
transnational University Limburg
School of Information Technology

“Multimodal Interaction can Facilitate Brainstorming in
Collaborative Virtual Environments”

Proposition submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy: Computer Science

transnational University Limburg

June 21, 2004

Fabian DI FIORE

Supervisor: Prof. dr. F. Van Reeth

2004





transnationale Universiteit Limburg
School voor Informatietechnologie

“Multimodale Interactie kan Brainstormen in
Collaboratieve Virtuele Omgevingen Bevorderen”

Bijstelling voorgelegd tot het behalen van de graad van

Doctor in de Wetenschappen, richting Informatica

aan de transnationale Universiteit Limburg

21 juni 2004

Fabian DI FIORE

Promotor: Prof. dr. F. Van Reeth

2004





1

Abstract

In this document we present our work in setting up a collaborative virtual
environment (CVE) framework which is built to support collaborative creative
meetings for geographically dispersed participants1. Similar to real life, we
rely on the use of quick drawings or sketches as a means of communication to
convey new ideas, thoughts or other meta-data to other individuals.

Furthermore, we concentrate on facilitating the (collaborative) interaction
process through the use of four modalities. The first modality is direct manip-
ulation, which is suitable for direct interaction with the networked environ-
ment. Secondly, we look at interaction through gesturing symbols in order not
to distract the user’s attention from the meeting. As a third modality we con-
sider interaction through menu and widget manipulation. A fourth modality
is established by a camera interface.

We expect that the combination of the intuitive interface and the real-time
visualisation of the virtual environment leads to a better understanding and
realisation of one’s ideas in an early phase of the cooperation.

Keywords: collaborative virtual environment, human-computer interac-
tion, multimodal interaction, sketching

1An early version of this work is described in (Di Fiore 04).



2

1 Introduction and Motivation

People who cooperate in teams often need to meet together to do some brain-
storming, or to form, convey, readjust or hit upon (new) ideas. During brain-
storming sessions, it is a common practice for participants to use quick draw-
ings or sketches as these convey more than only words can say. However, when
the participants are located in geographically dispersed locations, these kinds
of brainstorming sessions are impracticable.

‘Collaborative Virtual Environments’ (CVEs), in general, are applications
that provide distributed virtual reality technology to support cooperative
work. They consist of virtual spaces that enable participants to collaborate
and share objects as if the participants were present in the same place. Cur-
rently, CVEs are used for many purposes, some of which include collabora-
tive design (Luo 02), manipulation (Rekimoto 97), education, simulation, and
training. However, on-line games still are the most common form of on-line vir-
tual environments in use today. Games such as Sony’s ‘EverQuest’ (Sony 04)
and ‘World of Warcraft’ (Blizzard 04) are designed to be played by thousands
of users worldwide every day.

In this document we introduce our work in setting up a collaborative virtual
environment (CVE) framework which is built to support collaborative creative
meetings. Regarding collaborative working, roughly two categories can be
identified. In the first, users are located in the same room and, for example,
use displays projected on walls or tables as a spatially continuous extension of
their own workspace (Rekimoto 99). Our work, however, extends the concept
of ‘Designer’s Outpost’ (Everitt 03) in which participants are remotely present
while sharing one virtual workbench.

The strength of the proposed environment is in the fact that we, just as in
real life, use quick drawings or sketches as a means of communication to convey
new ideas, thoughts or other meta-data to other individuals. We expect that
by using our system the occurrence of misunderstandings can be minimised or
cleared up promptly in an early phase of the cooperation.

This text is organised as follows. In section 2 we elaborate on the collab-
orative environment that we envisage. Section 3 focusses on facilitating the
(collaborative) interaction process through different modalities. Currently, we
concentrate on four modalities in particular, which are direct manipulation,
interaction through gesturing symbols, menu and widget manipulation, and a
camera interface. We end with our conclusions and topics for future research
(section 4).

Related work on highlighted aspects will be mentioned in the appropriate
sections.



2 Collaborative Virtual Environment Framework 3

2 Collaborative Virtual Environment Framework

The collaborative environment we envisage consists of a virtual workbench
that can be shared by a group of users (who are remotely present) in order
to support collaborative creative meetings. In the following subsections we
discuss the underlying virtual environment framework and the collaborative
setup.

2.1 Virtual Environment Framework

Virtual Environments (VEs) are computer generated, two-dimensional or three-
dimensional environments that create the effect of an interactive world in
which the user is immersed. In previous research, our research group has devel-
oped a code framework for interacting in virtual environments (Raymaekers 99;
Raymaekers 01; De Boeck 04). In this work, we rely on their framework, of
which we’ll now give a brief overview.

The framework in its current state can be regarded as a black box that
can be used to create VEs that require all sorts of (multimodal) interaction
possibilities. Currently, it supports the use of several 3D input devices (e.g.
a 3D mouse (3Dconnexion 04), a MicroScribe (Immersion 04), 3D trackers),
speech input and haptic feedback (e.g. PHANToM (SensAble 04)).

As different modalities, such as haptic interface, direct manipulation, in-
teraction through widgets, or speech input, present their information in a
specific manner, an interface is developed for each of these interaction tech-
niques. These interfaces should be considered in a sense of a high-level struc-
tured syntax of which the designer of the environment can use the supported
functionalities.

The data passed into the framework is similar for all created interfaces
and is represented by interaction events. All events that are generated by
the interaction techniques are sent to a central dispatching unit, called a task
conductor. From there, the interaction events are redirected to the appropriate
(application specific) event handling code.

Similar to other interaction techniques, the user interface will also generate
and send interaction events to the task conductor in order to perform the
necessary tasks.

2.2 Collaborative Setup

Our server-client based CVE system consists of a server application, and for
each participating site a client application (GUI). The functions of the server
include management of the parties (joining, quitting), sharing of application



4

data (adding, deleting, . . . ), and floor control to assure mutual exclusion. The
main role of each client is to serve as the collaborative interface with the user
and to act as the visible part of the collaborative system.

The collaborative environment that we envisage consists of a virtual work-
bench that can be shared by the users. For each participant, this virtual
workbench is projected onto his/her real desk. Equipped with a set of inter-
action devices and some basic functionalities, this virtual workbench allows
participants to brainstorm with other users in an intuitive manner. Figure
1 shows one possible set-up. In this case the projected working area can be
enlarged or reduced depending on the available space and need, just by tuning
the projector. Other set-ups are supported as well including projecting from
underneath the desk or simply using a conventional display.

In order to obtain a one-to-one mapping between the projected workbench
and the user’s real working area, we provided simple calibration in which the
user selects the corners of the projected workbench. As a result, when using
for example a 3D pointing device, besides the obvious one-to-one mapping
between the real tip of the device and it’s projected visual representation, we
also can detect whether the tip touches the workbench or not. This will be
elucidated in section 3.1.

At this moment, two different network communication protocols are being
used simultaneously: TCP/IP and RTP (real-time protocol). The first is used
as a reliable means of communication and deals with data that in any case
needs to be delivered, whereas the latter is employed to take care of time-
critical data.

In the next section we concentrate on the different modalities that are
being used.



2 Collaborative Virtual Environment Framework 5

Figure 1: A possible set-up for displaying the shared virtual workbench.



6

3 Multimodal Interaction

In a multimodal application, input and output are provided by using different
devices. Due to their specific characteristics, each modality has its own needs
with regard to the used input device.

Currently, we concentrate on four modalities in particular to facilitate the
collaborative interaction process. The first modality is direct manipulation,
which is suitable for direct interaction with the 3D virtual environment. Sec-
ondly, we look at interaction through gesturing symbols in order to facilitate a
sketching process. As a third modality we consider interaction through menu
and widget manipulation. A fourth modality is established by a camera inter-
face as a means to incorporate real-life objects into the virtual workbench.

The functionality of the first three modalities is provided using a Micro-
Scribe (Immersion 04). The reasons for using a MicroScribe are threefold.
Firstly, we need a tracking device in order to be able to intuitively put down
sketchy remarks (section 3.1). The MicroScribe is an accurate, affordable 3D
digitising system (usually employed to digitise 3D clay models). However,
its high accuracy (0.009” or 0.23 mm) and large workspace size (50” or 1.27
m), provide the user also with a natural interaction method for sketching in
2D/3D (De Weyer 01). The device is depicted in the top-right corner in fig-
ure 2. Secondly, the same argument stands up for gesturing understandable
symbols (section 3.2). Thirdly, an easy-to-use and comfortable pointer device
is required for several ‘conventional’ pointing operations such as menu inter-
action (see section 3.3) and object selection. Since the user’s dominant hand
is already holding the MicroScribe, it is not convenient to switch to another
input device (e.g. mouse) for menu interaction. Therefore, we chose to use
the MicroScribe to interact as well with 3D menus (figure 5(b)).

Since the MicroScribe also comes with two foot pedals, which are very use-
ful for e.g. mode selection, several different interactions (sketching, selecting
menu items, selecting objects, . . . ) can be performed successively in an ar-
bitrary order using the same device. This approach considerably reduces the
number of times the user has to release the MicroScribe.

Other conventional (tracking) devices could be used as well (Sachs 91;
Zachmann 97; Raymaekers 99), however, from our experiences (De Weyer 01)
we discovered they either only work fine in laboratory environments, or are un-
natural to use. For example, a conventional (pressure-sensitive) stylus is easy-
to-use but depends on a — often small — fixed size working area. Kobayashi
et al. (Kobayashi 98) and more recently, Oka et al. (Oka 02) introduced a fast
and robust method for tracking a user’s hands and multiple fingertips. Their
method is capable of tracking multiple fingertips in a reliable manner even in a



3 Multimodal Interaction 7

complex background under dynamically changing lighting conditions without
any markers. Although it feels very natural to the user, a major drawback of
this method is that tracking fingers still lacks high accuracy.

Note that the PHANToM (SensAble 04) is a worthy alternative to the Mi-
croScribe. However, a formal user test carried out by Raymaekers and Coninx
pointed out that in a virtual environment the “point-and-click” metaphor
should be used rather than a pushing metaphor (Raymaekers 01). As a result,
employing a force feedback device only as a tracking or pointing device while
ignoring force feedback is quite overkill.
In the following subsections we elaborate on the different modalities.

3.1 Direct Manipulation: Collaborative Sketching

In our CVE we rely on the use of sketches as a means of communication to
convey certain ideas to other individuals.

Therefore, we must keep an important constraint in mind, which is the
ease of use of the sketching tool. The simplicity of the classic pen, which is
also available as an input device for the computer, is an important feature
that needs to be taken into account in the implementation of our sketching
tool. In other words, a sketch-drawing tool needs to work in a natural and
intuitive way, which implies that the tool has to work in real-time and that
the movement of the pen has to be closely tied to the resulting curve.

Creating Sketches

In our system, the creation of a stroke is done interactively by sampling the
MicroScribe along the trail of the stroke. This only happens when the tip of
the MicroScribe touches the workbench (section 2.2). In order to allow for real-
time high-level manipulations on the strokes, the individual pixels that make
up the stroke are not used. Instead, a high-level internal representation, using
cubic Bézier curves, is created. We use the solution of (Vansichem 01). While
sampling the MicroScribe we simultaneously perform an iterative curve fitting
technique based on least-squared-error estimation. Existing curve drawing
solutions mostly take recourse to a ‘batch’ curve fitting solution, in which the
fitting is done after the stroke drawing is finished, whereas our fitting is done
on-the-fly while the curve is being drawn.

The curves themselves are drawn as solid lines. Figure 2 illustrates the use
of a MicroScribe as a tracking device in order to intuitively put down sketchy
remarks. Note also there’s a one-to-one mapping between the projected work-
bench and the tip of the MicroScribe (i.e. real working area), through an
initial calibration.



8

Figure 2: Employing the MicroScribe as a tracking device in order to intu-
itively put down sketchy remarks.

We also added support for grouping and performing transformations on
(parts of) the sketches. Existing applications transform drawings on a per-
pixel basis which results in artifacts because the transformed parts are cut
out and then pasted at a new position. In our case the transformation tools
(translate, rotate, scale, . . . ) only affect the underlying geometric description
of the selected (parts of the) sketches.

Notice that the user does not have to worry about picking, clicking and
dragging control points associated with the underlying curve primitives. That
way we preserve the same freedom of sketching a user has when using the
“pencil-and-paper” approach.

Furthermore, we provided navigation support by means of a SpaceMouse
(3Dconnexion 04). This is a 3D optical mouse with 11 programmable buttons
which allows us to simultaneously pan, zoom or rotate the virtual camera
using only one hand. The SpaceMouse is visible in the lower right corner of



3 Multimodal Interaction 9

figure 2.

Collaborative Sketching

In order to modify existing sketches, they temporarily need to be assigned
to the requesting user. The user concerned only has to ‘touch’ a particular
sketch after which an explicit locking request is sent to the server. The server
for its part takes care of the request and notifies all other parties in case of
acceptance. The requesting client, however, gets informed in any case. All
communication involved happens transparently to the user.

By using instantaneous visual feedback (e.g. using different colours or
flashing points), users always are aware of which sketches currently (i) are
being modified by others, (ii) are attributed to the user himself, or (iii) are
unlocked.

Sketches consist of cubic Bézier curves. Consequently, whenever sketches
are being drawn or modified, only the affected control points need to be sent
to the other participants. In case of transforming sketches or requests for
locking/unlocking/. . . , only specific data is sent over the network.

For these operations, we make use of TCP/IP as a communication protocol.
As a result, we are assured that all data arrives in the right order, and no data
gets lost.

3.2 Direct Manipulation through Gesturing

When making a sketch, it is sometimes desirable to manipulate the result.
Different techniques to manipulate the sketch can be encountered in the lit-
erature. For instance, in Teddy (Igarashi 99), a program which allows the
creation of a 3D object out of 2D sketches, a sketch is modified by drawing
extra lines onto the sketch. This manipulation then deforms the sketch.

In our case, we have investigated the interface that is needed to perform
typical re-occurring operations including transforming sketches (i.e. translat-
ing, rotating and scaling), selecting sketches, deleting them, . . . without having
to turn to menus (and other widgets) which take up a lot of time and distract
the user’s attention.

We thus need an intuitive user interface for performing these operations.
Since the user is already using a sketching interface by means of a MicroScribe,
a gesture interface comes to mind.

By not using a WIMP interface, but a sketching interface, the user can per-
form the different operations without having to resort to a button or another
interface element that distracts the attention from the sketching process.



10

Gesture interfaces are used in different applications, such as whiteboard
tools (Moran 00). Landay and Myers propose an interactive tool which allows
designers to sketch an interface, and transforms it into a complete, operational
interface (Landay 95). Traditional gesture interfaces have as disadvantage that
they do not offer an accurate means to provide input, while the interface that
is generated by the tool of (Landay 95) has lost the look and feel of a sketch
interface.

In our approach, the purpose of gestures can be regarded as gesturing the
functionality and not gesturing the widgets themselves. That is, gestures are
not turned into widgets since otherwise, the user has to perform twice as much
interactions as needed: (i) gesturing the widget, and (ii) interacting with the
generated widget. Instead, upon recognising a gesture, the system switches its
mode to the corresponding operation. Furthermore, by changing the pointer,
the user gets instantaneous feedback about the current mode.

Creating Gestures

The gesturing interface is built upon our intuitive sketching tool (section 3.1).
Gestures are created in the same manner as “normal” gestures: the user just
draws a gesture, e.g. like an arrow, using the MicroScribe. The difference with
a normal gesture is interpretation of the gesture. For each gesture a particular
action which performs the manipulation is defined. For instance, drawing an
arrow, pointing to the right (figure 3(a)) indicates that the selected object(s)
can be moved to another position. To be more precise, as soon as a horizontal
arrow is drawn (and recognised), our system switches to horizontal translation
mode (as defined by the direction of the arrow). From now on, the user can
precisely position the object by moving the pen of the MicroScribe: the further
the user moves the pen away, the further the object is moved.

Several gestures for translating, rotating, scaling and deleting are shown
in figure 3.

Recognition of Gestures

Because our gestures are represented by curves, it is easier to exploit the asso-
ciated curve data instead of using for example a neural network that anyhow
has to be trained (Bimber 99).

Our idea is to induce the intended gesture from (i) the geometrical position
of the control points, (ii) the order of appearance of the control points, and
(iii) the number of sketches which make up the gesture. That way, we also do
not impose any constraints on the user, such as the drawing speed or the size
of the gesture.



3 Multimodal Interaction 11

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Several gestures. a) Horizontal translation. b) Depth translation. c)
Horizontal and depth translation. d) Rotation. e) Horizontal scale. f) Depth
scale. g) Horizontal and depth scale. h) Delete selected object(s).

In order to clarify our approach, we amplify on recognising the ‘delete’
gesture (figure 3(h)).

Based on the number of strokes drawn by the user, our system will perform
some test in order to recognise this gesture. In this case, one possible gesture
is the one indicating the ‘delete’ functionality since it typically consists of two
strokes, as shown in figure 4(a). If one of the tests fails, the system proceeds
to test the next possible gesture (in this example, also consisting out of two
strokes).

At first, we test if the two strokes are (nearly) straight lines. We’ll show
this by means of the first line (figure 4(b)). Since our strokes are represented
by cubic Béziers, straight lines occur when all control points are co-linear.
That is, ideally, angles ϑ and β should be 0. As users almost never draw real
straight lines, angles up to 35 degrees are tolerated. As a result, following
equation should be satisfied (the same idea counts for the second line):

ϑ ' arccos(
−−→v0v3

‖−−→v0v3‖
·
−−→v0v1

‖−−→v0v1‖
) ≤ 35◦

Now that we know that the gesture consists of straight lines, we have to
check whether the slope of both lines is correct: the slope of −−→v0v3 should
approximately equal 1 whereas the slope of −−→v4v7 should approximate −1. This
is examined by following equations:



12

(a) (b)

Figure 4: Recognition process of a ‘delete’ gesture. a) Gesture made by the
user shown with underlying control points. b) Close-up of the first line (indi-
cated in blue in figure (a)).

v3,z − v0,z

v3,x − v0,x
≈ 1 and

v7,z − v4,z

v7,x − v4,x
≈ −1

As a final test, we need to be sure that the two lines actually cross each
other. This is a straightforward operation and comes down to whether or not
finding an intersection point. Both ta and tb, see following equations, should
be in the range 0..1.

ta =
((v7,x − v4,x) ∗ (v0,y − v4,y))− ((v7,y − v4,y) ∗ (v0,x − v4,x))
((v7,y − v4,y) ∗ (v3,x − v0,x))− ((v7,x − v4,x) ∗ (v3,y − v0,y))

tb =
((v3,x − v0,x) ∗ (v0,y − v4,y))− ((v3,y − v0,y) ∗ (v0,x − v4,x))
((v7,y − v4,y) ∗ (v3,x − v0,x))− ((v7,x − v4,x) ∗ (v3,y − v0,y))

The recognition process of all other gestures involves similar operations.
We end this section by stating that gesturing the functionality is both

easy to create and use and does not distract the user’s attention from the
brainstorming process. This is particularly due to (i) the use of gestures which
are intuitive and easy to remember, (ii) the analytical recognition process
which does not involve any training period, and (iii) the user never has to
release the MicroScribe for performing typical re-occurring manipulations.



3 Multimodal Interaction 13

Interpretation of Gestures

A problem that arises in this kind of interfaces is how to specify the mode that
the user is working with. The user can either be drawing the sketch, gesturing
or using the gesture.

Likewise, the transition between the gesturing mode and the usage of the
gesture should be defined. One could stop the gesturing mode when a gesture
is recognised but this could introduce a new problem when drawing a gesture
which is a subset or a superset of another one. For example in figure 3 one
can see clearly that the gesture for making horizontal translations is a part of
the gesture for scaling and hence the system has no knowledge whether the
gesture is completed.

As a solution, we use the MicroScribe’s foot pedals as a means for switching
between modes. Moreover, by changing the pointer visual feedback about the
current mode is given to the user as well.

3.3 Menu and Widget Interaction

Menu and widget interaction form an essential part of virtual environments.
Different approaches to incorporate menus in a virtual environment can be
identified in the literature. In JDCAD (Green 96) a “Daisy menu” is used
in which a sphere shaped menu is applied to manipulate 3D objects. Others
suggested pie or radial menus (Deering 96; Kobayashi 98; Kurtenbach 00) in
which menu items are represented by slices of the pie. A drawback of the
latter is that they still are two-dimensional. Some research into 3D user inter-
faces has been conducted by Anderson et al. (Anderson 99) who developed a
complete toolkit to create user interfaces for VEs (e.g. the FLIGHT project).
A 3D user interface can, for instance, be useful to prevent the need for alter-
nating between using a mouse and using a 3D device when working with a 3D
application.

As our main goal is to fully integrate the widget set into the virtual en-
vironment, we chose the hybrid approach as presented by (Raymaekers 01).
The resulting user interface contains properties based on 2D as well as 3D
environments and applications. The UI elements can be arbitrarily positioned
and are initially semitransparent, thus not occluding parts of the environment.
However, when the pointer approaches the UI element, it fades in to become
opaque. This feature is illustrated in figure 5(a) by means of a virtual pointer.

In our system we also provided a MicroScribe interface for the menu in-
teraction in order to let the user carry on with the same input device. This
is shown in figure 5(b) in which a menu item is selected by ‘touching’ its
projected version using the MicroScribe’s tip.



14

(a) (b)

Figure 5: a) This illustrates the use of the menus used in our environment.
UI elements are initially semitransparent, but, when the pointer approaches
them, they fade in to become opaque. b) Employing the MicroScribe as a
pointing device in order to intuitively select a menu item.

3.4 Camera Interaction

Video encoding and transmission is traditionally primarily used for video con-
ferencing, video-on-demand, and/or broadcasting applications. Research con-
cerning the use of video streams to represent a users appearance in a virtual
environment has been reported upon in (Insley 97; Yura 99; Ogi 00; Rajan 02;
Quax 03; Quax 04). While these applications themselves are a major subject
of research, the combination of video communication with (collaborative) vir-
tual environment technology is still relatively unexplored.

We believe that the incorporation of real-time video streams can create
a surplus value to collaborative work applications. In this work, we employ
the use of a camera as an extra means to incorporate real-life objects into the
virtual workbench. For example, similar to situations in real life, while one
hand is used for drawing, the other (free hand) can serve for showing objects
or pointing. This is depicted in figure 6.

When aiming the camera towards the projected workbench itself, the cam-
era obviously records the projected workbench and consequently retransmits
it, causing visual artifacts. This problem could be solved by explicitly ex-
tracting only the hand or fingers from the recorded images using computer
vision techniques. However, at this moment, we avoid this issue by working
in the same way as weathermen do: the user moves his hand in another re-
gion with a neutral background while at the same time watching the projected



3 Multimodal Interaction 15

Figure 6: This snapshot illustrates the use of a camera as a means to incor-
porate real objects into the virtual workbench. In this particular example, a
pencil and a finger are used to emphasise one part of the diagram.

workbench; the camera is aimed towards this neutral background while the
recorded images immediately get blended into the virtual environment.

Given the real-time nature of these data streams, an obvious choice for
the underlying protocol is the Real-Time Transmission Protocol or RTP, as
it handles issues such as synchronisation and packet ordering internally. Our
implementation currently employs the JRTP (Liesenborgs 01) library.



16

4 Conclusions and Future Research

We presented our work in setting up a collaborative virtual environment
(CVE) framework which is built to support collaborative creative meetings.
We concentrated on the use of quick drawings or sketches as a means of com-
munication to convey new ideas, thoughts or other meta-data to other indi-
viduals.

Four different modalities enable the user’s interaction with the virtual envi-
ronment. Direct manipulation allows a very straightforward interaction with
the virtual objects. Next, gesturing permits additional interaction without
having to switch to another interface. For more infrequent tasks, widgets and
menus are integrated into the environment and manipulated using the same
devices. Finally, a camera interface brings the real world of one user into
another’s virtual world.

Several cooperative working sessions were held among different locations.
From the user’s point of view, our collaborative environment is easy to use,
without the need for training sessions. Particularly, the instantaneous visual
feedback from both the sketching tool and the camera was appreciated.

In the near future, we would like to incorporate speech into our CVE —
this is currently under development; at the moment we use a standard non-
integrated tool (Skype 04). Furthermore, we plan to (further) investigate the
use of two-handed input, and to incorporate tangible mixed reality interaction.



4 Conclusions and Future Research 17

Acknowledgements

We gratefully express our gratitude to the European Fund for Regional De-
velopment and the Flemish Government which are kindly funding part of the
research reported in this work.

Our appreciations also go out to Tom Jehaes and Peter Quax for dealing
with some implementation issues, and Johan Claes and Peter Vandoren for
their valuable reviews.

Furthermore, we would like to thank Jori Liesenborghs for freely putting
available to us his JRTP library, and ANDROME NV for helping us to code
and decode the video streams (ANDROME NV 04).





Bibliography

[3Dconnexion 04] 3Dconnexion. World Wide Web, http://www.
3dconnexion.com/, 2004.

[Anderson 99] T. Anderson, A. Breckenridge & G. Davidson. FBG:
A Graphical and Haptic User Interface for Creating
Graphical, Haptic User Interfaces. In Proceedings of the
Fourth PHANToM Users Group Workshop (PUG99),
October 1999.

[ANDROME NV 04] ANDROME NV. World Wide Web, http://www.
androme.com/, 2004.

[Bimber 99] Oliver Bimber. Rudiments for a 3D Freehand Sketch
Based Human-Computer Interface for Immersive Vir-
tual Environments. In Proceedings of Virtual Reality
Software and Technology (VRST1999), pages 182–183.
ACM, December 20–22 1999.

[Blizzard 04] Blizzard. Blizzard Entertainment: World of Warcraft.
World Wide Web, http://www.blizzard.com/wow/,
2004.

[De Boeck 04] Joan De Boeck, Chris Raymaekers, Erwin Cuppens,
Tom De Weyer & Karin Coninx. Task-based Abstraction
of Haptic and Multisensory Applications. In Proceedings
of EuroHaptics (to be published), 2004.

[De Weyer 01] Tom De Weyer, Karin Coninx & Frank Van Reeth. Intu-
itive Modeling and Integration of Imaginative 3D-Scenes
in the Theatre. In Simon Richir, Paul Richard & Bernard
Taravel, editeurs, Proceedings of Virtual Reality Inter-
national Conference (VRIC2001), pages 167–173, 2001.

http://www.3dconnexion.com/
http://www.3dconnexion.com/
http://www.androme.com/
http://www.androme.com/
http://www.blizzard.com/wow/


20 BIBLIOGRAPHY

[Deering 96] M. Deering. The Holosketch VR Sketching System.
Communications of the ACM, vol. 39, no. 5, pages 54–
61, 1996.

[Di Fiore 04] Fabian Di Fiore, Peter Vandoren & Frank Van Reeth.
Multimodal interaction in a collaborative virtual brain-
storming environment. Accepted for the First Interna-
tional Conference on Cooperative Design, Visualization
and Engineering (CDVE2004), 2004.

[Everitt 03] Katherine M. Everitt, Scott R. Klemmer, Robert Lee
& James A. Landay. Two Worlds Apart: Bridging the
Gap Between Physical and Virtual Media for Distributed
Design Collaboration. In CHI Letters, Human Factors
in Computing Systems (CHI2003), volume 5, pages 553–
560, 2003.

[Green 96] M. Green & S. Halliday. A Geometric Modelling and
Animation System for Virtual Reality. Communications
of the ACM, vol. 39, no. 5, pages 46–53, May 1996.

[Igarashi 99] Takeo Igarashi, Satoshi Matsuoka & Hidehiko Tanaka.
Teddy: A Sketching Interface for 3D Freeform Design.
In Proceedings of SIGGRAPH, pages 409–416. ACM,
August 1999.

[Immersion 04] Immersion. World Wide Web, http://www.immersion.
com/digitizer/, 2004.

[Insley 97] J. Insley, D. Sandin & T. DeFanti. Using Video to Cre-
ate Avatars in Virtual Reality. In Proceedings of SIG-
GRAPH, pages 128–128, Los Angeles CA, 1997.

[Kobayashi 98] M. Kobayashi & H. Koike. Enhanced Desk, Integrating
Paper Documents and Digital Documents. In In Pro-
ceedings of Asian Pacific Computer Human Interaction,
pages 57–62, 1998.

[Kurtenbach 00] G. Kurtenbach, G. Fitzmaurice, R. Owens & T. Bauel.
The Hotbox: Efficient Access to a large number of Menu-
items. In Proceedings of Computer-Human Interaction
(CHI2000), pages 231–237, April 2000.

http://www.immersion.com/digitizer/
http://www.immersion.com/digitizer/


BIBLIOGRAPHY 21

[Landay 95] James A. Landay & Brad A. Myers. Interactive
Sketching for the Early Stages of User Interface De-
sign. In Proceedings of Computer-Human Interaction
(CHI1995), pages 43–50, Vancouver, CA, May 7–11
1995. ACM.

[Liesenborgs 01] Jori Liesenborgs, Wim Lamotte & Frank Van Reeth.
Voice over IP with JVOIPLIB and JRTPLIB. In 26th
Annual IEEE Conference on Local Computer Networks,
2001.

[Luo 02] Yuhua Luo, David Sánchez, Antonio Bennasar, Juan
Fornés, Juan Carlos Serra & Juan Manuel Huéscar. Vi-
sualization for Cooperative Architecture Design Systems.
In Proceedings of Sixth International Conference on In-
formation Visualisation (IV2002), pages 497–501. IEEE,
July 2002.

[Moran 00] Thomas P. Moran & William van Melle. Tivilo: In-
tegrating Structured Domain Objects into a Free-form
Whiteboard Environment. In Proceedings of Computer-
Human Interaction (CHI2000), volume CHI 2000 Ex-
tended Abstracts, pages 20–21, The Hague, NL, April
1–6 2000. ACM.

[Ogi 00] Tetsuro Ogi, Toshio Yamada, Ken Tamagawa & Mi-
chitaka Hirose. Video Avatar Communication in a
Networked Virtual Environment. In Proceedings of
INET2000, 2000.

[Oka 02] Kenji Oka, Yoichi Sato & Hideki Koike. Real-Time Fin-
gertip Tracking and Gesture Recognition. In IEEE Com-
puter Graphics and Applications, volume 22, pages 64–
71, 2002.

[Quax 03] Peter Quax, Tom Jehaes, Pieter Jorissen & Wim Lam-
otte. A Multi-user Framework Supporting Video-based
Avatars. In Proceedings of the 2nd workshop on Net-
work and system support for games, pages 137–147.
ACM Press, 2003.

[Quax 04] Peter Quax, Tom Jehaes, Chris Flerackers & Wim
Lamotte. Scalable Transmission of Avatar Video



22 BIBLIOGRAPHY

Streams in Virtual Environments. In Proceedings of the
IEEE International Conference on Multimedia & Expo
(ICME2004) (to be published), June 2004.

[Rajan 02] Vivek Rajan, Satheesh Subramanian, Andrew Johnson,
Damin Keenan, Daniel Sandin & Thomas DeFanti. A
Realistic Video Avatar System for Networked Virtual
Environments. In Proceedings of IPT 2002, Orlando,
FL, 2002.

[Raymaekers 99] Chris Raymaekers, Tom De Weyer, Karin Coninx, Frank
Van Reeth & Eddy Flerackers. ICOME: an Immersive
Collaborative 3D Object Modelling Environment. In Pro-
ceedings of Virtual Reality (VR1999), volume 4, pages
129–138, 1999.

[Raymaekers 01] Chris Raymaekers & Karin Coninx. Menu Interactions
in a Desktop Haptic Environment. In Proceedings of
Eurohaptics, pages 49–53, July 2001.

[Rekimoto 97] Jun Rekimoto. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In Pro-
ceedings of the 10th annual ACM symposium on User
interface software and technology, pages 31–39. ACM
Press, 1997.

[Rekimoto 99] Jun Rekimoto & Masanori Saitoh. Augmented Surfaces:
A Spatially Continuous Workspace for Hybrid Comput-
ing Environments. In In Proceedings of Computer-
Human Interaction (CHI1999), pages 378–385, 1999.

[Sachs 91] E. Sachs, A. Robert & D. Stoops. 3-Draw: a Tool for
Designing 3D Shapes. In IEEE Computer Graphics and
Applications, volume 11, pages 18–26, November 1991.

[SensAble 04] SensAble. World Wide Web, http://www.sensable.
com/, 2004.

[Skype 04] Skype. World Wide Web, http://www.skype.com/,
2004.

[Sony 04] Sony. Sony Online Entertainment: Everquest. World
Wide Web, http://www.everquest.com/, 2004.

http://www.sensable.com/
http://www.sensable.com/
http://www.skype.com/
http://www.everquest.com/


BIBLIOGRAPHY 23

[Vansichem 01] Gert Vansichem, Emmanuel Wauters & Frank
Van Reeth. Real-Time Modeled Drawing And Manipu-
lation Of Stylized Cartoon Characters. In Proceedings
of the IASTED International Conference on Computer
Graphics and Imaging, pages 44–49, Honolulu, HI,
USA, August 13–16 2001. IASTED.

[Yura 99] S. Yura, T. Usaka & K. Sakamura. Video avatar: Em-
bedded video for collaborative virtual environment. In
Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, volume 2, pages
433–438, 1999.

[Zachmann 97] Zachmann. Distortion Correction of Magnetic Fields for
Position Tracking. In Proceedings of Computer Graph-
ics International (CGI1997), pages 213–220, June 1997.


	Introduction and Motivation
	Collaborative Virtual Environment Framework
	Virtual Environment Framework
	Collaborative Setup

	Multimodal Interaction
	Direct Manipulation: Collaborative Sketching
	Direct Manipulation through Gesturing
	Menu and Widget Interaction
	Camera Interaction

	Conclusions and Future Research

