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1 Introduction

In the research domain of gravitational lenses, one often has to supply angular diameter distances to
perform specific calculations. Unfortunately, there is no way to measure such distances directly, but they
have to be calculated from the observed redshifts of astronomical objects.

Below, an isotropic and homogeneous universe described by the Friedmann-Robertson-Walker (FRW)
metric

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(k = +1, 0 or − 1),

will be assumed to describe our universe well.

2 Angular diameter distances in a FRW metric

Figure 1 shows an observer in Euclidean space, looking at an object at distance D, perpendicular to the
line of sight and subtending an angle ∆θ. When the angle is small, the following relation holds:

d ≈ ∆θD.

This is exactly the way an angular diameter distance in a general metric is defined: the size of the object
(at the time the light we receive now was emitted) must equal the corresponding angle time the angular
diameter distance.

In a general FRW metric, the situation we are interested in is depicted in figure 2. The coordinate system
is chosen in such a way that the observer is at the origin, the object lies on a surface of constant φ and
the radial coordinate of the endpoints is r. Note that the coordinates of the object being viewed are
fixed.

∆θ

D

d
Observer

Figure 1: Euclidean space
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Figure 2: FRW geometry

Suppose that the light rays emitted at a time te are received by the observer at this instance, t0. The
proper size of the object at te is simply

d = a(te)r∆θ.

On the other hand, the angular diameter distance D is defined in such a way that the relation

∆θD = d

holds, which yields the following expression for the angular diameter distance:

D = a(te)r.

The radial coordinate r can be calculated by noting that a light ray traces a null geodesic, so that the
light rays emitted towards the observer obey the following equation:

c2dt2 = a(t)2
dr2

1− kr2
.

This leads to the following relations, depending on the specific geometry:

c

∫ t0

te

dt

a(t)
=
∫ r

0

dr′√
1− kr2

=


sin−1 r (k = 1)
r (k = 0)
sinh−1 r (k = −1)

.

At this point, it should be clear that to actually calculate angular diameter distances, we have to know
the evolution of the distance scale a(t).

3 Dependence on cosmological parameters

The evolution of the distance scale in the FRW metric, is described by the following equation:

ȧ(t)2 − 8πG

3
ρ(t)a(t)2 + kc2 = 0.

Assuming that the total energy density ρ can be split into three parts: the energy density of the vacuum
ρv, the energy density of matter ρm and the energy density of radiation ρr. The previous equation can
then be rewritten as follows:

ȧ(t)2 − 8πG

3
[ρv(t) + ρm(t) + ρr(t)] a(t)2 + kc2 = 0. (1)

The adiabatic expansion of the universe, provides additional information:

d
(
ρa3

)
= − p

c2
da3
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⇔
(

ρ +
p

c2
da3

)
+ a3dρ = 0.

For matter, the energy density is dominated by the mass of the matter and the pressure can be set to
zero:

pm = 0

Assuming that matter, radiation and vacuum energy density evolve independently, the following relations
hold:

da3

a3
= −dρm

ρm

⇔ ln a3 = − ln ρm + constant

⇔ a3ρm = constant

⇔ a(t)3ρm(t) = a3
0ρ0m,

In which a0 = a(t0), the current scale factor of the universe. This way, we find an expression for ρm(t)
in terms of a(t):

ρm(t) =
(

a0

a(t)

)3

ρ0m.

For radiation, the equation of state is

pr =
1
3
ρrc

2,

leading to the following relation:

ρr(t) =
(

a0

a(t)

)4

ρ0r.

If the energy density of the vacuum is constant (corresponding to a true cosmological constant Λ), the
relation

ρv(t) = ρ0v

holds, corresponding to the following equation of state:

pv = −ρvc
2.

Using these relations, equation (1) can be rewritten as follows:

ȧ(t)2 − 8πG

3

[
ρ0m

(
a0

a(t)

)3

+ ρ0r

(
a0

a(t)

)4

+ ρ0v

]
a(t)2 + kc2 = 0.

Introducing the critical energy density

ρc =
3

8πG
H2

0

and writing
Ω =

ρ

ρc
,

this yields:

ȧ(t)2 −H2
0

[
Ω0m

(
a0

a(t)

)3

+ Ω0r

(
a0

a(t)

)4

+ Ω0v

]
a(t)2 +

kc2

H2
0

H2
0 = 0
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Dividing the equation by a2
0 results in the expression(

ȧ(t)
a0

)2

−H2
0

[
Ω0m

(
a0

a(t)

)3

+ Ω0r

(
a0

a(t)

)4

+ Ω0v

](
a(t)
a0

)2

+
kc2

H2
0a2

0

H2
0 = 0,

which can be simplified by introducing

R(t) =
a(t)
a0

and

Ω0k = − kc2

H2
0a2

0

.

This way, we obtain

Ṙ(t)2 −H2
0

[
Ω0mR(t)−3 + Ω0rR(t)−4 + Ω0v

]
R(t)2 − Ω0kH

2
0 = 0

⇔ Ṙ(t)2 −H2
0

[
Ω0m

R(t)
+

Ω0r

R(t)2
+ Ω0vR(t)2 + Ω0k

]
= 0.

Evaluating this expression at t0, one gets the following relation:

Ω0m + Ω0r + Ω0v + Ω0k = 1,

since
R(t0) =

a(t0)
a0

= 1

and
Ṙ(t0) =

ȧ(t0)
a0

= H0.

Parametrizing our ignorance of H0 by h:

H0 =
h

TH
where TH = (100 km s−1 Mpc−1)−1

and introducing

T =
t

TH
,

the evolution of an FRW universe is described by:(
dR

dT

)2

− h2
[

Ω0m

R(T )
+

Ω0r

R(T )2
+ Ω0vR(T )2 + Ω0k

]
= 0.

Previously, the vacuum energy density was assumed to be constant, but more generally we can write:

pv = wρvc
2.

It is an easy exercise to obtain the following expression when using this modified equation of state:(
dR

dT

)2

− h2
[

Ω0m

R(T )
+

Ω0r

R(T )2
+

Ω0v

R(T )1+3w
+ Ω0k

]
= 0 (2)

From this expression one easily sees that

dT

dR
=

1

h
√

Ω0m
R + Ω0r

R2 + Ω0v
R1+3w + Ω0k

,
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which can be used to rewrite the integral at the end of the previous section:

c

∫ t0

te

dt

a(t)
= cTH

∫ T0

Te

dT

a0R(T )
= c

TH

a0

∫ R(T0)

R(Te)

dR

R

dT

dR

⇔ c

∫ t0

te

dt

a(t)
= c

TH

a0

∫ R(T0)

R(Te)

dR

R

1

h
√

Ω0m
R + Ω0r

R2 + Ω0v
R1+3w + Ω0k

.

Noting that

R(Te) =
a(te)
a0

=
1

1 + z

where z is the observed redshift of the astronomical object, this can be written as

c

∫ t0

te

dt

a(t)
=

c

h

TH

a0

∫ 1

1
1+z

dR

R

1√
Ω0m
R + Ω0r

R2 + Ω0v
R1+3w + Ω0k

⇔ c

∫ t0

te

dt

a(t)
=

c

h

TH

a0

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2

. (3)

3.1 Flat space (k = 0)

In the k = 0 (and therefore Ω0k = 0) case, the radial coordinate r is simply given by

r = c

∫ t0

te

dt

a(t)
,

from which one finds:

r =
c

h

TH

a0

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w

.

Substituting this into the expression of the angular diameter distance, we get:

D =
cTH

h

a(te)
a0

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w

⇔ D =
1

1 + z

cTH

h

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w

3.2 Curved space (k 6= 0)

Using the definition of Ωk0

Ω0k = − kc2

H2
0a2

0

,

we can express a0 as follows:

a0 =
cTH

h
|Ω0k|−

1
2 .

In the k = +1 case, the radial coordinate can be calculated in the following way:

sin−1 r =
c

h

THh

cTH

√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2
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⇔ sin−1 r =
√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2

⇔ r = sin

[√
−Ω0k

∫ 1
1+z

1

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2

]
.

In this case, the angular diameter distance is given by:

D = a(te)r =
a(te)a0

a0
r =

1
1 + z

cTH

h
√
−Ω0k

sin

[√
−Ω0k

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2

]
.

A similar calculation for the k = −1 case yields:

D =
1

1 + z

cTH

h
√

Ω0k
sinh

[√
Ω0k

∫ 1

1
1+z

dR√
Ω0mR + Ω0r + Ω0vR1−3w + Ω0kR2

]
.

4 Summary

It is easy to generalize these results to obtain an expression for the angular diameter distance between
objects at redshifts z1 and z2 (z1 < z2):

D(z1, z2) =



1
1 + z2

cTH

h
√
−Ω0k

sin

[√
−Ω0k

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR + Ω0r + Ω0vR

1−3w + Ω0kR
2
)− 1

2

]
(k = +1)

1
1 + z2

cTH

h

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR + Ω0r + Ω0vR

1−3w
)− 1

2 (k = 0)

1
1 + z2

cTH

h
√

Ω0k
sinh

[√
Ω0k

∫ 1
1+z1

1
1+z2

dR
(
Ω0mR + Ω0r + Ω0vR

1−3w + Ω0kR
2
)− 1

2

]
(k = −1).
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