additionally, the BBA-1 imple-
mentation of goDASH uses HTTP HEAD requests to determine the
individual segment sizes. During our testing, this approach yielded
poor results. Each HTTP HEAD request incurs one extra RTT,
which amounts to lower bitrate choices, especially in high-latency
situations. Considering the shortcomings above, we decided to im-
plement the BBA-2 algorithm for our proof-of-concept, in which
the segment sizes are known at the start by specifying them in the
MPEG-DASH manifest. BBA-2 is a hybrid heuristics-based algo-
rithm that uses rate-based estimations during the startup phase
and transitions towards buffer-based logic when the buffer-based
logic deems it safe to schedule higher quality segments. Similar to
other ABR algorithms, BBA-2’s logic executes at discrete moments
right after finishing the download of the last scheduled segment
and before fetching the next segment. As a result, BBA-2, similarly
to other ABR algorithms, has no mechanism to detect the changes
in prevailing network conditions in between MPEG-DASH seg-
ment scheduling. We will augment BBA-2’s algorithm to monitor
the stage of the network by inspecting the currently scheduled
segment’s more fine-grained QUIC packet flow. In the event the
network deteriorates in such a way that stalling is imminent, a
readjustment procedure will be started. This entails aborting the
requested segment and resetting BBA-2’s logic into its rate-based
starting mode.

3.2 Stall Prediction
Algorithm 1 showcases our approach to stall prediction using fine-
grained throughput measurements acquired from the transport
layer with our cross-layer message channel. A benefit of using BBA-
2 is that its algorithm requires knowledge about each segment’s size
to combat oscillations in the advertised bitrates of the MPEG-DASH
manifest introduced by Variable BitRate (VBR) encoding. This in-
formation allows us to make accurate stall predictions (line 4). Our
algorithm only abandons a segment when three conditions are met.
❶ Firstly, during the segment download window, we require at
least 10% of the total segment size to be downloaded (represented
by minimum_fraction on line 9) as this produces stabler decisions.
The reasoning is that the instantaneous throughput measurements
of individual packets tend to fluctuate a lot, especially at the start of
a download. ❷ Secondly, we only trigger our behavior when BBA-2
is at or below its lower reservoir to avoid false positives (line 13).
The lower reservoir is the amount of buffer BBA-2 itself considers
an unsafe territory, where network variations might cause it to
choke. ❸ Finally, if the estimated download time of the currently
scheduled segment exceeds the amount of buffer we have left, and
the algorithm estimates that downloading the same segment in the
lowest available quality is possible before the buffer runs out, it will
give the go-ahead for abandonment (line 14). The client then sends

1 Function PredictStall(packet_queue,
representation_bitrate, segment_duration, segment_size,
buffer_level, bba2_config):

2 sum_bits = packet_queue.sum_bits()
3 window_time = time() - packet_queue.first()
4 outstanding_bits = segment_size - sum_bits
5 window_bitrate = sum_bits / window_time
6 if window_time ≤ 0 then
7 return false
8 end if
9 required_bits = segment_size × minimum_fraction

10 if required_bits ≤ sum_bits < segment_size then
11 estimated_req_time = outstanding_bits /

window_bitrate
12 estimated_req_time_lowest_quality =

bba2_config.lowest_representation /
window_bitrate

13 if buffer_level ≤ bba2_config.lower_reservoir then
14 return estimated_req_time > buffer_level &&

estimated_req_time >
estimated_req_time_lowest_quality

15 end if
16 end if
17 return false
18 end
Algorithm 1: BBA2-CL stall algorithm pseudocode. All sizes
are expressed in bits, and the durations in milliseconds.

a request cancellation frame, prompting the server to abruptly ter-
minate the HTTP/3 stream carrying our initial segment request, as
per the HTTP/3 specification. A new request will subsequently be
made for the same segment but in the lowest available representa-
tion. Additionally, an abort resets the BBA-2 algorithm to regain
its lower reservoir and restart its algorithm at the lowest available
quality representation. A successful readjustment occurs if the ob-
served throughput does not drop below the required bitrate for the
lowest representation. We shall refer to this enhancement to BBA-2
as BBA2-CL (BBA2 Cross-Layer) from now on.

Furthermore, we implemented an extension to BBA2-CL, called
BBA2-CLDouble, that checks for a specific edge case as a result of
BBA-2’s stepwise quality transitions. In cases where the playout
buffer is heading towards a stall, but the current segment will finish
before the buffer crosses the lower reservoir threshold, BBA-CL
will not trigger. This causes the next segment to be scheduled with
a dangerously low buffer, too low for safe readjustment by aborting.
BBA2-CLDouble will, if condition ❸ is unmet, branch its logic to
consider if the current segment and the next segment – downshifted
by one quality level – can be safely fetched without stalling. If this
branching logic predicts stalling, the same abandonment logic of
BBA2-CL will occur.

4 EXPERIMENTAL SETUP
In order to evaluate the impact of BBA2-CL and BBA2-CLDouble,
we set up an emulated network scenario using Linux TC with the

52

NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada Herbots and Verstraete, et al.

Software
QUIC HTTP/3 Servers ngtcp2, quic-go, aioquic
QUIC HTTP/3 Client quic-go
Network Software Linux TC (netem and tbf)

Settings
ABR algorithms BBA-2, BBA2-CL, BBA2-CLDouble
BBA-2 max buffer 60 seconds
BBA-2 lower reservoir 10% of maximum buffer
Congestion control New Reno (quic-go, aioquic), Cubic (ngtcp2)
netem properties 40 ms round trip time, 0% loss
tbf rate 10s @ 2Mbps, 30s @ 100kbps, 10s @ 1Mbps,

30s @ 100kbps, 20s @ 2Mbps
tbf parameters buffer 5k limit 10k
Table 1: Summary of used software, settings, video datasets.

Figure 1: Experimental test-bed setup.

netem and tbf queueing disciplines. The orchestration of all ex-
periments was done with the Vegvisir [11] QUIC-HTTP/3 testing
framework. Table 1 provides a summary of the software and settings
used, while Figure 1 provides an overview of the network setup.
The server and client assume their prototypical roles, connected
via a network router called the shaper, which applied our network
emulation. The client, shaper and server were all represented by
docker containers interconnected via two docker-compose net-
works routed via the shaper.

The work by Marx et al. [17] shows that different QUIC imple-
mentations can exhibit different performance behavior – depending
on the context – due to underlying differences. In our setup, we
therefore tested our client against three unmodified QUIC-HTTP/3
server implementations (to investigate inter-implementation per-
formance differences): aioquic, ngtcp2 and quic-go. As recom-
mended by the quic-go implementation, the UDP receive buffer
was increased to 2.5MB [4].

The server hosts three MPEG-DASH audiovisual datasets [15]:
Big Buck Bunny (BBB), Elephants Dream (ED) and Of Forrest and
Men (OFM). For each dataset, a temporal segmentation of 2-seconds,
4-seconds and 6-seconds was provided, resulting in 9 different man-
ifests being tested. Each dataset contained 20 representations tar-
geting 240p, 360p, 720p and 1080p with an average bitrate ladder
ranging between 45kbps and 4.2Mbps.

Based on the bitrate ladder adopted by the utilized MPEG-DASH
datasets, we constructed an artificial network scenario (see the
dotted purple line in Figure 2), enforced by the shaper, that com-
pels an ABR algorithm toward a worst-case scenario. The shaper
starts the connection at 2Mbps, allowing our client to experience
"sufficient" throughput in which the ABR algorithm can learn the
network conditions and scale its target quality accordingly. The
shaper then drops the experienced throughput to 100kbps at the

10 seconds mark and maintains this setting for 30 seconds. Since
most HAS clients have no direct control over the transport layer,
ABR algorithms cannot cancel an ongoing request1 and will, most
likely, be stuck fetching a segment at a bitrate that exceeds the cur-
rent throughput. Depending on how much buffer buildup occurred
during the first 10 seconds, a potential stall can occur during this
constrained throughput window. Next, the shaper will raise the
experienced throughput to 1Mbps for 10 seconds before, once again,
introducing a drop to 100kbps for 30 seconds. Finally, the shaper
increases the experienced throughput to 2Mbps for the remaining
20 seconds of the test. Thus, a single test totals 100 seconds, con-
taining two intermittent drops to 100kbps that last for a total of 60
seconds. The shaper was additionally configured with a static 40ms
Round Trip Time (RTT). The queues employed by the shaper were
sized to the bandwidth-delay product.

Our experimental setup entails 81 simulations (3 QUIC-HTTP/3
servers × 9 datasets × 3 ABR algorithms).

5 EXPERIMENTAL RESULTS
During our experiment, we collected the client’s experienced buffer
occupancy, quality switches in subsequent MPEG-DASH media
segments, stall periods, and stall prediction timestamps (only for
our enhanced ABR algorithms). Figure 2 shows the results obtained
from the setup described in Section 3. The results show the interac-
tions between the goDASH client and the quic-go server only, as no
performance differences were witnessed between the three tested
QUIC-HTTP/3 servers.

There is a total of six rows. The first two represent the Big
Buck Bunny (BBB) dataset, the third and fourth rows represent the
Elephants Dream (ED) dataset, and the last two rows represent the
Of Forrest and Men (OFM) dataset. The first column represents 2-
second segments, the middle column 4-second segments and the
third column 6-second segments of each dataset. The first row of
each dataset contains the results with the base implementation of
BBA-2, while the second row shows the results of our BBA2-CL
enhancement. The results obtained from simulations with BBA2-
CLDouble did not provide additional insights compared to BBA2-
CL. Thus, we omitted them from Figure 2 due to space constraints,
except for a single result in Figure 3.

The results in Figure 2 (a)-(c), (g)-(i), and (m)-(o) show the effects
of BBA-2 in our constrained network scenario. During the first 10
seconds, the buffer occupancy (solid blue line) rises as the BBA-2
algorithm fills its lower reservoir and switches from rate-based to
buffer-based bitrate targetting. The buffer growth differences be-
tween the columns are attributed to the differences in MPEG-DASH
temporal segmentation, similar bitrate ladders used for their encod-
ing and BBA-2’s stepwise quality transitions. A shorter temporal
segmentation implies less data, and these will thus be retrieved
faster than longer segments. This, in turn, allows BBA-2 to upscale
its quality faster. A higher bitrate implies fetching more data and,
thus, longer download times. We can see this phenomenon happen-
ing in all the results. The dashed green line targets higher qualities
during the startup phase for shorter temporally segmented datasets,
resulting in less buffer fill. During the two periods of deteriorated

1Support for abandonment exists, for example in the JavaScript fetch API, but is rarely
used by existing ABR implementations.

53

Investigating the feasibility of cross-layer information sharing for enhancing ABR decision logic over QUIC NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada

(a) BBB | 2s | BBA-2 | 2.51 (b) BBB | 4s | BBA-2 | 2.72 (c) BBB | 6s | BBA-2 | 3.03

(d) BBB | 2s | BBA2-CL | 2.90 (e) BBB | 4s | BBA2-CL | 3.12 (f) BBB | 6s | BBA2-CL | 2.72

(g) ED | 2s | BBA-2 | 2.13 (h) ED | 4s | BBA-2 | 2.53 (i) ED | 6s | BBA-2 | 2.75

(j) ED | 2s | BBA2-CL | 2.69 (k) ED | 4s | BBA2-CL | 2.71 (l) ED | 6s | BBA2-CL | 2.61

(m) OFM | 2s | BBA-2 | 2.17 (n) OFM | 4s | BBA-2 | 2.55 (o) OFM | 6s | BBA-2 | 2.90

(p) OFM | 2s | BBA2-CL | 2.78 (q) OFM | 4s | BBA2-CL | 2.98 (r) OFM | 6s | BBA2-CL | 2.68

Figure 2: Client metrics collected from the experiment setup. Each graph has a subtitle in the form of "dataset | segment size
| ABR algorithm | P.1203 MOS". The tested datasets are Big Buck Bunny (BBB), Elephants Dream (ED) and Of Forrest and Men
(OFM). Solid blue lines represent the buffer occupancy in seconds. Dashed green lines represent the targeted MPEG-DASH
quality bitrate in kbps, while dotted purple lines represent our artificial network scenario in kbps. BBA2-CL graphs (d)-(f),
(j)-(l) and (p)-(r) additionally contain red dashed vertical lines indicating BBA2-CL’s stall prediction. Vertical zones highlighted
in yellow indicate stalls.

54

NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada Herbots and Verstraete, et al.

Figure 3: ED | 4s | BBA2-CLDouble | 2.63

throughput – 10 to 40 seconds and 50 to 80 seconds – a drop in the
buffer occupancy can be seen as the client tries to fetch an MPEG-
DASH segment that is encoded at a bitrate (dashed green line) that
the network cannot sustain during these periods (dotted purple
line). As a result, the buffer drains completely in all nine simulations
(yellow highlighted zones). Due to a lower initial buffer buildup, the
2-second datasets experience significantly more prolonged buffer
underruns than the 4-second and 6-second datasets.

The results in Figure 2 (d)-(f), (j)-(l), and (p)-(r) show the effects of
our stall prediction enhancement BBA2-CL. No stalling is observed
in any of the tested conditions, as can be seen by the absence of the
yellow highlighted zones and the buffer occupancy never reaching
zero. The datasets with 2-second segments experience two stall
predictions in both deteriorated throughput periods. The 4-second
and 6-second segments experience only one stall prediction each;
also, contrary to the 2-second results, these stall predictions only
occur after the first deterioration period has already ended (i.e., after
the 40-second mark). Results (e) and (q) experience a false-positive
stall prediction at the beginning of the first throughput recovery
period (i.e., between 40 and 50 seconds) due to a combination of
passing the lower reservoir threshold and not having seen enough
packets experience the new throughput window between 40 and
50 seconds, thus falsely triggering a stall prediction. The BBA2-CL
results show that the application-layer ABR algorithm can benefit
from the more fine-grained measurements from the transport layer,
effectively predicting and preventing buffer underruns.

Finally, we also quantified the QoE impact of BBA2-CL and BBA2-
CLDouble by calculating the ITU-T P.1203 Mean Opinion Score
(MOS) in mode 0, which ranges between 1 and 5 [24, 26]. As can
be seen in Figure 2, BBA2-CL consistently scored higher in all 2-
and 4-second simulations compared to BBA2, but underachieved
for all 6-second simulations. This latter result can be attributed
to two factors. Firstly, in the 6-second simulations, the witnessed
stall durations were much shorter compared to the 2- and 4-second
cases; shorter stalls penalize the P.1203 score less than longer stalls.
Secondly, aggressive MPEG-DASH quality switches (which happen
when BBA2-CL’s stall prediction triggers) have a more negative
P.1203 score impact than stepwise quality transitions (cf. BBA-2
where two subsequent MPEG-DASH media segments may differ
at most one quality level). BBA2-CLDouble on average produced
slightly lower P.1203 scores compared to BBA2-CL. Due to BBA2-
CLDouble’s more pessimistic behavior, it tends to induce more
stall predictions than BBA2-CL (see Figure 3 versus Figure 2 (k));
this in turn causes BBA2-CLDouble to introduce multi-step quality
changes more frequently.

6 SUMMARY, DISCUSSION AND NEXT STEPS
Based on a proof-of-concept implementation in quic-go and goDASH,
we have investigated the impact of cross-layer information sharing
on application-layer HAS performance. In particular, we have ex-
tended the BBA-2 ABR algorithm with a stall prediction and preven-
tion component that exploits network throughput measurements
collected at the QUIC packet level. Our testbed-based experimen-
tal results demonstrate that our cross-layer ABR approach aids
to prevent buffer underruns during MPEG-DASH video playback
under fluctuating network conditions where network throughput
intermittently suffers severe throttling. The key contributing ele-
ment to these results is that our cross-layer approach allows ABR
mechanisms (like stall prediction) to operate on transport-layer
metrics that are more accurate, fine-grained and timely compared
to application-layer network measurements.

Preventing stalls, however, requires us to reduce MPEG-DASH
segment quality abruptly; as P.1203 MOS shows, this does not al-
ways yield a better QoE. We argue, however, that P.1203 MOS only
tells part of the story. For Video on Demand (VOD) content (e.g.,
Netflix and Disney+), aiming for the highest QoE makes sense. For
time-sensitive content, such as live content or (critical) instructional
content (e.g., emergency procedures or first aid instructions), keep-
ing playback going – even with reduced quality – makes more sense.
In future work, we would like to explore the feasibility and impact
of cross-layer metrics sharing for the (low latency) live streaming
use case (i.e., LL-DASH).

We recognize that our implementation is rudimental in its deci-
sion logic. Our focus for this paper was to investigate the feasibility
of tapping into a more fine-grained information stream for ABR
algorithms rather than in implementing and advanced stall pre-
diction and prevention mechanism. In future work, we want to
explore additional metrics, such as RTT calculations. Borrowing
from congestion control developments (e.g., BBR [9]), fluctuating
RTT measurements could indicate poor buffer management on the
delivery path (i.e., bufferbloat), providing us with more detailed
information to include in our ABR decision logic.

While this paper presents a first step in cross-layer techniques, it
only explores a unidirectional cross-layer mechanism exchanging
information from the OSI transport layer to the OSI application
layer. A bidirectional approach would require exposing application
layer knowledge to the transport layer or providing a mechanism
to steer the transport layer. As is the case for most HAS clients,
having no direct control over the transport layer socket is one of
the contributors to the well-known ON-OFF problem. As a future
work, we would like to explore an approach where the HAS client
can directly control the transport layer’s flow control and pacing
mechanics utilizing cross-layer information exchange. Such an
exchange could lead to more fair bandwidth usage scenarios with
multi-client setups.

ACKNOWLEDGMENTS
Joris Herbots is a Ph.D. candidate at Hasselt University, supported
by the Special Research Fund (BOF19OWB07). The research leading
to these results has received funding from the European Union’s
Horizon Europe Programme under grant agreement 101070072,
MAX-R (Mixed Augmented and eXtended Reality media pipeline).

55

Investigating the feasibility of cross-layer information sharing for enhancing ABR decision logic over QUIC NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada

REFERENCES
[1] 2023. Active QUIC implementations. https://github.com/quicwg/base-drafts/

wiki/Implementations.
[2] 2023. dash.js: A reference client implementation for the playback of MPEG

DASH via Javascript and compliant browsers. https://github.com/Dash-Industry-
Forum/dash.js.

[3] 2023. quic-go: A QUIC implementation in pure go. https://github.com/quic-
go/quic-go.

[4] 2023. quic-go: UDP receive buffer size recommendations. https://github.com/quic-
go/quic-go/wiki/UDP-Receive-Buffer-Size.

[5] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C. Begen, and Constantine
Dovrolis. 2012. What HappensWhenHTTPAdaptive Streaming Players Compete
for Bandwidth?. In Proceedings of the 22nd International Workshop on Network and
Operating System Support for Digital Audio and Video (Toronto, Ontario, Canada)
(NOSSDAV ’12). Association for Computing Machinery, New York, NY, USA, 9–14.
https://doi.org/10.1145/2229087.2229092

[6] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger
Zimmermann. 2019. A Survey on Bitrate Adaptation Schemes for Streaming
Media Over HTTP. IEEE Communications Surveys & Tutorials 21, 1 (2019), 562–585.
https://doi.org/10.1109/COMST.2018.2862938

[7] Divyashri Bhat, Amr Rizk, and Michael Zink. 2017. Not so QUIC: A Performance
Study of DASH over QUIC. In Proceedings of the 27th Workshop on Network
and Operating Systems Support for Digital Audio and Video (Taipei, Taiwan)
(NOSSDAV’17). Association for Computing Machinery, New York, NY, USA, 13–18.
https://doi.org/10.1145/3083165.3083175

[8] Mike Bishop. 2022. HTTP/3. RFC 9114. Internet Engineering Task Force.
[9] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2017. BBR: Congestion-Based Congestion Control. Commun. ACM
60, 2 (jan 2017), 58–66. https://doi.org/10.1145/3009824

[10] Bo Fu, Yang Xiao, Hongmei Deng, and Hui Zeng. 2014. A Survey of Cross-Layer
Designs in Wireless Networks. IEEE Communications Surveys & Tutorials 16, 1
(2014), 110–126. https://doi.org/10.1109/SURV.2013.081313.00231

[11] Joris Herbots, Mike Vandersanden, Wim Lamotte, and Peter Quax. 2023. Vegvisir:
A testing framework for HTTP/3 media streaming. In Proceedings of the 14th ACM
Multimedia Systems Conference (Vancouver, BC, Canada) (MMSys ’23). Association
for Computing Machinery, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3587819.3592550

[12] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh
Johari. 2012. Confused, Timid, and Unstable: Picking a Video Streaming Rate
is Hard (IMC ’12). Association for Computing Machinery, New York, NY, USA,
225–238. https://doi.org/10.1145/2398776.2398800

[13] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proceedings of the 2014 ACM Conference on SIG-
COMM (Chicago, Illinois, USA) (SIGCOMM ’14). Association for Computing Ma-
chinery, New York, NY, USA, 187–198. https://doi.org/10.1145/2619239.2626296

[14] Jana Iyengar and Martin Thomson. 2021. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. Internet Engineering Task Force.

[15] Stefan Lederer, Christopher Müller, and Christian Timmerer. 2012. Dynamic
Adaptive Streaming over HTTP Dataset. In Proceedings of the 3rd Multimedia
Systems Conference (Chapel Hill, North Carolina) (MMSys ’12). Association for
Computing Machinery, New York, NY, USA, 89–94. https://doi.org/10.1145/
2155555.2155570

[16] Daniele Lorenzi, Minh Nguyen, Farzad Tashtarian, Simone Milani, Hermann
Hellwagner, and Christian Timmerer. 2021. Days of Future Past: An Optimization-
Based Adaptive Bitrate Algorithm over HTTP/3 (EPIQ ’21). Association for Com-
puting Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3488660.
3493802

[17] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability
of QUIC (Virtual Event, USA) (EPIQ ’20). Association for Computing Machinery,
New York, NY, USA, 14–20. https://doi.org/10.1145/3405796.3405828

[18] Robin Marx, Luca Niccolini, Marten Seemann, and Lucas Pardue. 2023. Main
logging schema for qlog. Internet-Draft draft-ietf-quic-qlog-main-schema-05.
Internet Engineering Task Force.

[19] Hyunwoo Nam, Kyung-Hwa Kim, and Henning Schulzrinne. 2016. QoE matters
more than QoS: Why people stop watching cat videos. In IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communications.
IEEE, San Francisco, CA, USA, 1–9. https://doi.org/10.1109/INFOCOM.2016.
7524426

[20] Mirko Palmer, Malte Appel, Kevin Spiteri, Balakrishnan Chandrasekaran, Anja
Feldmann, and Ramesh K. Sitaraman. 2021. VOXEL: Cross-Layer Optimization
for Video Streaming with Imperfect Transmission. In Proceedings of the 17th
International Conference on Emerging Networking EXperiments and Technologies
(Virtual Event, Germany) (CoNEXT ’21). Association for Computing Machinery,
New York, NY, USA, 359–374. https://doi.org/10.1145/3485983.3494864

[21] Tommy Pauly, Eric Kinnear, and David Schinazi. 2022. An Unreliable Datagram
Extension to QUIC. RFC 9221. Internet Engineering Task Force.

[22] Esa Piri, Tiia Sutinen, and Janne Vehkaperä. 2009. Cross-layer architecture for
adaptive real-time multimedia in heterogeneous network environment. In 2009
European Wireless Conference. 293–297. https://doi.org/10.1109/EW.2009.5357979

[23] Esa Piri, Mikko Uitto, Janne Vehkaperä, and Tiia Sutinen. 2010. Dynamic Cross-
Layer Adaptation of Scalable Video in Wireless Networking. In 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010. IEEE, Miami, FL, USA, 1–5.
https://doi.org/10.1109/GLOCOM.2010.5683143

[24] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,
and Bernhard Feiten. 2017. A bitstream-based, scalable video-quality model for
HTTP adaptive streaming: ITU-T P.1203.1. In Ninth International Conference on
Quality of Multimedia Experience (QoMEX). IEEE, Erfurt. https://doi.org/10.1109/
QoMEX.2017.7965631

[25] Darijo Raca, Maelle Manifacier, and Jason J. Quinlan. 2022. goDASH - GO
accelerated HAS framework for rapid prototyping. In 2th International Conference
on Quality of Multimedia Experience (QoMEX). IEEE, Athlone, Ireland.

[26] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar
Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, Ulf Wüstenhagen,
Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. 2018. HTTP
Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases
and Software. In 9th ACM Multimedia Systems Conference. Amsterdam. https:
//doi.org/10.1145/3204949.3208124

[27] SANDVINE. 2023. 2023 Global Internet Phenomena Report. Technical Report.
[28] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2016. BOLA: Near-

optimal bitrate adaptation for online videos. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications. IEEE, San
Francisco, CA, USA, 1–9. https://doi.org/10.1109/INFOCOM.2016.7524428

[29] Bi Xixi, Qin Zhiliang, and Ma Ruofei. 2022. Cross-Layer Joint Scheduling for
D2D Communication in Cellular Systems. In 6GN for Future Wireless Networks,
Shuo Shi, Ruofei Ma, and Weidang Lu (Eds.). Springer, Cham, Huizhou, China,
130–144. https://doi.org/10.1007/978-3-031-04245-4_12

56

https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/quic-go/quic-go
https://github.com/quic-go/quic-go
https://github.com/quic-go/quic-go/wiki/UDP-Receive-Buffer-Size
https://github.com/quic-go/quic-go/wiki/UDP-Receive-Buffer-Size
https://doi.org/10.1145/2229087.2229092
https://doi.org/10.1109/COMST.2018.2862938
https://doi.org/10.1145/3083165.3083175
https://doi.org/10.1145/3009824
https://doi.org/10.1109/SURV.2013.081313.00231
https://doi.org/10.1145/3587819.3592550
https://doi.org/10.1145/3587819.3592550
https://doi.org/10.1145/2398776.2398800
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1145/2155555.2155570
https://doi.org/10.1145/2155555.2155570
https://doi.org/10.1145/3488660.3493802
https://doi.org/10.1145/3488660.3493802
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1109/INFOCOM.2016.7524426
https://doi.org/10.1109/INFOCOM.2016.7524426
https://doi.org/10.1145/3485983.3494864
https://doi.org/10.1109/EW.2009.5357979
https://doi.org/10.1109/GLOCOM.2010.5683143
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.1109/QoMEX.2017.7965631
https://doi.org/10.1145/3204949.3208124
https://doi.org/10.1145/3204949.3208124
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1007/978-3-031-04245-4_12

NOSSDAV ’23, June 7–10, 2023, Vancouver, BC, Canada Herbots and Verstraete, et al.

A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the source files (written in Go) for our custom
quic-go [3] and goDASH [25] client, each containing the neces-
sary communication mechanisms for the unidirectional cross-layer
information exchange explained in Section 3.1. The BBA2, BBA2-
CL and BBA2-CLDouble ABR algorithms are contained within the
goDASH source files.

Additionally, this artifact contains Docker build files (i.e., dock-
erfiles) for our client and simulated network environment, to be
used in the open source QUIC-HTTP/3 testing framework Veg-
visir [11]. We also provide scripts for Vegvisir to automatically
generate graphs from the experiment’s collected metrics and to
calculate the ITU-P.1203 O46 score.

Finally this artifact also contains the logs from our results, con-
taining system information, metrics and graphs generated from the
collected metrics.

A.2 Artifact check-list (meta-information)
• Algorithm: BBA2-CL, BBA2-CLDouble
• Data set: Audiovisual dataset by Lederer et al. [15]
• Hardware: X86-64 Linux
• Output: Vegvisir collects system log files and metrics captured by
the client-shaper-server setup

• How much time is needed to prepare workflow (approxi-
mately)?: 25 minutes (excluding video dataset download times)

• How much time is needed to complete experiments (approxi-
mately)?: 1 hour

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL-3.0 license
• Workflow framework used?: Git clone artifact, git clone Vegvisir

testing framework, configure Vegvisir, download and prepare video
datasets, run experiment, observe results

A.3 Description
A.3.1 How delivered. All source files, scripts and configurations are avail-
able over at the artifact repository on GitHub: https://github.com/EDM-
Research/cross-that-boundary-mmsys23-nossdav. The README provides
an explanation of the repository structure.

A.3.2 Hardware dependencies. Any system capable of running Docker and
Docker Compose should suffice. The results of this paper were produced
on Arch Linux 6.1.7 X86-64 with Docker version 23.0.1, Docker Compose
version 2.16.0 and Vegvisir version 2.0.0.

A.4 Installation
A step-by-step installation guide is provided over at the GitHub repos-
itory: https://github.com/EDM-Research/cross-that-boundary-mmsys23-
nossdav. This guide provides information on how to create Docker im-
ages from the provided source files, how to configure the Vegvisir testing
framework and how to prepare the audiovisual datasets.

A.5 Evaluation and expected result
After creating the required Docker images (i.e. the quic-go and goDASH
client along with the network shaper) and configuring Vegvisir; from the
root of the Vegvisir folder, run:
$ python -m vegvisir run paper_experiment_full.json

Vegvisir will display ongoing tests and show a general progress bar, the
provided configuration should run for about an hour. Afterwards the results

can be found in the vegvisir/logs/cross_layer_paper/{datetime of
run} folder. A convenience script is available to quickly display all generated
graphs in a web browser. See the GitHub repository README for more
information.

The results acquired can be compared to our own results provided with
this artifact in the paper-logs/ folder.

A.6 Experiment customization
The included dockerfile for the quic-go and goDASH client is steerable
through command line parameters. Providing custom arguments can be
done via the Vegvisir experiment configuration file (see
paper_experiment_full.json file in the
paper-utilities/vegvisir-configurations/ folder). The following pa-
rameters can be changed:

• REQUESTS URL to the MPEG-DASH manifest
• ABRName of the ABR algorithm to be used in the experiment: bba2,
bba2XL-base, bba2XL-double (note that these are internal names,
they map to the BBA2, BBA2-CL and BBA2-CLDouble algorithms –
as mentioned in the paper – respectively).

• MAX_BUFFER BBA2 maximum buffer size in seconds
• INIT_BUFFER Initial number of segments to download before
starting playback

• STREAM_SPEED Factor applied to playback rate (1 = normal rate)
• MAX_HEIGHT Maximum height resolution in pixels to stream

57

https://github.com/EDM-Research/cross-that-boundary-mmsys23-nossdav
https://github.com/EDM-Research/cross-that-boundary-mmsys23-nossdav
https://github.com/EDM-Research/cross-that-boundary-mmsys23-nossdav
https://github.com/EDM-Research/cross-that-boundary-mmsys23-nossdav

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-layer network optimization
	2.2 Exploiting QUIC features for HAS
	2.3 ON-OFF behavior

	3 Experimental Methodology
	3.1 Client Implementation
	3.2 Stall Prediction

	4 Experimental Setup
	5 Experimental Results
	6 Summary, Discussion and Next Steps
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected result
	A.6 Experiment customization

