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Abstract. Many model-based approaches for user interface design start
from a task model, for which the ConcurTaskTrees notation is frequently
used. Despite this popularity and the importance that has been given to
a close relation with UML, no relation has been established with UML
state machines, which have been shown to be useful for the description of
the behavior of user interfaces. This paper proposes a semantic mapping
of tasks and all temporal relations of the ConcurTaskTrees to UML state
machines which forms the basis for a compact dialog modeling notation
using UML state machines. The proposed approach uses a UML profile
to reduce the visual complexity of the state machine.

1 Introduction

The ConcurTaskTrees notation (CTT) [12] is one of the most popular notations
for hierarchical task modeling used in academia for model-based design of user
interfaces. Since the Unified Modeling language(UML) [11] is one of the most
established modeling notations for software models, several approaches have been
presented to integrate the ConcurTaskTrees notation into UML.

Nunes and e Cunha[l0] made a mapping to UML class diagrams as part
of the Wisdom notation. They mapped each task in the task model to a UML
class. The relations between parent and child tasks are represented using aggre-
gation relationships while the relations between siblings are represented using
constraints. All task categories are represented using the same task symbol.

Nobrega et al. [9] present a different approach which emphasizes the fact that
tasks in the ConcurTaskTrees notation represent activities. Therefore, they show
tasks using the UML notation for actions. They also propose new symbols for
the temporal operators of the ConcurTaskTrees. All changes they proposed were
made to integrate the ConcurTaskTrees notation both visually and semantically
into the UML.

In earlier work [16] we opted to extend the class diagram to represent the
CTT but to keep the appearance closer to the original. This resulted in some
notable differences with the approach presented in [10]: The relations between
tasks are represented by stereotyped associations and each task category keeps



its original symbol (and properties), thus keeping the look of the model closer
to the original CTT specification.

A close relationship of the CTT with UML state machines has not been es-
tablished. It has however been shown that (this type of) hierarchical statecharts
can effectively be used to describe [3] and generate user interfaces [1, 14]. In this
work, we extend the state-of-the-art by presenting a semantic mapping of the
dynamic aspects of the task model and exploiting this mapping for a compact,
powerful dialog modeling notation using UML state machines.

The mapping between CTT and UML state machines is established by giving
a behavioral specification for a task using UML state machines and is discussed
in section 4 after a short introduction of both notations. This specification is then
used in section 5 to express the behavioral semantics of all temporal operators.
These specifications are used to derive a dialog model from a CTT model. A
UML stereotype is used to reduce the visual complexity of the model. The paper
is concluded by a discussion of related work and conclusions.

2 ConcurTaskTrees

The ConcurTaskTrees notation [12] is a hierarchical task modeling notation that
has a tree-based structure. All nodes in the tree are tasks. There are four task
categories, each having its own symbol: abstraction (@, an abstract task has sub-
tasks of at least two different task categories), interaction (¥, a task performed
through interaction of a user with an application), user(&, a task performed by
the user without interaction with the application) and application (&, a task
performed by the application). Siblings in the tree are connected using temporal
operators derived from LOTOS [5]. Section 5 discusses these operators into more
detail.

Fig. 1 shows a CTT example. It specifies how a user can check the availability
of a hotel room. First the user specifies the start and end date of the stay or
the start and duration. Next, the user specifies the room type. The application
then checks the available hotel rooms (during that period, Perform Query) and
shows the available rooms to the user. The user can then refine the selection of
available rooms by adapting the period and the room type until the refinements
are submitted. The check for availability can be cancelled at any time (Close
Availability).

3 UML State Machines

UML state machines are an object-based variant of Harel statecharts [2]. Both
have the advantage over other forms of statecharts and state transition networks
that they support concurrent states. This means that when a UML state machine
is executed, it can be in multiple states at a given moment in time. Furthermore
Harel statecharts as well as UML state machines allow hierarchical composition
of states.
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Fig. 1. Example of a CTT specification

Fig. 2 gives an overview of the relevant symbols in this notation. The initial
pseudo state and the final state respectively mark the start and the end of
a composite state or state machine. An exit point can be used to mark an
alternative end point (e.g. due to abnormal behavior). A fork symbol can be
used to specify that a single state is followed by two or more concurrent states.
A join allows to do the opposite. A choice pseudo state can be used to specify
multiple alternative next states. Finally, a small black dot (not shown in Fig. 2 is
the symbol for a junction which allows to merge or split transitions (displayed as
arrows). For a detailed discussion of UML state machines we refer to the UML
Superstructure specification [11].
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Fig. 2. UML state machine symbols: (a) Initial pseudostate, (b) Exit point, (c) Final
state, (d) State with specification of behavior on entry, during and on exit of state,
(e) Composite State with two regions specifying concurrent behavior, (f) Fork/join (g)
Choice pseudostate

UML state machines have no direct formal mapping, although partial map-
pings are already specified to stochastic petrinets for UML state machines with
the UML realtime stereotype extensions applied [15].

4 Tasks in UML

As mentioned in the introduction, different representations of the CTT in UML
have been proposed. Fig. 3 shows the CTT task model of Fig. 1 using the Wisdom



notation, proposed in [10]. It clearly shows that each task is represented by
the same icon. This icon is related to the stereotype!. The task categories are
represented by tagged values (shown between brackets such as application in
Fig. 3) unless they are interactive tasks. Constraints are used to denote the
temporal relations. When no constraints are applied between the parent-child
relationships of two sibling tasks, these tasks are executed in concurrency.
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Fig. 3. The example of Fig. 1 using Wisdom notation [10]

In earlier work [16] we presented an alternative representation in UML with
a notation that is closer to the original. In fact, the CTT model shown in figure 1
can be modeled using the CTT UML profile?. Some differences arise when a task
is optional or iterative. These properties are modeled as tagged values, which
can be shown when desired.

As both of these approaches use classes to represent tasks and classes can own
state machines, a state machine is a natural choice for specifying the behavior of
a task. The state machine specification thus complements the specification using
classes and gives more details about the behavioral properties of the tasks, while
class diagrams can be used to specify the structural properties.

To describe the behavior associated with a task, we model the different states
of execution. At the highest level we discern two stages: active and inactive.
These stages can on their turn be subdivided in different states. A task can
be considered to be inactive, when it is not yet activated, when it has been

! Stereotypes are a light-weight method to extend UML metaclasses.
2 The profile is made in MagicDraw and available at http://research.edm.uhasselt.
be/~jvandenbergh/cup/ContextualConcurTaskTrees.mdzip.



successfully completed or when it has been aborted. The active state can be
subdivided into two states: executing and sleeping.

Fig. 4 shows the state machine that can be associated with a task T1. When-
ever the state T1 is activated (T1 being the name of the task), the task is con-
sidered active. The inactive states are depicted in Fig. 4 for completeness. They
will not be depicted in further diagrams. On entry and exit of the states T1 and
Executing, an activity is specified. These activities broadcast an event, which
can trigger state changes for other tasks. All these events have an attribute that
specifies the source of the event. On entry of the state T1 an event, activated,
is broadcasted indicating that T1 is active. When the actual execution of a task
starts an event, started, is broadcasted. When an event stopped is sent, the task
is no longer executing, but the execution might be resumed. The event ended
indicates that the task has become inactive.
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Fig. 4. Task states

The exact meaning of these states depends on the task category and on the
platform and context in which the interaction is taking place. Table 1 shows a
possible mapping for the states of an interaction task to a concrete context: desk-
top interaction using a multi-window desktop such as MS Windows or MacOS.
The states of an application task presenting data to the user can be described in
a similar manner. When the application task is not directly represented on the
screen the states might be mapped to the states of the thread or process that
executes the task. Giving a concrete description of the states for a user task in
general is not as straightforward, although it should be easy to do for user tasks
that involve physical activity on a case by case basis.

5 CTT Task Relations and UML State Machines

In this section we discuss how the task representation introduced in section 4
can express the temporal relations of the CTT. For each temporal operator a
diagram is discussed that shows the application of the operator to two tasks.

concurrency The concurrency operator (|||) expresses that two task can be
executed in any order and can interrupt each other. It has a straightforward



state description

active the window containing the user interface controls associated to the
task is shown on the screen

sleeping |the user interface controls associated to the task are disabled or not
visible

executing|the user interface controls associated to the task are enabled and
visible

Table 1. States of task execution for an interaction task on a pc using a graphical user
interface

mapping to UML state machines when the state machine definition in Fig. 4 is
used. Fig. 5(a) shows that two parallel tasks can be represented by embedding
each task representation in a separate region of a complex state.
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Fig. 5. Concurrency and order independence

order independence When the order independence operator (1=1) is used be-
tween two sibling tasks T1 and T2, these tasks can be executed in any order but
not concurrently. This means that when T1 is executing, T2 cannot start exe-
cution and vice versa. When one of the tasks is completed, the other can start
executing. Fig. 5(b) also clearly shows that the two tasks cannot interrupt each
other.

suspend/resume The suspend/resume operator (|>) suspends one task while
another one is executing. Using the terminology introduced in section 4 this
means that for the expression T1 |> T2, T1 cannot be in the state executing
when T2 is in that same state. This is reflected in the diagram in figure 6. The
transition from sleeping to executing is only possible for task T1, when task T2
is not in the executing state. A transition from sleeping to executing of the task
T2 triggers the inverse transition of task T1.
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Fig. 7. Enabling

enabling The main property of the enabling operator is that the tasks that are
its operands are executed one after the other. In terms of the proposed state
machine for tasks, this means that there is only a constraint on the order of
the executing state. Fig. 7 thus shows two different state machines that satisfy
that constraint. Fig. 7(a) corresponds to the situation where only the tasks that
belong to the same enabled task set (ETS) are presented in the user interface. An
ETS is a set of tasks that are logically enabled to start their performance during
the same period of time [12]. Fig. 7(b) corresponds to a situation where two
ETSs are merged into a single task set. [13] proposes some heuristics for when
such a merge can be desired. Note that unlike many dialog models, Fig. 7(b)
still shows that T2 cannot be executed until T1 is finished. This ensures that
the dialog model is consistent with the task model, even when ETSs are merged.

deactivation The deactivation operator ([>) can be used to let one task interrupt
the execution of another task and prevent further execution of that task. Fig. 8
shows what this means in terms of our UML state machine representation. T1
[> T2 means that when T2 ends execution, T1 immediately becomes inactive.
Note that both diagrams in Fig. 8 result in the described effect. The approach
in Fig. 8(a) can be extended to work when T2 has subtasks (although the first
subtask of T2 should be used in this case to be compliant with the CTT specifi-



cation, while the approach in Fig. 8 cannot but offers a simpler syntax instead.
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Fig. 8. deactivation

choice The choice operator ([1) offers the option to choose between two tasks of
which only one may be completed. As soon as one of the tasks starts execution,
the other tasks become inactive. This prevents that more than one task is exe-
cuting at the same time. This type of choice is called a “deterministic choice” in
[4]. The same article also describes a non-deterministic choice. This latter type
of choice only allows one task to complete; the other options will not become
inactive until one of the tasks has been completed (see Fig. 9(b)).
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Fig. 9. Choice

task iteration The two possibilities that are offered by the CTT notation for
the expression of iterating task can be expressed as is shown in Fig. 10. Both



diagrams using UML state machines clearly show the semantics of the iteration
operators in the CTT; the repeatable task has to be completed before another
iteration of the task can be repeated.
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Fig. 10. Task iteration

optional The state machine representation of an optional task contains an addi-
tional transition from the sleeping state to the final pseudo state. The transition
is triggered by the completion of a task that triggers a transition to another
enabled task set.

6 Towards a dialog model

The previous section showed that it is possible to combine the UML state ma-
chine description of two (or more) sibling tasks. To create an effective dialog
model, however, a complete task model has to be converted into a UML state
machine. In this section, we demonstrate by example that it is possible to do so
for the task model in Fig. 1.

6.1 The CTT Example

Fig. 11 shows the UML state machine corresponding to the CTT task model in
Fig. 1. The hierarchy from the CTT model is preserved in this example. This
is however a choice made, not an obligation. Furthermore, one-to-one mapping
might not always be possible in the general case but no definitive claims can
be made about this without further investigation and in some cases it may be
desirable not to copy all abstraction levels from the CTT to the state machine.
We can see that the top-level state is split into four concurrent regions, each
corresponding to a direct child of the top-level task in the CTT. The fact that
their are four concurrent regions is caused by the choice to use the mapping
in Fig. 7(b) for the enabling operator between the tasks Define period and
Select room type, and the tasks Select Room type and Show and refine
availability. For the enabling operator between the tasks Perform query
and Show Availability, the other option was chosen, resulting in a sequence
of states within the first region of the task Show and refine availability.



Check Availability

Define period

Enter start and end date

niter start date and duration starte

Enter start date and duration

SleerQ Executlng ' O
Erter start andl end date Siarte

Select Room Type

[Define period ended]

Show and refine availability

( Perform query
P [Select Room Type ended)
) I

Show Availability

@
H' Sleeping H’Execuﬁng l 5@

o |

Refine availability

Edit Period
[Showye Sevailskilty encded]

Executing

H' Sleeping

Submit enced

Edit Room Type
[Show availability ended)

Sleeplng | 5] Executing ]H@

Submit endecd

L

Submit
.—;,] Sleeplng Executing )ﬂ

Shovy Svailabilty Ended]
Close Availability

. - Sleeping } =/ Executing | @ >

o

Fig. 11. UML state machine corresponding to Fig. 1 and Fig. 3



When observing the diagram, we can also see the two options to indicate the
deactivation operator. The option in Fig. 8(a) is applied for the task Submit,
while the other option is applied for the task Close Availability. It is clear
that the choice for the second option reduces the complexity of the overall dia-
gram.

The example in Fig. 11 shows that it is possible to use the proposed notation
to map the behavior of the CTT to the UML state machines. The resulting nota-
tion is however too complex to quickly understand the meaning of the diagram.
To resolve this issue we opted to define a UML profile, which should reduce
the complexity of the notation. The profile is discussed into more detail in the
following section.

6.2 Simplified notation for a dialog model

Fig. 12 gives an overview of the UML profile we defined to simplify the notation
for interactive use of the notation. The profile consists of a single stereotype,
<< task>> for the State metaclass. When the UML-profile is applied to a
UML state machine, the stereotype should be applied to all instances of the
metaclass State, i.e. all states in the diagram.

==sterectypess=
tasK ==metaclass==
+executedfter ; task [0..1] . State
+atternativeTo : task [0.4] ireguired}
+concurrentAkernative | Boolean = false

+dizables : task [0.%]
+noninterruptable © Boolean = falze
+optional : Boolean = false
+repeatable | Boolean = falze
+repettionCount | Integer [0..1]

Fig. 12. Proposed stereotype for the State metaclass

Seven tagged values are defined within the stereotype, which relate to the dif-
ferent temporal operators: executeAfter specifies the task after the completion
of which the current task can start executing. It is used in case an overlap in the
active state of the two tasks is desired as is specified in Fig. 7(b). alternativeTo
allows to specify an alternative task. The collection of tasks specified by this
tagged value contains one or more tasks when the corresponding task in the
CTT is an operand of the choice operator. concurrentAlternative is set to
true in case of non-deterministic choice. disables is a non-empty collection of
tasks when the corresponding task in the CTT is the right-operand of a deactiva-
tion operator and the mapping to Fig. 8(a) is chosen. nonInterruptable is true
when the corresponding task in the CTT is an operand of the operator order
independent. optional is true when the operator optional is applied to the cor-



responding task in CTT. repeatable is set to true when the corresponding task
is repeatable. repetitionCount can be used to set the number of repetitions.

Check Availability
Define Period

Enter start and end date
{alternative Ta = Enter start date and duration}

Enter start date and duration
{alternativeTo = Enter start and end date}

Select room type
{executeAfter= Define Periad}

Show and refine availability
{executeAfter= Select room type}

H Perform Query H Show availability ﬁ@

Refine Availability
| Edit period |

Fig. 13. Simplified notation of Fig. 11 using the stereotype << task>>

Fig. 13 shows the simplified version of the state machine in Fig. 11. This
diagram is clearly more readable, because the added complexity of the substates
and associated transitions of the task state active is removed from the diagram.
Since all states have the stereotype << task>> applied to them, this stereotype
is not shown in the diagram. For those states that have a tagged value that con-
tains one or more values, the name of the tagged value as well as the values are
shown below the state name between parentheses. For states whose correspond-
ing task is optional or nonInterruptable or repeatable only the name of the
tagged value will be shown. Note that there is no such task in this example.

Taking into account the concrete semantics for the task states presented in
section 4 and table 1, we can state that we can consider the diagram in Fig. 13 to
be a high-level dialog model. A complex state can correspond to a single dialog
or window or a part thereof. Fig. 13 can thus describe the dynamic composition
of a single window.



7 Related work

One can find several approaches to define the semantics of the temporal operators
of the CTT in literature. Some provide an informal definition of the temporal
operators such as Mori et al. [7]. They also present an algorithm to transform
the CTT to a set of enabled task sets (ETSs). Mori et al. [8] also propose an
abstract user interface model that contains a dialogue model description. This
notation is based on task sets and transition tasks.

A more formal definition of the CTT is given by Luyten al. [6] who use these
definitions to define an alternative transformation algorithm from the CTT to a
set of ETSs. They do not give semantics of the temporal operators except that
two of them cause transitions: the enabling and deactivation operators.

Both aforementioned approaches do not support nested states, which means
that merging task sets creates inconsistencies between the task model and ab-
stract user interface model.

Nobrega et al. [9] provide a mapping of the CTT to UML 2.0. They define
the semantics of most of the operators by defining a mapping to UML 2.0 ac-
tivity diagrams. In contrast to this work, they do not provide a definition for
the suspend/resume operator. They do propose an extension to UML, with a
hierarchical task notation, which reuses as much symbols of UML as possible
for the newly introduced concepts. This notation is, however, not used to derive
further specifications, such as a dialog or abstract user interface model.

Elkoutbi et al. [1] propose a semi-automated approach to derive interactive
prototypes from scenarios specified using UML use cases, class diagrams and
collaboration diagrams. This approach uses statecharts as an intermediate step
to specify the behavior of the interactive prototype. Their approach shows the
capabilities of the UML state machines (with nested states) as a specification
language that can be used for generation of user interface prototypes.

8 Conclusion

In this paper we proposed a general description of the task execution cycle using
UML state machines. We described the influence of the temporal operators on
this description. An example that combined the states for a complete task model
into one stage machine demonstrated the complexity of the notation for larger
compositions. We thus proposed an abbreviated notation for this integrated no-
tation using a small UML profile. This profile adds extra semantics to the states,
which can be used to generate the complete specification. The support for nested
states offers enhanced expressiveness over other solutions such as state transition
networks.

The usage of UML enables the application of proven transformation tools
to be applied on the models to generate dialog models at different levels of
abstractions and adapted to different contexts of use. Further exploration of this
route is planned as future work. Building on the work of [15] would allow to
exploit all formal work done on petri nets.
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