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Chapter 1

Introduction

Setting up a simulation in simiconductor allows for a great deal of flexibility, the side effect
being that it can easily become quite cumbersome and care must be taken to avoid errors. As
will be explained in the next chapter, in many cases several relationships need to be fulfilled
between variables in the simulation. Because of this, in practice less parameters will need to
be specified than one might think based on the bare drift-diffusion equations.

To make it easier to exploit these relationships, a graphical region editor tool was created
in which one can define several properties in a more intuitive manner. A screen shot of this
program can be seen in Fig. 1.1: it allows you to define regions (indicated by different colors)
in either a 1D or 2D setting, and assign properies (relative permittivity, LUMO/HOMO levels,
. . . ) to them. Once the necessary input parameters have been assigned, the program can
generate the set of commands that can be read by simiconductor to recreate this simulation
scenario. More detailed information about how to use the editor itself can be found in
chapter 3.

Figure 1.1: An example of the user interface developed to generate all properties of the
drift-diffusion equations in a consistent way from a limited number of input parameters.
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Chapter 2

Consistent device description

2.1 Drift-diffusion model

Similar to the works of e.g. [1] and [2], simulations of organic solar cells in simiconductor
are based on the drift-diffusion equations shown below:

~∇ ·
(
εrel

~∇φ
)

= − e

ε0
(p− n) ,

~Jn = −Dn
~∇n + µnn~∇φ,

~Jp = −Dp
~∇p− µpp~∇φ,

∂n

∂t
= G−R− ~∇ · ~Jn,

∂p

∂t
= G−R− ~∇ · ~Jp.

In these equations, φ, n and p are the variables to be solved for, representing the electrostatic
potential, the electron number density and hole number density respectively. The potential
and concentration differences cause drift and diffusion currents, yielding total number currents
~Jn and ~Jp. Together with generation and recombination these currents cause changes in the
carrier densities. Eventually, the situation evolves towards a steady-state situation in which
n, p and φ no longer change.

As explained in the simiconductor manual, these drift-diffusion equations can be solved
in either a 1D or 2D situation (in the latter case with periodic boundary conditions) by
discretizing them on a grid. The charge carrier densities typically vary on an exponential
scale, and to avoid needing a very large number of grid points for accurate results, the
technique by Scharfetter and Gummel [4] is used to calculate the currents. This allows very
accurate calculations when using even a small amount of grid points in each direction.

Apart from values such as the relative permittivity or diffusion constants which have to be
defined on all grid points, the boundary values of the potential and charge densities must be
supplied as input as well. These values will remain fixed while looking for the steady state
solution. In a one dimensional simulation the boundaries consist of a single grid point at
each side of the simulation. In two dimensions, periodic boundary conditions are used in one
direction (similar to [2]), so the boundary points are two strips of grid points at each side of
the simulated device.
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Figure 2.1: In a simulated device with work functions and energy levels as indicated in this
figure, one can formulate several constraints that should be fulfilled to obtain a consistent
description (see text).

2.2 Device description

In a general one- or two-dimensional simulation using materials with different HOMO and
LUMO levels, as shown in Fig. 2.1 for example, one would like concentration differences across
the boundaries between the two materials, corresponding to the change in energy level. As
described in the supplementary material of [3], this can be accomplished by introducing
additional electric fields, or equivalently additional potentials, to which only specific charge
carrier types respond. Calling Vn the extra potential to which the electrons respond, and Vp

the extra potential to which the holes respond, the equations for the currents become

~Jn = −Dn
~∇n + µnn

(
~∇φ + ~∇Vn

)
,

~Jp = −Dp
~∇p− µpp

(
~∇φ + ~∇Vp

)
.

As shown in appendix A, the required changes in charge carriers can be obtained by setting
Vn and Vp to the difference in LUMO and HOMO levels respectively in the appropriate region.

Employing the Metal-Insulator-Metal (MIM) model, in thermodynamic equilibrium the Fermi
levels of the contacts align, and injection barriers for both carrier types arise at the contacts.
Using Ncv as the charge concentration at the contacts, the boundary condition for n at the
left side of the device is then

n(0) = Ncv exp
(
−Cl − Lu,1

kBT

)
,

with similar boundary conditions on the other side and for the holes. Also shown in ap-
pendix A is that for a consistent description one should then use an internal device voltage
of

eVint = Cl − Cr.

If a straightforward bimolecular recombination model is used,

R = r(np− n2
i ),

then one has the additional conditions that, in the case of Fig. 2.1, the values for ni in each
side of the simulated device must be

ni,left = Ncv exp
(
−Ho,1 − Lu,1

2kBT

)
, ni,right = Ncv exp

(
−Ho,2 − Lu,2

2kBT

)
.
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In two dimensions, similar conditions hold.

It is clear that employing such energy level definitions to base the simulation on, automatically
fixes several properties of the device. While simiconductor itself merely solves the drift-
diffusion equations once all properties have been defined, defining them consistently can be
quite a burden. For this reason, a graphical interface was developed in which the independent
properties can be specified and from which the settings for the drift-diffusion solver can be
generated. An example of the interface is shown in Fig 1.1; instructions for using the program
will be given in the next chapter.
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Chapter 3

The region editor

3.1 Introduction

The main idea is to allow you to define the layout of a 1D or 2D device by using an image
editor, like Photoshop or Gimp. Such an image can then be imported by the region editor,
where you’ll be able to assign different material properties to pixels with different colors. The
resolution of the image you have created, will determine the resolution of the simulation grid.

Note that it is important to save the image you have created in a so-called lossless format.
A good way to store an image is as a PNG image. Do not use a JPG format to store your
image in: JPG is a ‘lossy’ format, meaning that the pixel values that are read from it may
be different from the pixel values you set in your image manipulation program.

Also note that in simulations in which there are distinct regions with different values for
specific properties, it is important to consider the resolution with which the equations are
solved numerically. Because abrupt changes in properties can only be represented using
an infinite number of grid points, simulations of such situations can be highly resolution
dependent.

3.2 Starting a new device model

When the region editor program has been started, you should see something similar as shown
in Fig. 3.1. The top and bottom contacts are at the top and bottom of the window, and
their energy levels can be set. For a 1D simulation, the top contact corresponds to the right
contact from Fig. 2.1 and the bottom contact corresponds to the left contact from the same
figure. This also means that the value of the top contact energy level is assumed to be lower
than that of the bottom contact, to have a positive internal voltage.

At this point, you can already set a few device properties which do not depend on the grid
size or on the materials in the simulation: the energy levels of the contacts, the temperature
and Ncv, the electron density at the contacts. In the file menu, you can already save these
settings to a file, or load a previously created file.

Suppose we’ve created a 64x64 image with two colors, as shown in Fig. 3.2. To use this in
the region editor, the option ‘Import image’ must be selected from the ‘File’ menu. When
this has been loaded, you’ll see the X pixels and Y pixels fields being set to 64, i.e. the
dimensions of the image. You can zoom in and out by using the mouse wheel, but note that
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Figure 3.1: This is what you should see when you have just started the region editor appli-
cation.

it is possible you have to click on the image first.

By default each pixel is assumed to be 1 nm by 1 nm, and the corresponding Width and
Height values will be filled in. These can be changed according to your own needs, and the
physical width is allowed to differ from the height. Although it won’t make a difference in
this case, since periodic boundary conditions are used in the X-direction and each column of
the image is the same, let’s change the width to 16e-9, which means 16nm or 16 × 10−9m.
You’ll see that the scale of the image is adjusted according to these physical dimensions, even
though the number of points stays the same.

Figure 3.2: A 64x64 image which can be used as a 2D model for a bilayer device. The image
contains a top region in blue (27 pixels high) and a bottom region in yellow (37 pixels high).

We’re going to simulate something similar to the situation from Fig. 2.1, so let’s set the energy
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level of the top contact to 4eV , and that of the bottom contact to 5eV . The temperature
and the Ncv value are going to be left at their default values. Afterwards, the situation
corresponds to the one shown in Fig. 3.3.

Figure 3.3: After loading an image which defines the regions and setting some device prop-
erties, the region editor looks like this.

3.3 Defining materials

To define properties for the two colors in the image, we must first add a material by pressing
Add in the ‘Materials’ part of the window (on the right). You’ll notice that if you click
on different colors in the image itself, the Selected color indicator below the image, will
change color as well. In the materials section you can click a button called Grab selected
color to indicate that the properties specified in this part are for the currently selected color.
This color is probably yellow by default, but if not, we can click the yellow part of the image
to make sure the yellow color is selected, and press the ‘grab’ button afterwards. The color of
the button will also be yellow to indicate that the properties refer to that part of the image.

In the field where it says ‘no name’, we’re going to just enter the text ‘Yellow’. The epsRel
value refers to the relative permittivity, and we’re going to set this to 3.5. We’re not going to
change the mobilities, they can keep their default values of 10−8m2V −1s−1 (note that we’re
using SI units). The LUMO level will be 4.1eV , while the HOMO level will be 5.1eV . The
generation rate is left at zero, we’re going to calculate the dark current, and the prefactor for
bimolecular recombination is set to be the Langevin value. When all this has been done, the
region editor will look like Fig. 3.4.
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Figure 3.4: This is what the region editor will look like after adding the first material.

Then, we’re going to press Add again, and follow the same procedure to define the blue region,
which we’ll call ‘Blue’. The only properties that we’re going to give a different value are the
LUMO and HOMO levels, which we’ll set to 4.2eV and 5.2eV respectively. This will result
in the situation shown in Fig. 3.5.

3.4 Generating simiconductor commands

At this point, we’ve prepared the simulation grid from within the region editor, and we’d like
to actually use this in simiconductor. To do so, the current setup needs to be exported to
a text file which will contain a series of commands for simiconductor, and this can be done
by selecting ‘Generate 2D’ from the ‘File’ menu. Let’s assume that the file these commands
are exported to, is named bilayer2d grid.txt, a file which will contain something like this:

math/def T 300.0
math/def kT_ev T*kB/e
math/def topContact 4.0
math/def botContact 5.0
math/def VBI (botContact-topContact)
...
reg2/new REG_Yellow
reg2/append/rect REG_Yellow 1 1 64 37
reg2/new REG_Blue
reg2/append/rect REG_Blue 1 38 64 64
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Figure 3.5: This is what the region editor will look like after adding the second material in
the same way.

reg2/new BOTCONTACT_Yellow
reg2/append/rect BOTCONTACT_Yellow 1 1 64 1
reg2/new TOPCONTACT_Blue
reg2/append/rect TOPCONTACT_Blue 1 64 64 64
...
sim2/reg/set n BOTCONTACT_Yellow n_bot_Yellow
sim2/reg/set p BOTCONTACT_Yellow p_bot_Yellow
sim2/reg/set n TOPCONTACT_Blue n_top_Blue
sim2/reg/set p TOPCONTACT_Blue p_top_Blue

The easiest way to use such a file in simiconductor is to use the import command. This
command will read the specified file and execute the commands it contains. Alternatively,
the generated file could be edited and then executed, but this has the disadvantage that you
will not be able to write to this file again (using ‘Generate 2D’) without losing the commands
you’ve added.

Here, we’ll use the ‘import’ approach and execute the following commands, eiher by typing
them inside an interactive version of the program or by storing them in a file and reading
this as input:

import bilayer2d_grid.txt
sim2/grid/init n
sim2/grid/init p
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sim2/rundirect
sim2/iv VBI -0.2 0.2 * iv_2d.txt no

First, we’ll load the bilayer2d grid.txt file so that the situation from the region editor is
loaded inside simiconductor. Next, we’ll initialize the electrons and holes throughout the
device so that the boundary values are interpolated on a logarithmic scale. If these commands
are not used, the values of n and p inside the device are not changed and will be zero. Usually,
initializing them is a good idea to help the search for equilibrium. Then, the sim2/rundirect
command is used to search for the equilibrium situation using the Newton-Raphson method.
Finally, the current-voltage curve is calculated for the applied voltage range [−0.2 : 0.2] and
stored in a file called iv 2d.txt. In this last command we’re using the variable called VBI for
the built-in voltage, which was actually defined in the imported file bilayer2d grid.txt.

The resulting current-voltage curve can be seen in the left panel of Fig. 3.6, which looks like
the expected exponential-like shape. When looking at the part below the X-axis (shown in
the right panel), it is clear that the curve nicely passes through the origin, an illustration
that the constraints placed on the variables described in the previous chapter (and derived
in the appendix) make sense.
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Figure 3.6: The JV curve for the bilayer described in the text. The left panel shows the
overall curve, while the right panel shows the part below the X-axis. From this last figure it
is clear that this dark current (the generation rate was set to zero) nicely passes through the
origin.

3.5 1D simulations

Due to the periodic boundary conditions in the X-direction and the fact that each column
of the image was the same, we could also have created a 1D simulation and obtained the
same results. For a 1D simulation, the procedure is basically the same, but the image used
is only allowed to have one column, so the number of pixels in the X-direction must be one.
Importing such a figure will by default show something very narrow, but we can adjust the
physical width to something else, e.g. to 32nm, to make it easier to see the layout. This
setting will be ignored for calculations though. Creating the exact same situation as in the
previous example, will then yield a view like in Fig. 3.7. This looks the same as Fig. 3.5,
but the number of pixels in the X-direction is one, and we’ve set the width to 32e-9, so to
32nm. When comparing such a situation to the one in Fig. 2.1, remember that the situation
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is rotated, and the right contact from Fig. 2.1 now corresponds to the top one in the region
editor, while the left contact from Fig. 2.1 corresponds to the bottom one in the region editor.

Figure 3.7: The same settings as in the 2D simulation, but now for a 1D one. Notice that
the number of X pixels is one now.

From the ‘File’ menu, we can then export the necessary commands for the simiconductor
program using the ‘Generate 1D’ option. Suppose we’ve written these commands to a file
called bilayer1d grid.txt, then it’s possible to use a similar series of commands as before
to produce a current-voltage curve:

import bilayer1d_grid.txt
sim1/grid/init n
sim1/grid/init p
sim1/rundirect
sim1/iv VBI -0.2 0.2 * iv_1d.txt no

When plotted, the resulting file iv 1d.txt will show exactly the same graphs as in Fig. 3.6.
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Appendix A

Analytical description

A.1 Basic case

To obtain some insight into how the boundary conditions, internal voltage and the ni value
should be set in a consistent way, let’s investigate a 1D case in which only relatively low
carrier densities are present. Due to the low density, the carriers themselves do not influence
the electrostatic potential which is then only determined by the boundary values and varies
in a linear way:

φ(x) =
x

L
(V (L)− V (0))

In the rest of this section, we’ll be interested in the dark equilibrium situation: there’s no
carrier generation due to an external energy source, the potential difference corresponds to
the internal potential and there’s no current generated. So in this case:

φ(x) =
x

L
Vint

Let’s further assume that the Einstein relation between mobilities and diffusion coefficients
holds:

D =
µkBT

e

The equations for the currents then become:

Jn = −µn
kBT

e

dn

dx
+ µnn

dφ

dx

= −µn
kBT

e

dn

dx
+ µnn

Vint

L

and

Jp = −µp
kBT

e

dp

dx
− µpp

dφ

dx

= −µp
kBT

e

dp

dx
− µpp

Vint

L

In the dark equilibrium situation, no currents should flow through the device,

Jn = Jp = 0,
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Figure A.1: Energy levels of the device before the different parts come into contact.

Figure A.2: When the different parts come into contact, the energy levels of the contacts
align, causing specific injection barriers.

which then immediately yields equations for the charge carrier densities:

dn

dx
=

eVint

LkBT
n ⇔ n(x) = N0 exp

(
eVint

LkBT
x

)
,

dp

dx
= − eVint

LkBT
p ⇔ p(x) = P0 exp

(
− eVint

LkBT
x

)
,

where N0 and P0 are constants. From these expressions it is clear that

n(0) = N0 p(0) = P0.

These values, N0 and P0, depend on the boundary conditions, which in turn depend on the
Metal-Insulator-Metal model we’re using. Suppose that when the metal contacts and the
device itself are not connected, the energy bands are those depicted in Fig. A.1. When the
different components are brought together, the Fermi levels of the contacts align, creating a
diagram such as the one shown in Fig. A.2.

Assuming that the carrier densities at the contacts are described by the injection barriers
shown in the figure, the left side boundary conditions become:

n(0) = Ncv exp
(
−Cl − Lu

kBT

)
≡ N0

p(0) = Ncv exp
(
−Ho − Cl

kBT

)
≡ P0

From the equations for n(x) and p(x), one finds for the other contact that

n(L) = N0 exp
(

eVint

LkBT
L

)
= Ncv exp

(
−Cl − Lu

kBT

)
exp

(
eVint

LkBT
L

)
,
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p(L) = P0 exp
(
− eVint

LkBT
L

)
= Ncv exp

(
−Ho − Cl

kBT

)
exp

(
− eVint

LkBT
L

)
.

On the other hand, we want the same type of boundary conditions on the right side, i.e.
based on the injection barriers:

n(L) = Ncv exp
(
−Cr − Lu

kBT

)
,

p(L) = Ncv exp
(
−Ho − Cr

kBT

)
.

Comparing these expressions for n(L) gives us the value of Vint:

Cl − Lu − eVint = Cr − Lu ⇔ Vint =
Cl − Cr

e

And comparing the expressions for p(L) confirms this:

Ho − Cl + eVint = Ho − Cr ⇔ Vint =
Cl − Cr

e

Let’s also consider a simple bimolecular recombination model of the type R = r(np − n2
i ).

Note that the ni part actually corresponds to some kind of internal generation Gint = r n2
i and

represents carrier generation due to thermal equilibrium, present even when no generation
due to some external energy source is present.

In equilibrium, the carrier densities no longer change:

∂n

∂t
= 0

∂p

∂t
= 0

Combining this with the fact that G is zero as well as Jn and Jp, then yields an expression
for ni:

r(np− n2
i ) = 0

⇒ n2
i = N0P0

From the results derived earlier, we can fill in the expresions for N0 and P0:

N0P0 = N2
cv exp

(
−Cl − Lu + Ho − Cl

kBT

)
= N2

cv exp
(
−Ho − Lu

kBT

)
and since n2

i = N0P0:

⇒ ni = Ncv exp
(
−Ho − Lu

2kBT

)
.

A.2 A bi-layer device

Let’s generalize these results for a 1D bi-layer like model, with energy bands as shown in
Fig. A.3. For reasons that will become clear later on, suppose we introduce two electrostatic
potentials Vn(x) and Vp(x) which only affect electrons and holes respectively, but which are
not influenced by the presence of charge carriers (as opposed to φ which depends on their
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Figure A.3: Energy levels for a bi-layer device.

concentrations through the Poisson equation). We’ll also assume again that the charge carrier
concentrations are low, meaning that we can forget the Poisson equation and write

φ(x) =
x

L
Vint

The 1D current equations

Jn = −µn
kBT

e

dn

dx
+ µnn

(
dφ

dx
+

dVn

dx

)
Jp = −µp

kBT

e

dp

dx
− µpp

(
dφ

dx
+

dVp

dx

)
then become

Jn = −µn
kBT

e

dn

dx
+ µnn

(
Vint

L
+

dVn

dx

)
Jp = −µp

kBT

e

dp

dx
− µpp

(
Vint

L
+

dVp

dx

)

Now, suppose that Vn is zero in the left part of the device, a constant value V 0
n in the right

part and varies linearly in a transition region:

Vn(x) =


0 in [0, d1]
V 0

n
x−d1
d2−d1

in [d1, d2]
V 0

n in [d2, L]

For each of these regions separately, one can easily find the following solutions for the left
part (nl), center part (nc) and right part (nr):

nl(x) = Al exp
(

eVint
LkBT x

)
in [0, d1]

nc(x) = Ac exp
(

e
kBT

(
Vint
L + V 0

n
d2−d1

)
x
)

in [d1, d2]

nr(x) = Ar exp
(

eVint
LkBT x

)
in [d2, L]

Making sure that these different solutions match at d1 and d2

nl(d1) = nc(d1) nc(d2) = nr(d2)
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one then finds:

nl(x) = N0 exp
(

eVint

kBT

x

L

)
nr(x) = N0 exp

(
eV 0

n

kBT

)
exp

(
eVint

kBT

x

L

)
(A.1)

As we’re not really interested in the transition region, the solution for nc is not shown
(although it is equally straightforward). Defining Vp(x) for the holes in a similar way, using
the same boundaries d1 and d2, one finds:

pl(x) = P0 exp
(
−eVint

kBT

x

L

)
pr(x) = P0 exp

(
−

eV 0
p

kBT

)
exp

(
−eVint

kBT

x

L

)
(A.2)

These equations for electrons and holes illustrate the use of such potentials V 0
n and V 0

p . When
the energy levels for a charge carrier are different on left and right side, one would expect a
corresponding concentration difference. By comparing nl and nr, or similarly pl and pr, this
is precisely what V 0

n and V 0
p do: they introduce concentration differences between the two

sides of the bi-layer model.

At the left side boundary we again find, based on the equations, that

n(0) = N0 p(0) = P0.

while based on the injection barrier boundary conditions:

n(0) = Ncv exp
(
−Cl − Lu,1

kBT

)
≡ N0

p(0) = Ncv exp
(
−Ho,1 − Cl

kBT

)
≡ P0

For the right side, we find

nr(L) = N0 exp

(
eV 0

n

kBT

)
exp

(
eVint

kBT

)

pr(L) = P0 exp

(
−

eV 0
p

kBT

)
exp

(
−eVint

kBT

)
based on the equations, and

n(L) = Ncv exp
(
−Cr − Lu,2

kBT

)
,

p(L) = Ncv exp
(
−Ho,2 − Cr

kBT

)
based on the boundary conditons.

Comparing these expressions while substituting the values of N0 and P0 based on the left
boundary conditions, we find:

Ncv exp
(
−Cl − Lu,1

kBT

)
exp

(
eV 0

n

kBT

)
exp

(
eVint

kBT

)
= Ncv exp

(
−Cr − Lu,2

kBT

)

17



as well as

Ncv exp
(
−Ho,1 − Cl

kBT

)
exp

(
−

eV 0
p

kBT

)
exp

(
−eVint

kBT

)
= Ncv exp

(
−Ho,2 − Cr

kBT

)
.

These equations simplify to

−Cl + Lu,1 + eV 0
n + eVint = −Cr + Lu,2

−Ho,1 + Cl − eV 0
p − eVint = −Ho,2 + Cr

which can be suggestively rewritten as

eVint + eV 0
n = (Cl − Cr) + (Lu,2 − Lu,1)

eVint + eV 0
p = (Cl − Cr) + (Ho,2 −Ho,1).

Is is obvious that a solution to these equations can be obtained by setting

eVint = Cl − Cr

eV 0
n = Lu,2 − Lu,1

eV 0
p = Ho,2 −Ho,1

Not only does this solution simplify to the earlier results in case there’s only a single LUMO
and HOMO level, this solution also produces the desired changes in electron and hole con-
centration between regions of the device (see (A.1) and (A.2)).

Now let us explore what the value of ni should be on each side. Starting from the equation
we encountered earlier

r(np− n2
i ) = 0

one finds on the left side
n2

i,l = nl(0)pl(0)

On the other hand, at the left boundary one finds

nl(0)pl(0) = N2
cv exp

(
−Ho,1 − Lu,1

kBT

)
so that we can write:

n2
i,l = N2

cv exp
(
−Ho,1 − Lu,1

kBT

)
⇒ ni,l = Ncv exp

(
−Ho,1 − Lu,1

2kBT

)
Evaluating the equation using the expressions for the right side, one finds:

n2
i,r = nr(L)pr(L)

From the boundary conditions on the other hand, we would like to find

nr(L)pr(L) = N2
cv exp

(
−Ho,2 − Lu,2

kBT

)
immediately yielding the expression for ni on the right side:

⇒ ni,r = Ncv exp
(
−Ho,2 − Lu,2

2kBT

)
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A.3 General results

For a consistent description, where the absence of illumination leads to a solution which does
not produce an external current, several conditions must be met when using injection barrier
type boundary conditions, e.g. nl(0) = Ncv exp

(
−Cl−Lu,1

kBT

)
• Use additional potentials Vn and Vp, determined by the energy level differences to

account for carrier concentration differences.

• Set the internal voltage of the device to the difference in energy levels of the contacts:
Vint = Cl−Cr

e .

• For bimolecular recombination, set ni in each region according to the difference between
HOMO and LUMO energy level in that region, e.g. ni,l = Ncv exp

(
−Ho,1−Lu,1

2kBT

)
.

The results above were derived using a straightforward 1D model with low carrier concen-
trations. We thoroughly verified these results, not only in a 1D setting with low carrier
concentrations, but also using concentrations that cause a significant deviation of the linear
potential as well as in a 2D setting using various energy levels and various morphologies. The
conditions above always appear to create a consistent device description.
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